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Quantitative Profiling of Single 
Formalin Fixed Tumour Sections: 
proteomics for translational 
research
Christopher S. Hughes1,*, Melissa K. McConechy2,*, Dawn R. Cochrane3, Tayyebeh Nazeran4, 
Anthony N. Karnezis4, David G. Huntsman3,4 & Gregg B. Morin1,5

Although re-sequencing of gene panels and mRNA expression profiling are now firmly established in 
clinical laboratories, in-depth proteome analysis has remained a niche technology, better suited for 
studying model systems rather than challenging materials such as clinical trial samples. To address this 
limitation, we have developed a novel and optimized platform called SP3-Clinical Tissue Proteomics 
(SP3-CTP) for in-depth proteome profiling of practical quantities of tumour tissues, including formalin 
fixed and paraffin embedded (FFPE). Using single 10 μm scrolls of clinical tumour blocks, we performed 
in-depth quantitative analyses of individual sections from ovarian tumours covering the high-grade 
serous, clear cell, and endometrioid histotypes. This examination enabled the generation of a novel 
high-resolution proteome map of ovarian cancer histotypes from clinical tissues. Comparison of the 
obtained proteome data with large-scale genome and transcriptome analyses validated the observed 
proteome biology for previously validated hallmarks of this disease, and also identified novel protein 
features. A tissue microarray analysis validated cystathionine gamma-lyase (CTH) as a novel clear 
cell carcinoma feature with potential clinical relevance. In addition to providing a milestone in the 
understanding of ovarian cancer biology, these results show that in-depth proteomic analysis of 
clinically annotated FFPE materials can be effectively used as a biomarker discovery tool and perhaps 
ultimately as a diagnostic approach.

The rapid evolution of genome sequencing technologies has driven the growth of research for quantitative 
in-depth analysis of patient samples in a clinical setting. While mass spectrometry (MS)-based proteomics would 
provide highly informative data to support such research, proteome quantification in clinical materials has not 
been practical. The limited adoption of proteomics in these areas stems primarily from the poor performance of 
standard MS based approaches to work efficiently with practical quantities of formalin fixed paraffin embedded 
(FFPE) samples that are the standard media for clinical diagnostics1,2. Despite these challenges, recent research 
efforts have successfully obtained high quantitative coverage of the proteome from FFPE tissues using MS3–7. 
Problematically, these examinations have utilized quantities of tissues (e.g. whole resected tumours, milligrams 
of protein material, or more than ten 10 μ​m thickness scrolls of a block) that are not practical in clinical research 
samples that are often limited in addition to being chemically fixed.

In order to capture high quantitative coverage of the proteome from FFPE tumours on a more practical scale, 
recent studies have combined filter-based digestions (FASP) with MS1 quantification of peptide abundance (e.g. 
label-free)8–10. Using laser-capture microdissection (LCM) to enrich for cell populations of interest across mul-
tiple tissue sections, quantitative coverage of the proteome ranging from 5,000–10,000 unique proteins per sam-
ple was achieved from just 175–250 nL of cell volume (5–24 μ​g of peptides). Despite impressive results, these 
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workflows have potential limitations related to the absolute recovery of protein material8,11,12, the number of 
individuals that can be practically examined due to sample processing and MS acquisition times (~24 hours for 
a single sample), and strict requirements for system configuration and stability due to the quantification method 
used (label-free). Therefore, extending the use of proteomics in clinical research and particularly in the clinical 
trials setting, which is the test bed for biomarker research, requires further development of robust and scalable 
technologies for FFPE tissue analysis by MS.

Elucidation of the functional processes that underlie the phenotype of a specific cancer can aid in the develop-
ment of clinical treatment regimes. In ovarian carcinoma, histopathological examination has led to a clear defini-
tion of histotypes (e.g. high- and low-grade serous, endometrioid, clear cell, mucinous, and undifferentiated)13–17. 
However, clinical treatment protocols are only now being stratified by histotype. Large-scale screens have revealed 
diverse patterns of genome and transcriptome variation within and between histotypes18,19. Unfortunately, the 
extent to which the proteomes of these cancers differs is not known, as few studies have focused on in-depth 
differential quantitative analysis using MS technology20. Large-scale transcriptome analyses on their own often 
fail to correctly predict the complex network of protein changes that drive phenotype1,21, an inference that can be 
improved by investigating proteome variation through the use of MS technologies. Therefore, a high-sensitivity 
MS-based analysis of ovarian cancer histotypes can potentially build upon gene expression and immunohisto-
chemistry (IHC) data to identify targetable proteins that drive different clinical phenotypes.

To demonstrate the ability of proteomics to provide robust insight into cancer biology from practical quantities 
of non-dissected clinical materials, we have developed a novel optimized pipeline termed SP3-CTP (SP3-Clinical 
Tissue Proteomics) and applied it to investigate the differential protein expression patterns that characterize ovar-
ian high-grade serous (HGSC), clear cell (CCC), and endometrioid (ENOC) carcinoma histotypes. The SP3-CTP 
method enabled acquisition of the first in-depth quantitative proteome map that differentiates the main histo-
types of ovarian carcinoma, revealing novel variation and protein features. Together, these data validate the ability 
of the SP3-CTP pipeline to generate actionable clinical information from practical amounts of FFPE tissue mate-
rials, and represents a significant advance in the understanding of histotype variation in ovarian cancer.

Results
Robust quantification of protein expression in FFPE tissues.  To build a platform that yields repro-
ducible and robust results from clinical FFPE tissues, we designed a workflow based on the previously established 
paramagnetic bead method, SP322. SP3 uses hydrophilic interaction where biomolecules are trapped in a solvation 
layer on the surface of the beads in the presence of organic solvent, permitting the manipulation of protein and 
peptide mixtures in an unbiased manner. SP3 was recently shown to provide enhanced performance in the anal-
ysis of quantity-limited cell samples when compared with high efficiency filtration and stage tip methods22. For 
the analysis of FFPE tissue sections we modified the method to a simple and practical single-tube, solution-based 
procedure for nuclease pre-digestion, lysis and de-crosslinking in the presence of >​10% SDS, pre-digest clean-up, 
proteolysis, and tandem mass tag (TMT) labeling23. High proteome coverage and accuracy in quantification was 
enabled with high-pH C18 reversed phase fractionation and MS3 analysis on an Orbitrap Fusion (Fig. 1a).

To determine the performance of SP3-CTP for the study of clinical cancer materials, we examined an initial 
set of FFPE tumour tissue samples derived from a collection of HGSC or CCC ovarian carcinomas (Supplemental 
Table 1). Two TMT 10-plex sets were constructed (Set A and Set B) with one 10 μ​m scroll per tube from each of 
5 HGSC and 5 CCC FFPE tumour blocks (20 total scrolls), and analyzed using the SP3-CTP workflow (Fig. 1a). 
A 10 μ​m thickness represented a balance between sufficient tissue for proteome analysis and a readily available 
amount of clinical material. Based on analysis of representative tissue sections (n =​ 3), a single, non-dissected 
10 μ​m scroll (~1 cm ×​ ~1.5 cm average) yields ~82 ±​ 15.0 μ​g of protein (BCA assay), translating to ~72 ±​ 18.2 μg 
of peptide (UV spectrophotometry) with SP3-CTP (88% recovery). These values are in agreement with previ-
ous assays of protein yield from un-dissected tissue sections24, and illustrate the high efficiency of the SP3-CTP 
approach.

The MS analysis of the combined data from both proteome sets (Set A and Set B) yielded a total of 8,167 pro-
teins quantified, with 7,854 of these having a matched RNA-seq read for the 12,974 transcripts (~51%) expressed 
with fragments per kilobase of transcript per million mapped reads (FPKM) value of 1 or greater in normal 
ovarian tissue from one individual in the Human Protein Atlas (HPA)25 (Supplemental Fig. 1a). From the set of 
RNAs with an FPKM value greater than 10 which were not identified in the SP3-CTP data, there was enrichment 
in proteins with transcription factor activity and nuclear localization (FDR adjusted p-values =​ 7.3e-06, 6.9e-06) 
as annotated by Gene Ontology (GO). Examining the peptide prevalence in the identification matrix revealed 
that there was a very high sampling density between tumours, with 98.5% of the 8,167 proteins quantified in all 10 
individuals with no missing peptide values (Supplemental Fig. 1b,c). We observed excellent correlation between 
both technical (repeat injections of one set (e.g. Set A1 vs. A2, Set B1 vs. B2); mean r2 =​ 0.84–0.86) and biological 
replicates (serial sections; Set A vs. Set B; mean r2 =​ 0.75–0.76) (Supplemental Fig. 2a,b). The analysis of an added 
E. coli lysate standard for intra-batch normalization revealed only small variations in processing, indicating that 
the observed expression diversity stems from true biological differences between tumours or histotypes, rather 
than the SP3-CTP protocol itself (Supplemental Fig. 2c,d).

Comparing HGSC with CCC highlighted the enriched expression of specific proteins previously described 
for ovarian carcinoma, such as: HNF-1β​, NID2, NAPSA, and CRYAB for CCC, and CRABP2, TP53, and WT1 
for HGSC (Fig. 1b)26. Interestingly, numerous CCC protein features, such as HNF-1β​ and NAPSA, had FPKM 
values of 1 or below in the HPA RNA-seq analysis of a normal ovarian tissue sample25. The transcripts with FPKM 
<1 that were identified in the proteomics data were enriched for proteins with a plasma membrane, extracellular 
region, and cytoskeleton (FDR adjusted p-values =​ 4.9e-03, 2.2e-14, 5.3e-04) GO annotation. In addition, a large 
portion of these lowly expressed RNAs were annotated as single peptide identified proteins in the SP3-CTP data 
(56% of 937 proteins). As is typical in MS analyses, ~20% of the proteins represented in the overall data originate 
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Figure 1.  Robust proteomic analysis of FFPE tissue sections can be obtained with SP3-CTP. Sets of 10 
unique tumour samples (5 HGSC, 5 CCC) were prepared in biological duplicate (serial sections) for proteomics 
analysis using SP3-CTP. Samples were analyzed in two separate 10-plex TMT experiments on an Orbitrap 
Fusion MS with MS3 scanning. (a) Schematic depicting the processing and analysis pipeline used with SP3-
CTP. (b) Volcano plot depicting differential expression analysis between the two ovarian carcinoma histotypes 
(HGSC and CCC) using data from the combined analysis of Set A and Set B. Highlighted points are the those 
detected from the set of 113 genes previously identified as differentially expressed in analyses of HGSC and 
CCC tumour samples with RNA and antibody-based protein measurements. PECA score represents the median 
adjusted p-value of all peptides assigned to a protein. Dotted vertical lines indicate one standard deviation 
from the mean fold change. (c) Clustering heat-map depicting the reliable segregation of ovarian carcinoma 
histotypes based on protein expression patterns. The X-axis displays the clustering for the first biological 
replicate (Set A), and the Y-axis for Set B (second biological replicate). The top 1000 peptides that contributed 
to differential expression between the HGSC and CCC histotypes were used in this comparison (n =​ 261 unique 
proteins for biological replicate A, n =​ 271 unique proteins for biological replicate B).
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from single peptide hits (Supplemental Fig. 3a), however the majority of significant differentially expressed can-
didates stem from multi-peptide identified proteins (Supplemental Fig. 3b). Using proteins identified from a set 
of 113 genes generated from HGSC and CCC signatures determined to be histotype-specific based on mRNA 
microarray or IHC analyses18,27–29, we observed clear patterns of differential expression between the histotypes 
(Fig. 1b, Supplemental Table 2). Using the top 1000 differentially expressed peptides in either the HGSC or CCC 
individuals as feature sets (n =​ 261 unique proteins for Set A, n =​ 271 unique proteins for Set B), clear and repro-
ducible tumour histotype clustering was achieved (Fig. 1c).

Clinical tissues accurately reflect the biology of ovarian cancer.  Although the analysis of 5 HGSC 
and 5 CCC tumours displayed established patterns of protein expression characteristic of ovarian cancer histo-
types, it remained unclear whether the FFPE treatment of the material inhibited accurate in-depth quantitative 
proteome analysis with SP3-CTP. To determine if clinical FFPE tissues can yield proteome values that accurately 
reflect established patterns in ovarian cancer pathology, we compared the FFPE samples with matched frozen 
tumour materials (Supplemental Table 1). We analyzed two serial frozen sections from each of 8 individuals  
(4 HGSC, 4 CCC; two TMT 8-plex sets, one section per tumour in each) where matched material was available. The 
analysis quantified 9,014 proteins, with 7,624 proteins (~59% of 12,974 transcripts) having a matched RNA-seq 
read with FPKM ≥​1 in the ovarian tissue analysis (Supplemental Fig. 4a). Similar to the FFPE samples, comparing  
HGSC to CCC using the biological replicate frozen tissue samples yielded fold-change values that were highly 
reproducible (Supplemental Fig. 4b), and recapitulated the expected variance for proteins from the 113-gene set 
(Fig. 2a). Although frozen sections appeared to yield enhanced sensitivity compared to FFPE when considering 
depth of coverage (9,014 vs. 8,167 proteins), the observed trends in expression variance between HGSC and CCC 
were highly correlated (Fig. 2b).

To compare differential expression with in vitro cultured materials that represent the desired ovarian car-
cinoma histotypes, 3 HGSC (OVCAR-3, OVCAR-5, OVSAHO) and 3 CCC (JHOC-5, OVISE, OVTOKO) cell 
lines (Supplemental Table 1) were analyzed using SP3-CTP (Supplemental Fig. 5a). The analysis quantified 8,590 
proteins, with 7,457 (~57% of 12,974 transcripts) having a matched RNA-seq read with FPKM ≥​1 in the HPA 
ovarian dataset (Supplemental Fig. 5b). Similar to the FFPE and frozen samples, the cell line data exhibited 
high reproducibility for differential expression between biological replicates for the HGSC to CCC comparison 
(Supplemental Fig. 5c), and the expected variation in proteins from the 113-gene set (Fig. 2c). However, the 
expression values correlated more strongly for the FFPE and frozen material (r2 =​ 0.61 for peptides) than with 
the cell lines (r2 =​ 0.22, Fig. 2d), indicating the potential loss of histotype fidelity when using cultured materials. 
Altogether, these data highlight the ability of clinical FFPE tissue materials to yield protein expression patterns 
representative of ovarian cancer biology that are poorly manifested by analysis of cultured cell lines.

Mapping the histotype-specific proteomes of ovarian carcinoma.  To carry out an in-depth exami-
nation of the three major ovarian carcinoma histotypes (HGSC, CCC, and ENOC) using the validated SP3-CTP 
workflow, we selected a set of 18 individuals (6 of each histotype) and scrolled serial 10 μ​m FFPE sections in 
triplicate for each individual (54 total sections) (Supplemental Fig. 6a). These data resulted in 9,049 quantified 
proteins, with 7,575 proteins (~58% of 12,974 transcripts) having a matched RNA-seq read in the ovarian HPA 
(FPKM ≥​ 1) dataset (Supplemental Fig. 6b). Importantly, the normalized log2 expression values for the E. coli 
peptides were found to be highly reproducible across samples and batches (Supplemental Fig. 6c), indicating the 
stability of the processing and analysis protocols across all sets.

To obtain an initial estimate of how well the proteomics data segregated ovarian cancer histotypes we per-
formed unsupervised clustering of the entire cohort across all batches. Principal component analysis (PCA) 
revealed that the individuals with matching histotypes clustered largely together (Fig. 3a), indicating that distinct 
patterns of protein expression were present within each histotype set. Importantly, the PCA arranged individuals 
independent of batch, demonstrating that the observed groupings were driven by biological variation between 
HGSC, CCC, and ENOC rather than from technical artifacts in the MS analysis. Unsupervised hierarchical clus-
tering using the set of proteins identified in all tumours with no missing values (n =​ 6,551) correctly grouped the 
six tumours of each histotype (Fig. 3b). Using only the top 500 proteins that contributed to the variance in the 
PCA revealed differential expression patterns between the histotypes (Fig. 3c). With the same set of 500 proteins, 
we attempted to cluster the histotypes using their mRNA expression values from a microarray data analysis of 55 
ovarian tumours30 (Fig. 3d). Only the CCC samples exhibited a strong differential expression pattern, with the 
HGSC and ENOC samples forming an intermixed cluster in the RNA data.

To functionally classify proteins observed to be highly expressed relative to the other histotypes in the pro-
teomics data, we performed a GO analysis using Metascape31 (Supplemental Table 3). Relative to CCC and ENOC, 
significant enrichment in HGSC of proteins involved in small molecule metabolism (log10 q-value =​ −​7.3),  
immune response (log10 q-value =​ −​3.8), and response to DNA damage (log10 q-value =​ −​3.0) were observed. 
In CCC, enrichment of proteins involved in endocytosis (log10 q-value =​ −​10.1), inflammatory response (log10 
q-value =​ −​9.3), and wound healing (log10 q-value =​ −​10.1). In ENOC, enrichment of proteins involved in 
organization of the extracellular matrix (log10 q-value =​ −​7.0), adhesion (log10 q-value =​ −​6.3), and actin fila-
ment polymerization (log10 q-value =​ −​7.3) were identified.

To further resolve the above ontologies at the level of functional gene sets, proteins from each histotype were 
mapped to the Molecular Signature Database32 Hallmark collection with Metascape (Supplemental Table 3) using 
gene set enrichment analysis (GSEA) (Supplemental Table 4). For proteins with high expression in HGSC, signif-
icant enrichment of interferon response (log10 q-value =​ −​19.2), fatty acid metabolism (log10 q-value =​ −​7.3), 
and adipogenesis (log10 q-value =​ −​7.4) were observed. Global GSEA corroborated the interferon response sig-
nature in HGSC (p-value =​ 2.0e-08). Analysis of CCC revealed enrichment of proteins involved in xenobiotic 
metabolism (log10 q-value =​ −​9.5) and adipogenesis (log10 q-value =​ −​9.5). GSEA further corroborated the 
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elevated expression of proteins involved in xenobiotic metabolism (p-value =​ 0.014) in the CCC histotype. The 
ENOC histotype data revealed an inverse enrichment of interferon response (p-value =​ 1.1e-05) when compared 
to HGSC in GSEA analysis.

To investigate the profiles of proteins characteristic for biological processes found in specific ovarian carci-
noma histotypes, we examined a gene signature (322 unique genes in the signature set) for microenvironmental 
pathology in CCC taken from a global microarray mRNA expression analysis of 38 cell lines33. This signature 
contains known markers of CCC, such as HNF-1β​, and others consistent with oxidative stress. Evaluation of 
this signature revealed that only 26 of the genes mapped to the set of top 500 proteins contributing to the var-
iance between HGSC and CCC in the SP3-CTP data (183/322 of the signature genes are mapped in the total 
set of SP3-CTP data). However, overlaying the gene signature with our proteomics data revealed the correlated 
expression of the vast majority of signature genes (Supplemental Fig. 7a). Furthermore, a subset of the top 75 

Figure 2.  Biological variance derived from FFPE samples representing ovarian carcinoma histotypes  
can be recapitulated in samples from different source materials. Sets of 10 unique FFPE tumour samples  
(5 HGSC, 5 CCC) were prepared in biological duplicate using SP3-CTP. Alongside, a set of 8 (4 HGSC, 4 CCC) 
matched frozen tissue sections, and 6 cell lines (3 HGSC, 3 CCC) were prepared in biological duplicate and 
analyzed using the same pipeline. (a) Volcano plot depicting the variance in expression between the HGSC 
and CCC histotypes in the frozen tissue section data. Highlighted points indicate proteins identified from 
the 113-gene feature set previously shown to differentiate these ovarian carcinoma types. The dotted vertical 
lines indicate one standard deviation from the mean fold change. (b) Density smoothed scatter depicting the 
correlation of fold change values obtained from the FFPE and frozen tissue section data when comparing HGSC 
with CCC. (c) Volcano plot depicting the variance in expression between the HGSC and CCC histotypes in the 
cell line data. Highlighted points indicate proteins identified from the 113-gene feature set previously shown to 
diverge between these ovarian cancer types. The dotted vertical lines indicate one standard deviation from the 
mean fold change. (d) Density smoothed scatter depicting the correlation of fold change values obtained from 
the FFPE and cell line data when comparing HGSC with CCC. All correlation values were calculated using the 
Pearson method.
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genes (75/183 identified) from the signature set that contributed the most to the variance between subtypes 
in the SP3-CTP data facilitated robust segregation of CCC cases from those classified with HGSC or ENOC 
(Supplemental Fig. 7b,c). This demonstrates that this characteristic gene subset displays attributes that span the 
transcriptome and proteome, and is indicative of the CCC histotype when compared with HGSC and ENOC.

Developing protein feature profiles of ovarian carcinoma using SP3-CTP MS data.  To evaluate  
the accuracy of the quantitative variance observed between the defined histotypes in the SP3-CTP data, we 
compared it with microarray-derived mRNA expression values from an analysis of 55 ovarian cancer tumour 
samples30. Focusing on the 6 HGSC and 6 CCC tumours revealed significant differences in protein abundance 
between these histotypes that is also reflected at the RNA level, and specifically for features in the 113-gene set 
(Supplemental Fig. 8a). The trends observed for differential expression between the protein and RNA data for 
HGSC and CCC mirrored those from the previous FFPE and frozen sets (Supplemental Fig. 8b,c), whereas the 

Figure 3.  Ovarian carcinoma histotypes can be robustly segregated using proteome expression maps 
generated using SP3-CTP. From the analysis of the set of 18-tumour samples covering HGSC, CCC, and 
ENOC, histotypes were cross-compared to clusters of gene expression patterns. In all analyses, relative log2 
expression values that represent the difference of abundance in a single individual relative to the median across 
all individual tumours per gene were used. (a) PCA of the 18-tumour proteomics data performed using the 
prcomp function in R. Samples examined in different batches are denoted by different symbols, and histotypes 
by matching colors. (b) Heat-map depicting unsupervised hierarchical clustering of the 18-tumour samples 
using the total set of proteins identified with an expression value across all tumours. Tumour content values 
are estimated from histological analysis. (c) Heap-map depicting unsupervised hierarchical clustering of the 
18-tumour samples using a subset of the top 500 proteins that have the largest contribution to variance as 
determined from principal component analysis. (d) Heat-map depicting unsupervised hierarchical clustering 
of the 55 tumour samples analyzed for RNA expression in GSE6598630. The 500 genes used in clustering are 
derived from the proteomics data from PCA as in (c).
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cell line data exhibited increased deviation (Supplemental Fig. 8d). The differential expression patterns observed 
when comparing the HGSC and CCC histotypes with ENOC (Supplemental Fig. 9a,b) exhibited lower correlation 
with RNA variance than those between the other histotypes (Supplemental Fig. 9c,d).

To determine whether the observed expression trends could be validated in cohorts beyond the set analyzed by 
SP3-CTP, we overlaid our results with those from the transcriptome analysis of ovarian HGSC carried out by The 
Cancer Genome Atlas (TCGA)19. We extracted a set of 10 proteins (5 higher, 5 lower in HGSC) from the MS data 
that exhibited reliable differential expression and have either established roles or are novel in the context of ovarian 
or other cancers (Supplemental Fig. 10). Examining TCGA FPKM values derived from RNA-seq of 182 ovarian 
tumours (primarily HGSC), we observed the expected expression trends for the HGSC features derived from the 
proteomics data (Fig. 4a). Taking the protein candidates with the highest (MSLN) and lowest (LEFTY1) expres-
sion in HGSC relative to the other histotypes and mapping these across other cancers (Supplemental Table 5)  
revealed highly variable patterns of abundance between TCGA tissue type sets (Supplemental Fig. 11a,b). 
Surprisingly, only LEFTY1 was found to have significant promoter methylation among the five low expressed 
proteomics derived genes (Supplemental Fig. 11c). None of the 10 MS-derived proteins were found in a modeled 
set of genes predicted by the TCGA to be indicators of patient prognosis and the overall TCGA prognostic signa-
ture did not correlate with the HGSC histotype in the proteomic data (Supplemental Fig. 11d).

To corroborate the observed RNA expression trends from the TCGA data for the 5 high and 5 low proteomic 
HSGC features, we mapped the expression dynamics for these proteins using the cancer IHC data available from 
the HPA34. Although the HPA data contains values for non-HGSC ovarian tumours, they confirmed the expression 
patterns in ovarian carcinomas at the protein level for the majority of candidates (Fig. 4b, Supplemental Fig. 12a,b).  
We also queried the expression of HGSC features in a recent in-depth proteomic analysis of ovarian cancer (pri-
marily HGSC)5 matched with the TCGA ovarian tumour cohort. Using spectral counts from the published data as 
a measure of expression, we observed similar trends across HGSC for the selected high and low proteins (Fig. 4c). 
This trend was not reflected in the isobaric tag-based abundance values (Supplemental Fig. 13a,b), likely due to 
the fact that these per-individual values are calculated relative to a study-specific pooled reference standard that 
make direct comparisons with the SP3-CTP data challenging.

In addition to known features and biomarkers of the histotypes, several novel candidate proteins emerged 
from the SP3-CTP data which had higher expression in specific individuals (supplemental data objects in 
Supplemental Table 6). We evaluated the abundance of cystathionine gamma-lyase (CTH) and LEFTY1 that were 
both enriched in CCC compared to HGSC and ENOC in the proteomics data (Supplemental Fig. 10) and across 
all public repositories (Fig. 4a–c). In a western blot analysis of a panel of ovarian cancer cell lines of validated 
histotype; the majority of CCC cell lines showed high expression of CTH and LEFTY1 (Supplemental Fig. 14a,b). 

Figure 4.  Integrated interrogation of large-scale transcriptome and proteome data using SP3-CTP derived 
candidates highlights the differential biology of ovarian carcinoma histotypes. From the analysis of a set 
of 18-tumour samples from unique individuals covering HGSC, CCC, and ENOC, histotypes were cross-
compared to generate sets of enriched markers for each. (a) Boxplots depicting the RNA expression in the 
TCGA panel of HGSC ovarian cancer tumours of 5 proteins (FOLR1, CRIP1, MSLN, SNCG, CRABP2) found 
to have high, and 5 (LEFTY1, GDF15, QPCT, GPC3, CTH) with low expression in HGSC determined in the 
SP3-CTP proteomics data. Overlaid points indicate the expression of these proteins in each individual tumour 
of that type. The total number of tumours in the TCGA dataset used was 182. (b) Expression of the 10 SP3-CTP-
derived ovarian cancer proteins in the IHC data taken from the HPA34. The HPA data (n =​ 12 total individuals) 
contains values for multiple ovarian carcinoma histotypes that are aggregated for this analysis. Expression 
values were calculated based on assigning a numerical score of 9 for ‘High’, 6 for ‘Medium’, 3 for ‘Low’, and 0 for 
‘Not detected’. Each expression value was multiplied by the number of tumours assigned with that class, and 
the total sum calculated to generate a per protein expression estimate. (c) Expression of the 5 candidate HGSC 
proteins in MS-based proteomics data taken from the CPTAC study of ovarian cancer. Values are spectral 
counts calculated across all pools of samples taken from studies completed at the two CPTAC involved institutes 
(Supplemental Table 5).
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Furthermore, in an IHC analysis of a TMA of 485 ovarian cancer samples 75% of CCC cases stained intensely for 
CTH in contrast to ENOC (17%) and HGSC (2%) (Fig. 5a,b). Taken together, these data demonstrate the orthog-
onal nature of the proteome data with established genome and transcriptome screens, and highlight the ability of 
SP3-CTP to yield actionable protein features with potential clinical relevance in the context of ovarian carcinoma.

Discussion
In this work we have presented an improvement and novel application of the SP3 proteomics methodology that 
enabled high quality quantitative analysis of clinical FFPE tumour sections. SP3-CTP was leveraged to generate 
the first in-depth quantitative proteome analysis of ovarian carcinoma histotype variation from clinical FFPE 
tissue samples. Currently these data represent the largest quantitative analysis of the major ovarian carcinoma 
histotypes using MS-based proteomics techniques, and complements the large body of existing gene expression 
data used to derive candidate markers of these individual diseases. The derived proteome maps reveal character-
istic patterns of protein expression that are histotype-specific, including established features of these individual 
diseases, and numerous novel candidates. When evaluated in comparison with the large bodies of gene expression 
data for ovarian carcinoma, robust extraction of reliable protein features with potential clinical relevance, such 
as CTH, is achieved.

Although SP3-CTP integrates a number of established proteomics tools, the simplicity of the optimized 
approach creates a robust single-tube pipeline for proteome analysis of practical amounts of FFPE tissues. 
SP3-CTP affords improvements in throughput and processing time through the use of magnetic beads and offers 
greater flexibility in sample handling by enabling the use of a wide range of reagents (e.g. high concentrations of 
detergents or chaotropic agents) that may be incompatible with conventional spin-filter units. Importantly, these 
advantages do not come at the cost of data quality, as SP3-CTP consistently achieved equivalent levels of quan-
titative proteome coverage when compared with currently established state-of-the-art workflows4–7,10. Although 
capture of material from FFPE tumour blocks can be affected by a number of factors (e.g. block age, fixation 
protocol, cellularity), SP3-CTP consistently demonstrated high-efficiency in protein and peptide recovery from 
single non-dissected FFPE tissues.

Integrated analysis of RNA and protein expression patterns is a valuable tool for revealing and confirming 
additional layers of regulatory variation between pathological conditions35. The correlation in global expression 
between SP3-CTP derived protein and RNA in the ovarian carcinoma histotype data was modest, with the high-
est agreement in the HGSC vs. CCC comparison. Numerous prior analyses have noted the discordance between 
protein and RNA levels36,37, highlighting the variance observed when making comparisons of high-coverage 
transcriptome and proteome datasets. However, recent studies utilizing individual-matched data have illustrated 
that a majority of transcript and protein pairs have positively correlated expression3. We also found that patterns 
in proteins identified in a 113-gene set with differential expression between HGSC and CCC correlated highly 
between the two types of data, with very few proteins showing opposite directionality for SP3-CTP and RNA 
expression. This trend carried across all material types, including that derived from cell lines, indicating the accu-
racy of the relative estimates of protein expression obtained with SP3-CTP when compared with orthogonal tech-
niques. Notably, robust expression estimates of these known features were captured despite working with FFPE 
tissues that display heterogeneity in tumour content and variable sample acquisition age (years – 2008–2012).

Globally, the dynamics of the SP3-CTP protein sets reveals large groups of proteins that display 
histotype-specific expression patterns and that have been characterized in the context of ovarian and other 

Figure 5.  Validating ovarian cancer markers captured in MS-based proteomics screening on arrays of 
histotype-specific tumour materials. A TMA containing 485 ovarian cancers was stained for CTH. Shown are 
the data for the HGSC, CCC and ENOC histotypes. (a) Violin plot depicting the densities of individuals scored 
based on expression of the marker CTH. Histotypes are listed along the x-axis. Proportions of positively staining 
tumours is displayed as a percentage at the matched score level. Sections on the TMA were scored manually 
based on a system of 0 =​ negative, 1 =​ weak or variable, 2 =​ strong straining. P-values were calculated using a 
Mann-Whitney U-test. (b) Representative images showing the staining for each of the histotypes are shown.
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cancers. For example, the folate receptor (FOLR1) is associated with different types of epithelial and ovarian 
carcinomas38 due to its specific appearance in these diseases. In the proteomics data, FOLR1 displays charac-
teristic high expression in HGSC, with low levels found in CCC and ENOC. Recent work has demonstrated 
the association of FOLR1 expression and increased survival in the first 2 years following diagnosis with HGSC 
ovarian cancer39 and the inverse in CCC39. Members of the KLHL (Kelch-like) gene family have characterized 
associations with a variety of cancers40. In our results we found that KLHL14 was enriched in HGSC, however 
there are currently no studies characterizing the function of this gene product in ovarian cancer. Similarly, the 
BSN (bassoon presynaptic cytomatrix) protein displays histotype-specific expression in CCC and ENOC. BSN 
is linked with various neurological conditions41 but remains uncharacterized in the context of ovarian cancer.

Comparison with TCGA RNA expression, CPTAC protein, and HPA IHC datasets revealed the conserved 
histotype expression of additional features extracted from the SP3-CTP proteomic data. The cell surface glycopro-
tein encoded by the MSLN gene was found to have consistently elevated abundance at the transcript and protein 
levels in HGSC, a trend known to correlate with the CA125 antigen in ovarian cancer42. MSLN has been reported 
to have value as a prognostic marker, with highly enriched expression in HGSC ovarian cancer43. Conversely, 
LEFTY1 was observed to have consistently low expression in HGSC. LEFTY1 has established roles as a cell fate 
determinant in embryonic stem cells44 and as a negative regulator of the TGF-β​ superfamily member NODAL45. 
NODAL is specifically described to be involved with development of a cancer phenotype in a variety of cellu-
lar systems46–48. The presence of the LEFTY proteins in a human embryonic stem cell conditioned matrix49 is 
implicated in the reprogramming of metastatic melanoma cells through modulation of NODAL50. Despite the 
potential tumour-suppressor characteristics of LEFTY1 and the specific abundance profile of this protein, there is 
currently limited knowledge linking its expression to the pathology of ovarian cancer histotypes.

Of the HGSC-low expressed protein features relative to ENOC and CCC, of particular interest is the metabolic 
enzyme CTH. CTH is involved in the production of the cysteine precursor, cystathionine51. The production of 
cysteine is important for the generation of the antioxidant, glutathione. In ovarian cancer cell lines, depletion 
of the enzyme that catalyzes the metabolic step prior to CTH, cystathionine beta synthase (CBS), induces reac-
tive oxygen species (ROS) accumulation leading to reduced mitochondrial respiration and ATP synthesis52. CBS 
was also observed by SP3-CTP to have significantly elevated expression in CCC relative to the other histotypes. 
Increased oxidative stress due to ROS in endometriotic cysts where some CCCs are thought to originate has been 
suggested to contribute to tumourigenesis53.

An established hallmark of CCC that is observed in the SP3-CTP data is increased hepatocyte nuclear fac-
tor 1β​ (HNF-1β​) expression53–55. Increased levels of HNF-1β​ are suggested to play a role in the development of 
the ‘Warburg effect’ in CCC, conferring the advantage of enhanced cell survival through reduction of oxidative 
phosphorylation, and thereby exposure to ROS53. By maintaining precursors for glutathione synthesis, CTH may 
operate synergistically with HNF-1β​ to preserve an environment low in ROS to enhance survival. The consist-
ently high expression of CTH and HNF-1β​ across a range of CCC data sets acquired using multiple acquisition 
techniques suggests that CTH may be a reliable marker for the CCC histotype. While we have observed high 
CTH expression in CCC carcinomas in a large TMA cohort our observations will need to be validated in large 
independent cohorts of ovarian carcinomas.

Overall, we have presented a novel high-resolution proteomic analysis of ovarian carcinoma covering the 
HGSC, CCC, and ENOC histotypes using the newly developed SP3-CTP method for analysis of clinical FFPE 
tumour material. The demonstrated reproducibility and robustness of the presented research platform highlights 
the enormous potential and practicality of the method to identify novel markers to aid in diagnosis, and identify 
protein targets for therapeutics in all cancer types through MS-based analysis of clinical materials.

Materials and Methods
Study Design.  A total of 4 sample sets were utilized to enable accurate estimation of the protocol efficiency, 
as well as to develop reliable protein maps of the ovarian cancer histotypes. In the initial optimization analysis 
a set of 10 μ​m tissue sections derived from a total of 10 unique ovarian carcinoma tumours were used. For each 
tumour, two serial sections for each tumour block were taken to represent biological replicates. Each of these bio-
logical replicate sets was injected twice into the MS to represent technical duplicates (2 biological replicates ×​ 2 
injections ×​ 10 tumours). In the comparison with the frozen tissue material, a total of 8 tumours with matched 
material from the initial FFPE screen were utilized. As with the FFPE, serial 10 μ​m tissue sections were treated as 
biological replicates, and multiple injections as technical (2 biological replicates ×​ 2 injections ×​ 8 tumours). In 
the comparison with cell-line samples, a total of 6 different lines were used. Individual cell pellets were treated as 
biological replicates, and multiple injections as technical replicates (2 biological replicates ×​ 2 injections ×​ 6 cell 
lines). In the final sample set, a total of 18 individuals were compared. Serial sections were treated as biological 
replicates and only a single injection was used for each (3 biological replicates ×​ 1 injection ×​ 18 individuals). 
In this set, a pooled standard was created by mixing an aliquot from all samples that was then used as the 10th 
channel in each TMT 10-plex batch. This resulted in two sets of 10-plex samples (9 individuals +​ 1 standard) with 
3 biological replicates for each. In the FFPE and 18-tumour set, each sample channel was spiked with a small 
amount of E. coli protein lysate prior to SP3 treatment to monitor batch effects and reproducibility. The concat-
enated peptide fractions for this final sample set were run in a randomized order on the MS to eliminate batch 
effects over the extended analysis time required.

Tissue Sample Acquisition and Preparation.  All tissues were obtained after informed consent of the 
patients under the supervision of the University of British Columbia, British Columbia Cancer Agency Research 
Ethics Board. All methods and experimental protocols were approved and carried out in accordance with guide-
lines established by the University of British Columbia, British Columbia Cancer Agency Research Ethics Board. 
Archival FFPE clinical ovarian cancer specimens were evaluated by a pathologist (T.N. or A.N.K.) to determine 
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their histotype and cellularity (Supplemental Table 1). The average dimensions of the tumours sectioned in this 
work were ~1 cm ×​ ~1.5 cm, with cellularity measurements ranging from 30–85% and tumour content values 
from 50–90%. In this work, cellularity refers to the area of the block that is covered by tumour tissue relative to 
surrounding normal. Tumour content denotes what proportion of this cellularity area is comprised of malignant 
cells relative to inflammatory and fibroblastic cells. To each 10 μ​m scrolled section, 1 mL of xylene (Sigma) was 
added, and vortexed for 10 seconds. Sections were centrifuged for 3 minutes at 15,000 g, and the xylene-containing 
supernatant removed and discarded. To each section, 1 mL of 100% ethanol was added, vortexed, centrifuged, and 
discarded. Sections were air dried for 10 minutes in a fumehood, and stored at −​20 °C until use.

SP3-CTP Tissue Lysis, Protein Reduction, and Alkylation.  All tissue sections used (including frozen 
and FFPE) were individually lysed using a combination of enzymatic dissociation and heating. To each section, 
30 μ​L of nuclease buffer consisting of 1% SDS, 100 Units of Benzonase (EMD Millipore), and 200 mM HEPES pH 8  
was added and incubated at 37 °C for 1 hour. After nuclease treatment, 30 μ​L of 20% SDS was added, and the 
sample was heated for 45 minutes at 95 °C. Reduction and alkylation was performed through addition of 10 mM 
TCEP and 40 mM chloroacetamide (final concentrations) with incubation for 30 minutes at 37 °C. Representative 
tissue sections were measured for protein content using a BCA assay (Thermo Fisher). Samples were stored at 
−​20 °C until SP3 treatment.

SP3 Processing of Protein Samples.  All protein samples processed (cell line and tissue) were handled 
using the below described SP3 protocol unless otherwise noted. To each protein mixture to be treated, 5 μ​L of 
each of the two types of beads used in SP3 (Supplemental Protocols) was added at this stage and mixed to generate 
a homogeneous solution. In each of the FFPE and 18-tumour set samples, an E. coli lysate (reduced and alkylated) 
was added at this stage to monitor sample variability. To induce protein binding to the beads, lysate mixtures were 
adjusted to a final concentration of at least 50% acetonitrile (v/v). Bead-protein solutions were mixed to ensure a 
homogeneous distribution of the beads and incubated for a total of 8 minutes at room temperature. After incuba-
tion, tubes were placed on a magnetic rack for 2 minutes. While on the magnet, the supernatant was removed and 
discarded. The beads were rinsed twice through addition of 200 μ​L of freshly prepared 70% absolute ethanol, and 
the supernatant was discarded each time. Beads were then rinsed one further time with 180 μ​L of 100% acetoni-
trile, and the supernatant discarded. All rinses were carried out on the magnetic rack. Rinsed beads were recon-
stituted in aqueous buffer (~30 μ​L) and briefly sonicated in a water bath (30 seconds) to disaggregate the beads.

Detailed step-by-step protocols for SP3 sample handling can be found in the Supplemental Protocols.

SP3-CTP Lysate (FFPE and frozen) Digest Preparation.  For elution in the final stage of the SP3 pro-
tocol, the aqueous elution buffer consisted of 200 mM HEPES pH 8 with Trypsin/Lys-C mix (Promega) at an 
estimated 1:25 protein to enzyme ratio (μ​g/μ​g). A total of 30 μ​L of this enzyme-containing elution buffer was 
used per sample in all experiments. Bead-elution mixtures were sonicated for 30 seconds in a bath sonicator to 
disaggregate the SP3 beads. Samples were then incubated for 18-hours at 37 °C in a PCR thermocycler using the 
heated-lid option. After digestion, peptide-bead mixtures were sonicated for 30 seconds in a water bath. The 
eluted peptides were recovered using a magnetic rack and transferred to fresh tubes containing 20 μ​L of 200 mM 
HEPES pH 8 and the samples stored at −​20 °C until TMT labeling. Representative samples were measured for 
peptide yield using UV spectrophotometry on a NanoDrop instrument (Thermo Scientific).

For tissue samples where a pooled internal standard was used, a 5 μ​L aliquot of every pre-TMT label digested 
sample (50 μ​L volume at this stage) was combined. From this pooled sample, 45 μ​L was used in the TMT labeling 
reaction as the 10th channel. Detailed step-by-step protocols for tissue sample preparation can be found in the 
Supplemental Protocols.

Mass Spectrometry Data Acquisition.  Analysis of TMT labeled peptide fractions was carried out on an 
Orbitrap Fusion Tribrid MS platform (Thermo Scientific). Samples were introduced using an Easy-nLC 1000 sys-
tem (Thermo Scientific). Columns used for trapping and analytical separations were packed in-house. Trapping 
columns were packed in 75 μ​m internal diameter capillaries to a length of 25 mm with C18 beads (Reprosil-Pur, 
Dr. Maisch, 3 μ​m particle size). Trap columns were fritted in-house using a combination of formamide and Kasil 
(1:3 ratio). Trapping was carried out for a total volume of 15 μ​L at a pressure of 400 bar. After trapping, gradi-
ent elution of peptides was performed on a C18 (Reprosil-Pur, Dr. Maisch, 3 μ​m particle size) column packed 
in-house in Pico-Frit (New Objective, 75 μ​m internal diameter) capillaries to a length of 50 cm and heated to 
55 °C using AgileSLEEVE ovens (Analytical Sales & Service). Elution was performed with a gradient of mobile 
phase A (water and 0.1% formic acid) to 25% B (acetonitrile and 0.1% formic acid) over 100 minutes, and to 40% 
B over 20 minutes, with final elution (80% B) and equilibration (5% B) using a further 21 minutes at a flow rate 
of 350 nL/min.

Data acquisition on the Orbitrap Fusion (control software version 2.0.1258.15) was carried out using a 
data-dependent method with multi-notch synchronous precursor selection MS3 scanning for TMT tags. Survey 
scans covering the mass range of 350–1500 were acquired at a resolution of 120,000 (at m/z 200), with quadrupole 
isolation enabled, an S-Lens RF Level of 60%, a maximum fill time of 50 milliseconds, and an automatic gain control  
(AGC) target value of 4e5. For MS2 scan triggering, monoisotopic precursor selection was enabled, charge state 
filtering was limited to 2–5, an intensity threshold of 5e3 was employed, and dynamic exclusion of previously 
selected masses was enabled for 60 seconds with a tolerance of 10 ppm. MS2 scans were acquired in the ion trap in 
Turbo mode (scan rate 125,000, peak width at half height <​3 Daltons) after CID fragmentation with a maximum 
fill time of 50 milliseconds, quadrupole isolation, an isolation window of 2 m/z, collision energy of 35%, activation 
Q of 0.25, injection for all available parallelizable time turned ON, and an AGC target value of 1e4. Fragment 
ions were selected for MS3 scans based on a precursor selection range of 400–1200 m/z, ion exclusion of 20 m/z 
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low and 5 m/z high, and isobaric tag loss exclusion for TMT. The top 10 precursors were selected for MS3 scans 
that were acquired in the Orbitrap after HCD fragmentation (NCE 65%) with a maximum fill time of 120 milli-
seconds, 60,000 resolution, 110–750 m/z scan range, ion injection for all parallelizable time turned ON, and an 
AGC target value of 1e5. The total allowable cycle time was set to 4 seconds. MS1 and MS3 scans were acquired in 
profile mode, and MS2 in centroid format.

Mass Spectrometry Data Analysis.  Data from the Orbitrap Fusion were processed using Proteome 
Discoverer Software (ver. 2.1.0.62). MS2 spectra were searched using Sequest HT against a combined UniProt 
Human and Escherichia coli proteome database appended to a list of common contaminants (24,624 total 
sequences). Sequest HT parameters were specified as: trypsin enzyme, 2 missed cleavages allowed, minimum pep-
tide length of 6, precursor mass tolerance of 20 ppm, and a fragment mass tolerance of 0.8 Daltons. Oxidation of 
methionine, and TMT at lysine and peptide N-termini were set as variable modifications. Carbamidomethylation 
of cysteine was set as a fixed modification. Peptide spectral match error rates were determined using the 
target-decoy strategy coupled to Percolator modeling of positive and false matches56,57. Reporter ions were quan-
tified from MS3 scans using an integration tolerance of 20ppm with the most confident centroid setting. Output 
quantification values represented the signal-to-noise of the TMT value relative to the Orbitrap preamplifier. Data 
were filtered at the peptide spectral match-level to control for false discoveries using a q-value cut off of 0.05 as 
determined by Percolator. This less-stringent filter was applied to maximize sensitivity, relying on the statistical 
analyses during peptide quantification to further control for the potential generation of false conclusions within 
the final data set. As a result, the final quantitative set of hits that displays significant variance between tumour 
types is enriched in multi-peptide identified, high confidence proteins.

Bioinformatic and Statistical Analyses.  Proteomic data analysis.  Data sets generated in Proteome 
Discoverer were exported and analyzed with a combination of scripts built in R designed in-house. Contaminant 
and decoy proteins were removed from all data sets prior to analysis. Unless stated otherwise, quantification was 
performed at the peptide level as discussed previously58,59. Briefly, peak areas and annotation information for 
unique peptides were combined into an expression set object and treated with a generalized-logarithm trans-
formation using the VSN package60. In samples where the E. coli spike was used, peptide areas derived from 
the E. coli peptides were used to build an initial model of technical batch-to-batch variance using VSN that was 
then fit to the remaining human peptide values. Only E. coli peptides identified in all samples were used during 
this analysis. This VSN transformation addresses heterogeneity of variance across the dynamic range of peptide 
abundance. Statistical analysis of differential protein expression was performed at the peptide level using a mod-
ified version of the PECA function that is appropriate for input of log-transformed data59. PECA uses Limma61 
to generate a linear model for estimating fold changes and standard errors prior to empirical Bayes smoothing. 
Median t-statistics of the assigned peptides are used to calculate false-discovery rate adjusted p-values, that are 
determined from the beta distribution as described previously59.

Human Protein Atlas data analysis.  Data for protein expression values derived from the Human Protein Atlas 
(HPA)25 were downloaded from the main resource website. The categorical measurements provided in the HPA 
for each protein are a collection from multiple individual tissue blocks. Expression values were calculated based 
on assigning a numerical score of 9 for ‘High’, 6 for ‘Medium’, 3 for ‘Low’, and 0 for ‘Not detected’. To generate a 
single value per protein across all tissue blocks, each value was multiplied by the number of blocks assigned to that 
class (e.g. ‘High’, ‘Medium’, ‘Low’, ‘Not detected’) and the total sum per protein calculated. The resulting value is a 
rough estimate of expression based on the numbers of tissue blocks assigned in each category by the HPA group. 
Ovarian carcinoma analyses were not differentiated based on histotype in the HPA, and thus contains values for 
HGSC, CCC, ENOC, and Mucinous classes.

RNA expression analysis.  RNA expression data were downloaded from the gene expression omnibus (GEO) 
for the accession: GSE6598630. This data consists of microarray-derived measurements of gene expression from 
55 ovarian carcinomas (25 CCCs, 16 HGSC, and 14 ENOCs). The extracted CEL files underwent background 
subtraction, normalization, and log transformation using gcrma in R62. Differential expression was determined 
using the moderated t-test with empirical Bayes smoothing within Limma as with the protein data. Probes were 
further condensed into single measurements based on the median of all values assigned per gene. TCGA-based 
FPKM RNA expression values were accessed using the R entry point from cBioPortal63.

Methylation and Prognosis marker analysis.  Values for promoter methylation were taken from the TCGA ovar-
ian carcinoma data19. Genes were queried using the R entry point from cBioPortal. Prognosis feature analysis was 
done using a published set of genes derived from RNA expression analysis19.

Gene set enrichment analysis.  Global comparisons of enriched gene sets and ontologies independent of expres-
sion was performed using Metascape31. Gene lists consisting of proteins having a log2 fold-change above 0.5 and 
an adjusted p-value below 0.05 were compiled for each histotype relative to the two others. Gene lists were que-
ried against biological process, molecular function, and cellular component gene ontologies, and the Hallmark 
signature set from MSigDB32.

To capture enrichment of gene sets where protein expression was considered (GSEA), analysis was performed 
manually using sets derived from the MSigDB resource32. Gene collections were imported into R and profiled 
using an in-house script that calculates the mean difference in expression of a gene set in relation to total expres-
sion. Statistical enrichment analysis was performed using the geneSetTest function built into Limma64. Statistics 
utilized in the geneSetTest function were calculated based on relative log2 expression values for each histotype 
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(relative to the median per gene). The derivation of t-statistics on a per gene basis was performed using the mod-
erated t-test in Limma61. Only sets where a minimum of 50% of the total set had representative values in our own 
data were considered in this analysis.

Gene ontology analysis.  Gene ontology assignment and enrichment analysis was performed using g:Profiler65. 
The g:GOSt tool in the g:Profiler suite uses a Fisher’s one-tailed test to measure the statistical significance of 
enrichment for any given GO term. Multiple testing is corrected using the built-in g:SCS method, as described 
previously65.

Immunohistochemistry and scoring.  Tissue microarrays (TMAs) were constructed as duplicate cores of FFPE 
materials from 485 primary ovarian epithelial, sex cord stromal and germ cell tumours. 4 μ​m sections of the 
TMAs on Superfrost +​ glass slides were processed using the Ventana Discovery XT, and the Ventana Benchmark 
XT and Benchmark Ultra automated systems (Ventana Medical Systems). TMAs were stained with an antibody to 
CTH (1:250, clone 1E12; LS-C337259 LSBio). The TMA images were scored by two pathologists (TN and ANK). 
Tumours were scored as negative if there was an absence of staining in the epithelial cells. A score of 1 was given 
if there was diffuse (>​70% of the cells), weak staining or the staining was variable. A score of 2 indicates diffuse 
strong staining. If the duplicate cores were given different scores, an overall score of 1, indicating variable staining, 
was given.

Western blotting.  Whole protein extract was prepared in RIPA lysis buffer and 30 mg of protein was separated 
by SDS-PAGE electrophoresis and transferred to nitrocellulose membranes. Blots were probed with antibodies  
to CTH (1:1000, clone E12, LS-C337259 LSBio), LEFTY1 (1:1000, LS-B5830 LSBio) and β​-Actin (1:10,000, clone 
8H10D10, Cell Signaling Technology), followed by probing with peroxidase conjugated secondary antibodies 
raised in goat against rabbit or mouse (1:10,000, ABM Inc). The signal was detected by chemiluminescence 
(Millipore).

Data and Code Availability.  The mass spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium66 via the PRIDE67 partner repository with the dataset identifier PXD003607. 
Identification results, MS acquisition methods, Proteome Discoverer workflows, sequence databases, 
are also stored on ProteomeXChange under the same identifier. Processed peptide data sets are pro-
vided in ProteomeXChange as R data storage objects to avoid transformation of gene identifiers in exter-
nal software. The contents of each storage object are described in Supplemental Table 6. R code used 
to perform all analyses is openly available on GitHub (https://github.com/chrishuges/OvC) and in the 
ProteomeXChange repository. The contents of each R session are described in Supplemental Table 7.  
Supplementary code for extracting the data from an R data storage object is available in the Supplemental 
Protocols. Descriptions of naming conventions used in the data file, or analysis file names are provided in 
Supplemental Table 8. Any additional files are openly available upon request.
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