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Background: Intracerebral hemorrhage (ICH) is a stroke syndrome with an

unfavorable prognosis. Currently, there is no comprehensive clinical indicator

for mortality prediction of ICH patients. The purpose of our study was to

construct and evaluate a nomogram for predicting the 30-day mortality risk

of ICH patients.

Methods: ICH patients were extracted from the MIMIC-III database according

to the ICD-9 code and randomly divided into training and verification cohorts.

The least absolute shrinkage and selection operator (LASSO) method and

multivariate logistic regression were applied to determine independent risk

factors. These risk factors were used to construct a nomogram model for

predicting the 30-day mortality risk of ICH patients. The nomogram was

verified by the area under the receiver operating characteristic curve (AUC),

integrated discrimination improvement (IDI), net reclassification improvement

(NRI), and decision curve analysis (DCA).

Results: A total of 890 ICH patients were included in the study. Logistic

regression analysis revealed that age (OR = 1.05, P < 0.001), Glasgow Coma

Scale score (OR = 0.91, P < 0.001), creatinine (OR = 1.30, P < 0.001), white

blood cell count (OR = 1.10, P < 0.001), temperature (OR = 1.73, P < 0.001),

glucose (OR = 1.01, P < 0.001), urine output (OR = 1.00, P = 0.020), and

bleeding volume (OR = 1.02, P < 0.001) were independent risk factors for

30-day mortality of ICH patients. The calibration curve indicated that the

nomogram was well calibrated. When predicting the 30-day mortality risk,

the nomogram exhibited good discrimination in the training and validation

cohorts (C-index: 0.782 and 0.778, respectively). The AUCs were 0.778, 0.733,

and 0.728 for the nomogram, Simplified Acute Physiology Score II (SAPSII), and

Oxford Acute Severity of Illness Score (OASIS), respectively, in the validation

cohort. The IDI and NRI calculations and DCA analysis revealed that the
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nomogram model had a greater net benefit than the SAPSII and OASIS

scoring systems.

Conclusion: This study identified independent risk factors for 30-day mortality

of ICH patients and constructed a predictive nomogram model, which may

help to improve the prognosis of ICH patients.

KEYWORDS

intracerebral hemorrhage, MIMIC III database, prognosis, nomogram, mortality

Background

Intracerebral hemorrhage (ICH) refers to primary,
spontaneous, and non-traumatic hemorrhage that occurs in
the brain parenchyma (Morotti and Goldstein, 2016; Watson
et al., 2022). It is a common and the most severe hemorrhagic
stroke syndrome, with a 30-day mortality rate higher than
40%, and most survivors are severely disabled (An et al., 2017).
More than 2.8 million people worldwide reportedly die each
year due to ICH (Schrag and Kirshner, 2020). ICH usually
occurs in small arterioles affected by cerebral small vessel
disease (SVD) (Hostettler et al., 2019). It is generally accepted
that deep perforator arteriopathy (also termed hypertensive
arteriopathy or arteriolosclerosis) (Hostettler et al., 2019;
Schreiber et al., 2020) and cerebral amyloid angiopathy (CAA)
(Banerjee et al., 2017; Weber et al., 2018) are the most common
forms of sporadic SVD to induce ICH. In addition, certain gene
mutations are related to the severity of ICH (Devan et al., 2013;
Jones et al., 2019; Tang et al., 2021).

In contrast to the significant progress that has been made in
the clinical treatment of ischemic stroke, the ideal management
of ICH is undetermined (Kirshner and Schrag, 2021). It is
currently believed that comprehensive supportive care in the
acute phase after onset is the most effective treatment of ICH
patients (Hemphill et al., 2015; Parry-Jones et al., 2020). Clinical
trials in the United States showed that interventional surgery
or drug therapy cannot effectively reduce the mortality or
morbidity of ICH (Wilkinson et al., 2018). Therefore, the risk
factors that affect prognosis after cerebral hemorrhage should

Abbreviations: AKI, acute kidney injury; APSIII, Acute Physiology Score
III; AUC, the area under the receiver operating characteristic curve;
BP, blood pressure; BUN, blood urea nitrogen; CAA, cerebral amyloid
angiopathy; CI, confidence interval; DCA, decision curve analysis; GCS,
Glasgow Coma Scale; ICH, intracerebral hemorrhage; ICU, Intensive
Care Unit; IDI, integrated discrimination improvement; INR, international
normalized ratio; MIMIC-III, Medical Information Mart for Intensive
Care III; NIH, National Institutes of Health; NRI, net reclassification
improvement; OASIS, Oxford Acute Severity of Illness Score; OR, odds
ratio; PT, prothrombin time; PTT, Partial thromboplastin time; ROC,
receiver operating characteristic curve; SAH, subarachnoid hemorrhage;
SAPSII, Simplified Acute Physiology Score II; SOFA, Sepsis-related Organ
Failure Assessment; SpO2, the saturation of peripheral oxygen; SQL,
structured query language; SVD, small vessel disease; WBC, white blood
cell.

be comprehensively studied, especially in intensive care units
(ICUs).

Doctors and scholars have been committed to investigating
the risk factors that lead to the unfavorable prognosis of ICH
patients. Age (Forti et al., 2016), cancer (Gon et al., 2018),
infection (Lord et al., 2014), and deep vein thrombosis (Cai
et al., 2021) are risk factors for the unfavorable prognosis of
ICH patients. A nomogram is a graphical tool used to determine
the probability of an individual experiencing a clinical event
based on a statistical prediction model (Zheng et al., 2016).
Nomograms that predict risk factors for mortality of ICH
patients have received little attention. The purpose of our
research was to develop a nomogram that can predict the 30-
day mortality risk of ICH patients and thereby guide clinical
practice.

Materials and methods

Data source

All data were extracted from the Medical Information
Mart for Intensive Care III (MIMIC-III) database. MIMIC-III
contains data associated with 53,423 distinct hospital admissions
of adult patients (aged 16 years or older) admitted to critical
care units at the Beth Israel Deaconess Medical Center in
Boston, Massachusetts from 2001 to 2012 (Johnson et al., 2016).
The information in the database is anonymous and therefore
informed consent was not required for this study. The research
personnel completed a series of courses provided by the National
Institutes of Health and obtained authorization to access the
MIMIC-III database after completing the required assessment
(certificate number 40269495).

Patients and variables

The required data were extracted using the Structured Query
Language in Navicat Premium (version 11.2.7.0). ICD-9 code
431 was used to extract patients diagnosed with ICH from the
MIMIC-III database. The exclusion criteria were as follows: (1)
first diagnosis not ICH, (2) younger than 18 years old, and (3)
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FIGURE 1

Flow diagram of the study.

less than 24 h of treatment in an ICU. The flow diagram of the
study is shown in Figure 1.

The icustay_id parameter was used to extract data,
including age, sex, marital status, ethnicity, severity score,
comorbidities, vital signs, laboratory parameters, bleeding
volume, and lesion location from the corresponding table.

In terms of comorbidities, chronic pulmonary diseases,
hypothyroidism, renal failure, liver disease, fluid electrolyte
disorders, coagulopathy, obesity, heart diseases, diabetes, other
neuronal dysfunctions, and anemias were mainly extracted.
The vital sign values used, including heart rate, blood
pressure, respiratory rate, temperature, saturation of peripheral
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oxygen, glucose, and urine output, were the average values
measured over 24 h before ICU admission. The laboratory
results were anion gap, bicarbonate, creatinine, chloride,
glucose, hematocrit, hemoglobin, platelet, and potassium levels,
partial thromboplastin time, international normalized ratio,
prothrombin time, blood urea nitrogen level, and white blood
cell (WBC) count. Severity scoring systems included the Angus
implementation of the international consensus conference
definition of severe sepsis, Simplified Acute Physiology Score II
(SAPSII), Sequential Organ Failure Assessment, Oxford Acute
Severity of Illness Score (OASIS), Acute Physiology Score III,
and Glasgow Coma Scale (GCS) score. The raw data for this
study are provided as Supplementary Data 1.

The event outcome was 30-day mortality of ICH patients
hospitalized in an ICU. Patients who were alive at the time of
discharge were designated as survivors.

Statistical analysis

Missing data are common in the MIMIC-III database and
were explained using multiple imputations. All indicators with
more than 20% missing values were eliminated. The “mice”
package of R software was used to obtain ten estimated data
sets. All ICH patients were randomly divided into training (70%)
and validation (30%) cohorts. The former was used to build a
nomogram and perform internal verification, while the latter
was used to perform external verification. Categorical variables
were expressed as frequency/percentage, and the chi-square test
or Fisher’s exact test was used to compare different groups. The
Shapiro–Wilk test was used to determine whether a continuous
variable had a normal distribution. If a continuous variable was
normally distributed, it was described as the mean and standard
deviation. If a continuous variable was not normally distributed,
it was described as the median and interquartile range.

Logistic regression was applied to determine the
independent risk factors for mortality of ICH patients within
30 days. First, risk factors were identified by performing least
absolute shrinkage and selection operator (LASSO) regression
analysis to resolve the collinear effect (OASIS and SAPSII scores
were not included as variables in subsequent studies). LASSO
analysis, a method to select variables among a large number
of variables for predicting outcomes, reduces the coefficient
of irrelevance while retaining important variables (Zhang and
Hong, 2017). The code and data set of LASSO regression are
provided as Supplementary Data 1, 2. Next, different AUC
values within the range of lambda were estimated using a
cross-validation technique. The maximum value of lambda
when the cross-validation error was within one standard error
of the minimum value was chosen. In accordance with previous
studies, the probability threshold for entry was 0.05 and the
threshold for removal was 0.10 in this step (Xu et al., 2021). The
selected variables were then subjected to multivariate logistic

regression analysis in order to identify independent prognostic
factors, and the results were denoted as odds ratios (ORs)
and 95% confidence intervals (CIs). Finally, a nomogram was
constructed based on independent prognostic factors and used
to predict the 30-day mortality of ICH patients.

Subsequently, multiple indicators were used to verify the
nomogram internally and externally. The area under the
receiver operating characteristic curve (AUC) was utilized to
evaluate the predictive ability of the contour map of the
nomogram, and the AUC value was compared with those of the
SAPSII and OASIS scoring systems. The statistical significance
of the improvement in AUC was calculated by Delong’s test
(DeLong et al., 1988). Receiver operating characteristic (ROC)
curves were used to determine the optimal cut-off and its
sensitivity and specificity according to the Youden index. In
addition, integrated discrimination improvement (IDI) and net
reclassification improvement (NRI) were applied to calculate the
difference between the constructed model and the SAPSII and
OASIS scoring systems for predicting the 30-day mortality of
ICH patients. In addition, a calibration curve was constructed
and the calibration of the nomogram was evaluated using the
Hosmer–Lemeshow test. Decision curve analysis (DCA) is a
widely used tool in cancer research to determine the clinical
value of predictive models. Therefore, to further measure
the advantages of the constructed nomogram model, DCA
was performed to compare the clinical applicability of the
nomogram and that of the SAPSII and OASIS scoring systems.
This was achieved by calculating the net benefits for a range of
threshold probabilities.

R (version 4.0.3) and SPSS (version 24.0) software were
used for statistical analyses. P < 0.05 was considered
statistically significant.

Results

Baseline characteristics

After applying the inclusion and exclusion criteria, 890
ICH patients were identified from the MIMIC-III database (623
and 267 in the training and validation cohorts, respectively).
Length of ICU stay (2.93 [1.78, 6.34] days versus 2.89 [1.88,
7.71] days, P = 0.303), length of admission (8.12 [4.28, 14.44]
days versus 8.60 [4.60, 15.76] days, P = 0.51), and mortality
rate (31.9% versus 37.1%, P = 0.158) did not significantly
differ between the two groups. In the training and validation
cohorts, females accounted for 46.9 and 41.2% of ICH patients,
respectively. The median ages of patients in the training and
validation cohorts were 71.00 [58.00, 81.00] years and 70.00
[59.00, 80.00] years, respectively. The proportions of chronic
pulmonary disease patients in the training and validation
cohorts were 13.2% and 13.1%, respectively. In the training and
validation cohorts, 19.9% and 23.2% of patients had complicated
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diabetes, respectively, while 39.0% and 36.7% of patients had
another neurological insufficiency, respectively. The median
SAPSII scores in the training and validation cohorts were
34.00 [27.00, 42.00] and 35.00 [28.00, 44.00], respectively. In
the training and validation cohorts, the average blood glucose
levels (mg/dL) were 137.00 [118.50, 164.12] and 143.00 [123.38,
166.75], respectively, while the average WBC counts (K/µL)
were 10.70 [8.51, 13.57] and 10.80 [8.71, 13.50], respectively. The
other baseline information is shown in Table 1.

Nomogram construction

Least absolute shrinkage and selection operator regression
was applied to identify independent risk factors for mortality
of ICH patients within 30 days. The different mean-squared
errors within the range of log(lambda) were shown in Figure 2.
When the cross-validation error was less than the standard
error of the minimum value, the maximum lambda value
was selected. Multivariate logistic regression identified age,
GCS score, creatinine, WBC count, temperature, glucose, urine
output, and bleeding volume as independent risk factors for
mortality during hospitalization of ICH patients. The risk of
mortality within 30 days was 1.05-fold higher for elderly patients
(95% CI = 1.03–1.06). Patients with elevated WBCs at the first
laboratory examination had a 1.1-fold higher risk of mortality
than patients with normal results (95% CI = 1.05–1.16), while
patients with a higher creatinine level had a 1.3-fold higher risk
of mortality (95% CI = 1.10–1.55). Patients with hyperthermia
when they entered the ICU had a 1.73-fold higher risk of
mortality than patients with normal body temperature (95%
CI = 1.25–2.41). Urine output (OR = 1.00, 95% CI = 1.00–1.00)
and bleeding volume (OR = 1.02, 95% CI = 1.01–1.04) were also
risk factors for 30-day mortality of ICH patients, while the GCS
score (OR = 0.91, 95% CI = 0.86–0.95) was a protective factor
(Table 2). These results were used to construct a nomogram for
estimating the 30-day mortality risk of ICH patients (Figure 3).

Nomogram validation

The discriminative ability of the nomogram was
summarized by the ROC and Harrell’s concordance index
(C-index). The C-indexes of the training and validation cohorts
were 0.782 (95% CI = 0.740–0.820) and 0.778 (95% CI = 0.720–
0.840), respectively. The overall predictive performance was
verified using ROC curves (Figure 4). The AUCs of the
nomogram were 0.772 (95% CI = 0.732–0.811) and 0.778
(95% CI = 0.719–0.838) in the training and validation cohorts,
respectively. Our nomogram model had higher AUC values
than SAPSII and OASIS in both the training and validation
cohorts. In the training cohort, the optimal cut-off value of
the nomogram was 0.276, and the sensitivity and specificity

were 0.789 and 0.637, respectively. In the validation cohort,
the optimal cut-off value of the nomogram was 0.403, and the
sensitivity and specificity were 0.697 and 0.780, respectively.
The AUCs of the individual models were further compared
using Delong’s test. In the training cohort, the AUC of the
nomogram did not significantly differ from those of SAPSII
(P = 0.068) and OASIS (P = 0.384). In the validation cohort, our
model exhibited a similar performance as SAPSII (P = 0.214,
Delong’s test) and OASIS (P = 0.158, Delong’s test).

Compared with the traditional SAPSII and OASIS scoring
systems, the NRI values of the nomogram were 0.257 (95%
CI = –0.011–0.600) and 0.106 (95% CI = –0.082–0.405) in
the training cohort, respectively, and 0.186 (95% CI = –0.192–
0.670) and 0.178 (95% CI = –0.092–0.628) in the validation
cohort, respectively. The corresponding IDI values were 0.048
(95% CI = 0.012–0.084), 0.028 (95% CI = –0.007–0.063),
and 0.057 (95% CI = 0.001–0.112), 0.070 (95% CI = 0.018–
0.123). These values indicate that our nomogram has a good
discrimination ability comparable with these currently widely
used scoring systems.

The calibration curve of the nomogram is shown in
Figure 5. The calibration curves of the training and validation
cohorts were both close to the diagonal. The Hosmer–
Lemeshow test found no significant difference (training cohort:
χ2 = 11.043, P = 0.199, validation cohort: χ2 = 8.643, P = 0.373).
In summary, our nomogram provided a good simulation of
the data. Finally, we drew a DCA curve to prove the clinical
applicability of the nomogram and compared it with those of
the SAPSII and OASIS scoring systems (Figure 6). When the
threshold probability was 0.3–0.5, clinical intervention guided
by our nomogram model had greater net benefit than that
guided by the SAPSII and OASIS scoring systems in both
cohorts.

Discussion

In this study, we identified independent risk factors for 30-
day mortality of ICH patients using LASSO and multivariate
logistic regression. LASSO regression is one of the most useful
tools to select features for classification and survival prognosis
determination (Song et al., 2020). It can obtain fewer and
more representative variable combinations from a large number
of variables while avoiding model overfitting (Giral et al.,
2018; Patel et al., 2018). However, LASSO regression also
has shortcomings. It requires consistent initial estimates of
regression coefficients, which are often unavailable in high-
dimensional settings (Alhamzawi and Ali, 2018). Furthermore,
the result heavily depends on the penalty parameter λ, which
can lead to a very high minimization of the false discovery rate
in some cases (Ternès et al., 2016).

Our results showed that age, GCS score, creatinine, WBC
count, temperature, glucose, urine output, and bleeding volume
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TABLE 1 Patient characteristic.

Variables Overall Training cohort Validation cohort P

N 890 623 267

Gender (%)

Female 402 (45.2) 292 (46.9) 110 (41.2) 0.138

Male 488 (54.8) 331 (53.1) 157 (58.8)

Marital (%)

DSW 194 (21.8) 133 (21.3) 61 (22.8) 0.885

Married 455 (51.1) 319 (51.2) 136 (50.9)

Single 155 (17.4) 112 (18.0) 43 (16.1)

Unknown 86 (9.7) 59 (9.5) 27 (10.1)

Race (%)

Black 63 (7.1) 39 (6.3) 24 (9.0) 0.329

Other 198 (22.2) 138 (22.2) 60 (22.5)

White 629 (70.7) 446 (71.6) 183 (68.5)

Age (year) 71.00 [58.00, 81.00] 71.00 [58.00, 81.00] 70.00 [59.00, 80.00] 0.959

Severe Score

Angus 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.075

SAPSII 34.00 [27.25, 43.00] 34.00 [27.00, 42.00] 35.00 [28.00, 44.00] 0.265

SOFA 3.00 [2.00, 4.00] 3.00 [2.00, 4.00] 3.00 [2.00, 5.00] 0.252

OASIS 35.00 [29.00, 41.00] 35.00 [29.00, 41.00] 34.00 [29.00, 40.50] 0.877

APSIII 36.00 [26.25, 49.00] 36.00 [27.00, 50.00] 36.00 [26.00, 48.00] 0.576

GCS 14.00 [10.00, 15.00] 14.00 [10.00, 15.00] 14.00 [10.00, 15.00] 0.496

Laboratory test

Anion gap (mmol/L) 14.50 [13.00, 16.19] 14.50 [13.00, 16.33] 14.00 [13.00, 16.00] 0.168

Bicarbonate (mmol/L) 24.50 [23.00, 26.63] 24.50 [23.00, 26.50] 25.00 [22.83, 26.67] 0.959

Creatinine (mg/dL) 0.90 [0.72, 1.15] 0.90 [0.70, 1.15] 0.90 [0.74, 1.16] 0.238

Chloride (mmol/L) 104.00 [101.00, 106.50] 104.00 [101.00, 106.50] 104.25 [101.59, 107.00] 0.050

Glucose (mg/dL) 138.38 [120.12, 164.73] 137.00 [118.50, 164.12] 143.00 [123.38, 166.75] 0.155

Hematocrit (g/dL) 36.53 [32.75, 39.83] 36.73 [33.11, 39.93] 35.80 [32.30, 39.50] 0.097

Hemoglobin (g/dL) 12.46 [11.20, 13.62] 12.53 [11.30, 13.60] 12.15 [10.98, 13.65] 0.129

Platelet (K/µL) 221.75 [176.62, 278.12] 224.00 [176.50, 279.75] 219.50 [177.29, 271.50] 0.374

Potassium (mmol/L) 3.89 [3.60, 4.20] 3.90 [3.61, 4.20] 3.86 [3.60, 4.15] 0.185

PTT (s) 26.40 [24.00, 29.30] 26.45 [24.10, 29.00] 26.15 [23.65, 30.03] 0.763

INR 1.13 [1.05, 1.30] 1.10 [1.05, 1.30] 1.15 [1.09, 1.35] 0.280

PT (s) 13.10 [12.50, 14.30] 13.05 [12.50, 14.20] 13.20 [12.45, 14.46] 0.429

Sodium (mmol/L) 139.67 [137.67, 141.75] 139.50 [137.50, 141.75] 140.00 [138.00, 141.71] 0.153

BUN (mmol/L) 17.00 [13.00, 22.92] 17.00 [13.33, 22.67] 17.33 [12.83, 23.00] 0.861

WBC (K/µL) 10.75 [8.55, 13.55] 10.70 [8.51, 13.57] 10.80 [8.71, 13.50] 0.781

Vital signs

Heartrate (bpm) 78.86 [69.96, 89.00] 79.31 [70.02, 88.62] 77.48 [69.39, 89.54] 0.398

Systolic BP (mmHg) 134.81 [124.40, 144.22] 134.96 [124.44, 144.85] 134.46 [124.01, 143.75] 0.406

Diastolic BP (mmHg) 64.51 [57.65, 71.84] 64.36 [57.69, 71.84] 65.26 [57.59, 71.76] 0.867

Mean BP (mmHg) 85.59 [78.09, 91.91] 85.68 [77.97, 92.43] 85.08 [78.41, 91.47] 0.975

Respiratory rate (rpm) 17.72 [15.91, 19.79] 17.73 [15.86, 19.86] 17.68 [15.95, 19.71] 0.678

Temperature (◦C) 36.99 [36.57, 37.43] 37.02 [36.59, 37.41] 36.96 [36.54, 37.46] 0.593

SpO2 (%) 98.20 [96.77, 99.25] 98.04 [96.61, 99.26] 98.37 [97.05, 99.24] 0.179

Glucose (mg/dL) 139.17 [121.06, 162.76] 138.00 [120.80, 163.40] 140.60 [123.00, 161.12] 0.665

Urine Output (mL) 1742.50 [1176.25, 2540.00] 1740.00 [1150.00, 2550.00] 1748.00 [1226.00, 2477.50] 0.880

(Continued)
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TABLE 1 (Continued)

Variables Overall Training cohort Validation cohort P

Comorbidities

Chronic pulmonary diseases (%)

No 773 (86.9) 541 (86.8) 232 (86.9) 1.000

Yes 117 (13.1) 82 (13.2) 35 (13.1)

Hypothyroidism (%)

No 820 (92.1) 575 (92.3) 245 (91.8) 0.892

Yes 70 (7.9) 48 (7.7) 22 (8.2)

Renal failure (%)

No 826 (92.8) 577 (92.6) 249 (93.3) 0.843

Yes 64 (7.2) 46 (7.4) 18 (6.7)

Liver Diseases (%)

No 864 (97.1) 605 (97.1) 259 (97.0) 1.000

Yes 26 (2.9) 18 (2.9) 8 (3.0)

Coagulopathy (%)

No 828 (93.0) 584 (93.7) 244 (91.4) 0.262

Yes 62 (7.0) 39 (6.3) 23 (8.6)

Obesity (%)

No 872 (98.0) 611 (98.1) 261 (97.8) 0.959

Yes 18 (2.0) 12 (1.9) 6 (2.2)

Fluid-electrolyte disorders (%)

No 666 (74.8) 479 (76.9) 187 (70.0) 0.038

Yes 224 (25.2) 144 (23.1) 80 (30.0)

Heart Diseases (%)

No 513 (57.6) 361 (57.9) 152 (56.9) 0.836

Yes 377 (42.4) 262 (42.1) 115 (43.1)

Diabetes (%)

No 704 (79.1) 499 (80.1) 205 (76.8) 0.305

Yes 186 (20.9) 124 (19.9) 62 (23.2)

Other neuronal dysfunctions (%)

No 549 (61.7) 380 (61.0) 169 (63.3) 0.567

Yes 341 (38.3) 243 (39.0) 98 (36.7)

Anemias (%)

No 877 (98.5) 615 (98.7) 262 (98.1) 0.715

Yes 13 (1.5) 8 (1.3) 5 (1.9)

Bleeding Volume (cm2) 10.92 [5.94, 21.74] 11.88 [6.00, 22.20] 10.08 [5.25, 19.97] 0.075

Lesion Location (%)

Basal ganglia 164 (18.4) 112 (18.0) 52 (19.5) 0.104

Brain stem 5 (0.6) 3 (0.5) 2 (0.7)

Cerebel 91 (10.2) 65 (10.4) 26 (9.7)

Frontal 175 (19.7) 129 (20.7) 46 (17.2)

Intraparenchymal 121 (13.6) 81 (13.0) 40 (15.0)

Occipital 36 (4.0) 22 (3.5) 14 (5.2)

Parietal 51 (5.7) 32 (5.1) 19 (7.1)

Subarachnoid 23 (2.6) 15 (2.4) 8 (3.0)

Temporal 26 (2.9) 25 (4.0) 1 (0.4)

Thalamic 36 (4.0) 29 (4.7) 7 (2.6)

Unknown 162 (18.2) 110 (17.7) 52 (19.5)

(Continued)
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TABLE 1 (Continued)

Variables Overall Training cohort Validation cohort P

Length of ICU stays (day) 2.93 [1.84, 6.83] 2.93 [1.78, 6.34] 2.89 [1.88, 7.71] 0.303

Length of Admission (day) 8.25 [4.42, 14.65] 8.12 [4.28, 14.44] 8.60 [4.60, 15.76] 0.510

Status (%)

Survival 592 (66.5) 424 (68.1) 168 (62.9) 0.158

Dead 298 (33.5) 199 (31.9) 99 (37.1)

A B

FIGURE 2

Least absolute shrinkage and selection operator (LASSO) binary logistic regression model for identifying independent risk factors for mortality in
patients with ICH within 30 days. (A) LASSO coefficient profiles of the radiomic features. Each colored line represents the coefficient of each
feature. (B) Plot the results of cross-validation, and the red dots in the figure represent the target parameters corresponding to each lambda.
The largest lambda value is chosen when the cross-validation error is within one standard error of the minimum.

TABLE 2 Factors independently associated with 30-day mortality
in ICH patients.

Variables OR 95% CI P

Age (year) 1.05 1.03–1.06 0.000 ***

Severe Score

GCS 0.91 0.86–0.95 0.000 ***

Laboratory test

Creatinine (mg/dL) 1.30 1.10–1.55 0.000 ***

WBC (K/µL) 1.10 1.05–1.16 0.000 ***

Vital signs

Temperature (◦C) 1.73 1.25–2.41 0.000 ***

Glucose (mg/dL) 1.01 1.00–1.01 0.000 ***

Urine Output (mL) 1.00 1.00–1.00 0.020 *

Bleeding Volume (cm2) 1.02 1.01–1.04 0.000 ***

*P < 0.05, ***P < 0.001.

were independent risk factors for 30-day mortality of ICH
patients. These results were applied to construct a nomogram

model for assessing the 30-day mortality risk of ICH patients.
The effectiveness of the nomogram was verified by multiple
indicators, including the AUC, the calibration curve, the
Hosmer–Lemeshow test, IDI, NRI, and DCA. In addition, we
determined the best cut-off value according to the Youden
index and calculated the sensitivity and specificity. In clinical
applications, the selection of a cut-off value can be based
on a trade-off between misdiagnosis and missed diagnosis.
Although our model had higher AUC values than the SAPSII
and OASIS scoring systems, further analysis using Delong’s test
did not reveal a significant difference (P > 0.05). However,
several other indicators revealed that the predictive performance
of the constructed nomogram was better than that of the
SAPSII and OASIS scoring systems. These data indicate that the
constructed model can reduce the number of variables and its
predictive performance is not worse than that of commonly used
scoring systems.

Similar to many previous studies, we found that age (Inoue
et al., 2018; He et al., 2020), GCS score (Cui et al., 2020), and
bleeding volume (Al-Shahi Salman et al., 2018; Du et al., 2020;
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FIGURE 3

Thirty-day mortality nomogram for intracerebral hemorrhage. Nomogram included age, GCS, creatinine, WBC, temperature, glucose, urine
output, and bleeding volume for predicting 30-day mortality after an acute intracerebral hemorrhage. The total point was calculated as the sum
of the individual score of each of the seven variables included in the nomogram. The patient was evaluated according to each variable, and the
total points were given according to the nomogram. The patient was evaluated according to the specific data of each variable, and a total score
was given according to the nomogram. Based on this value, the risk of 30-day morality could be predicted.

He et al., 2020; Kang et al., 2021; Masotti et al., 2021;
Pasi et al., 2021) were independent risk factors for the poor
prognosis of ICH patients. It is generally believed that the
main causes of ICH are hypertension and CAA (Schrag and
Kirshner, 2020). CAA is believed to be directly related to aging
(Dallaire-Théroux et al., 2022). It has also been suggested that
the hematoma volume (Kuramatsu et al., 2011; Forti et al.,
2016; Inoue et al., 2018) and neuroinflammation (Jiang et al.,
2021; Watson et al., 2022) are more critical in elderly patients
with ICH. The GCS score is the most widely used indicator
for assessing the degree of coma in patients, and lower GCS
scores are associated with a higher risk of death (Saika et al.,
2015; Widyadharma et al., 2021). Consistent with our results,
many nomogram-based studies have reported that a decrease in
GCS scores significantly contributes to an increase in mortality
and the likelihood of hematoma expansion in ICH patients (Yao
et al., 2015; Cui et al., 2020; Chen et al., 2021; Kang et al.,
2021). The bleeding volume increases upon rupture of vessels
and can continue to increase after ICH is diagnosed by imaging,

and, consequently, the baseline bleeding volume and hematoma
enlargement are strongly associated with poor clinical outcomes
(Al-Shahi Salman et al., 2018). The bleeding volume has even
been reported to be the main determinant of outcomes after ICH
(LoPresti et al., 2014).

Although the pathology has not been fully elucidated, ICH
is accompanied by a strong inflammatory cascade, including
infiltration of leukocytes, release of various inflammatory
factors, and activation of microglia (Tschoe et al., 2020).
Peripheral blood leukocytes are a marker of the immune
response and reflect activation of the inflammatory cascade
after spontaneous ICH, which causes secondary brain damage
(Tapia-Pérez et al., 2016; Zhang et al., 2019). Many studies
have suggested that elevated leukocyte levels are associated with
worsening neurological function and increased mortality of ICH
patients, consistent with our results (Lattanzi et al., 2018; Yu
et al., 2019).

An elevated temperature may be caused by the inflammatory
response (Iglesias-Rey et al., 2018). Up to 30–40% of

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.942100
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-942100 August 10, 2022 Time: 12:53 # 10

Zou et al. 10.3389/fnins.2022.942100

FIGURE 4

Receiver operating characteristic (ROC) curves for the SAPSII (Green), OASIS (Blue), and the nomogram (Red).

FIGURE 5

Calibration curves for the training cohort and the validation cohort.

ICH patients reportedly have hyperthermia and a poor
prognosis (Honig et al., 2015; Liddle et al., 2022). However,
in the absence of other infection signs, persistent high
fever in ICH patients may be induced by perturbation of
temperature control (Rabinstein and Sandhu, 2007). High

fever may cause adverse events such as hematoma growth,
blood-brain barrier destruction, edema, decreased cerebral
blood flow, elevation of pro-inflammatory cytokines, and
axon death (Balami and Buchan, 2012). Furthermore, anti-
hyperthermia therapy is believed to positively affect the
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FIGURE 6

Decision-curve analysis of the training cohort and the validation cohort. Decision curve analysis depicts the clinical net benefit in pairwise
comparisons across the different models. The red line indicates the nomogram, which is the model we built. The green line indicates SAPSII
scoring system and the blue line indicates OASIS. Nomogram showed superior net benefit with a wider range of threshold probabilities
compared with SAPSII and OASIS.

prognosis of ICH patients (Fischer et al., 2017; Hervella et al.,
2020).

In our nomogram model, ICH patients with abnormal
blood glucose levels were at increased risk of an unfavorable
prognosis, consistent with other studies (Saxena et al., 2016;
Wada et al., 2018; Guo et al., 2019). Elevated blood glucose
levels may lead to activation of the coagulation system,
inhibition of the fibrinolytic system, and production of free
radicals. In addition, they may also lead to acidosis, production
of excitatory amino acids, and damage of the blood-brain
barrier, thereby causing secondary ischemic brain damage
(Wada et al., 2018). Similar to our results, nomogram models
constructed by other scholars demonstrate that an elevated
blood glucose level is a risk factor for the occurrence of
ICH in patients receiving thrombolytic therapy and for the
poor prognosis of ICH patients (Yeo et al., 2017; Zhou et al.,
2020).

Nearly one-third of hospitalized ICH patients reportedly
have chronic kidney disease, possibly due to a common
pathogenic mechanism and causal relationship between ICH
and chronic kidney disease (Ovbiagele et al., 2014; Meier et al.,
2018; Marini et al., 2020). These patients also had slightly poorer
quality of care and significantly higher mortality than patients
with normal renal function (Ovbiagele et al., 2014). Although
the underlying mechanism remains unclear, numerous studies
have found that indicators of renal insufficiency, including
elevated serum creatinine levels, are independent predictors of
in-hospital mortality and hematoma expansion in ICH patients
(Wang and Zhang, 2017; Zhang et al., 2021).

The severity of acute kidney injury is associated with an
increased serum creatinine level and decreased urine output
(Kellum et al., 2015). However, we found that increased urine
output was an independent risk factor for death of ICH patients.
This topic has barely been previously studied. Polyuria is a
very common lower urinary tract symptom in patients with
neurological diseases and may involve central injury, lower
urinary tract, kidney, and cardiovascular dysfunctions, and
diabetes (Haddad et al., 2020). Hypothermia treatment in
patients with severe traumatic brain injury may avoid the need
for additional brain injury treatments that may lead to increased
urine output and subsequent severe electrolyte depletion (e.g.,
hypophosphatemia and hypomagnesemia) (Polderman et al.,
2001). In addition, increased urine output may be related to
arginine vasopressin and copeptin (Christ-Crain, 2019). Plasma
copeptin concentrations are reportedly significantly increased
after ICH (Senn et al., 2014; Aksu et al., 2016). The increase
in copeptin is correlated with the hematoma volume (Dong
et al., 2011). Copeptin is directly associated with the clinical
severity of ICH and poor prognostic outcomes after ICH. This
may explain why ICH patients with polyuria have increased
mortality (Zweifel et al., 2010; Zhang et al., 2012; Wei et al.,
2014).

Although not addressed in this study, we believe that
attention should be paid to parameters associated with
mechanical ventilation weaning in ICH patients. Patients with
severe ICH are at risk of dyspnea that requires endotracheal
intubation and mechanical ventilation (Gujjar et al., 1998).
However, delayed weaning may lead to increased mortality
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rates, complication rates, and lengths of hospital stay (Coplin
et al., 2000). Traditional weaning parameters, such as the rapid
shallow breathing index and negative inspiratory force, are often
used as clinical indicators of mechanical ventilation (Savla et al.,
2021). However, they are not always reliable in patients with
brain injuries, including those who cannot achieve maximal
spontaneous inspiration (dos Reis et al., 2013). Therefore,
it is necessary to include indicators of optimal mechanical
ventilation weaning in predictive models by logistic regression.
However, in the current study, more than 20% of mechanical
ventilation data were missing and this indicator was eliminated
prior to analysis.

A clinical prediction model is an intuitive tool used to
study the relationship between a patient’s prognosis with a
specific disease and the baseline status. It helps clinicians more
accurately and systematically predict the probability of a patient
outcome event occurring. ICH is a stroke syndrome with a
very unfavorable prognosis that widely affects the health of
the public. Therefore, it is very important to build a model
that can predict the mortality of ICH patients. A nomogram
is a commonly used tool to evaluate oncology and medical
prognosis and can graphically represent complex mathematical
formulas (Balachandran et al., 2015). We reviewed several
studies of nomogram prediction models with ICH patient
outcomes as endpoints and found they included data on adult
ICH patients (patient numbers ranging from 200 to 1000) at
one or several medical centers (Cui et al., 2020; Du et al.,
2020; He et al., 2020; Kang et al., 2021). All studies excluded
patients with secondary ICH. Two of these studies defined the
location of bleeding (Cui et al., 2020; Kang et al., 2021) and
Du et al. constructed their nomogram prediction model using
only imaging data (Du et al., 2020). By contrast, we did not
define the location of bleeding and included it in the parameters
to determine whether the bleeding at different locations
affects the prognosis of patients. Furthermore, increased urine
output was associated with the death of ICH patients in our
model.

An advantage of our study is that the vast amount of clinical
data in a public database was exploited using data mining
technology. Data mining is a new field in medical research. It can
build disease prediction models to assess patient risk and assist
clinical decision-making by making full use of big data in public
databases such as MIMIC-III and Surveillance, Epidemiology,
and End Results (Yang et al., 2020; Wu et al., 2021). Numerous
studies have confirmed the availability and authenticity of data
in the MIMIC-III database. At the same time, possible biases in
patient selection were excluded to a certain extent. In addition,
the use of a large amount of data avoided errors associated
with the use of fewer data, providing reliable evidence for our
results.

However, our study has some limitations. Although a
large number of patients were included, it was a single-
center study. In addition, the included cases were mostly

white therefore there may be some potential bias, and
further external validation is needed to eliminate errors.
In this study, we used LASSO and logistic regression
in machine learning to identify variables and build a
nomogram model, and did not employ other machine learning
methods, such as Elastic Network Regression, Support Vector
Machine, and Artificial Neural Networks. Furthermore, after
screening, our model found no unexpected independent
risk factors other than increased urine output. Moreover,
multivariate logistic regression found that the ORs of each
independent risk factor were close to 1. Further external
validation using data of a subset of patients from this
medical center is required to improve the confidence of the
results. Nevertheless, we believe that the proposed model
may contribute to further understanding of the mortality
of ICH patients.

Conclusion

The study identified independent risk factors for 30-day
mortality in ICH patients and used them to construct a
predictive nomogram model. The results of our study may
provide support for improving the prognosis of ICH patients.

Relevance for clinical practice

We developed a nomogram model to predict the 30-day
mortality in patients with ICH based on baseline characteristics,
laboratory tests, and imaging data of ICH patients admitted
to the ICU from the MIMIC-III database. Compared with the
SAPSII and OASIS systems, the nomogram has comparable
performance in predicting mortality of patients with ICH. It’s
more concise and easier to use, thus providing a new reference
guideline for the treatment and care of patients with ICH.
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