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The scale-free dynamics of human brain activity, characterized by an elaborate temporal structure with scale-free properties, can be
quantified using the power-law exponent (PLE) as an index. Power laws are well documented in nature in general, particularly in
the brain. Some previous fMRI studies have demonstrated a lower PLE during cognitive-task-evoked activity than during resting
state activity. However, PLE modulation during cognitive-task-evoked activity and its relationship with an associated behavior
remain unclear. In this functional fMRI study in the resting state and face processing + control task, we investigated PLE during
both the resting state and task-evoked activities, as well as its relationship with behavior measured using mean reaction time (mRT)
during the task. We found that (1) face discrimination-induced BOLD signal changes in the medial prefrontal cortex (mPFC),
posterior cingulate cortex (PCC), amygdala, and fusiform face area; (2) PLE significantly decreased during task-evoked activity
specifically in mPFC compared with resting state activity; (3) most importantly, in mPFC, mRT significantly negatively correlated
with both resting state PLE and the resting-task PLE difference. These results may lead to a better understanding of the associations
between task performance parameters (e.g., mRT) and the scale-free dynamics of spontaneous and task-evoked brain activities.

1. Introduction

Studies using functional magnetic resonance imaging
(fMRI), magnetoencephalography (MEG), and electroen-
cephalography (EEG) have shown that spontaneous brain

activity can be characterized by scale-free dynamics. Scale-
free dynamics can be revealed by scaling analysis, with which
the fluctuations of a parameter as a function of the scale at
which the parameter is evaluated can be quantified. Further-
more, the scale-free dynamics of brain activity can be indexed
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using the power-law exponent (PLE), that is, the power
spectrum with the formula power ∝ 1/frequency β, where
β is the PLE [1–8]. The properties of scale-free dynamics
are shared by many systems found in nature [4, 9] and,
most importantly, have also been observed in neural activity
across many different spatiotemporal scales: from neuro-
transmitter release [10], neuronal spike trains [11], network
firing rates [12], field potentials [4, 6, 7, 13, 14] to fMRI
signals [2, 4, 15, 16]. Most recently, the properties of scale-
free dynamics have been found in various human behaviors
[3, 17] including motor behavior [7, 18, 19], perception
[20], music composition [21], consciousness [22–24], devel-
opment andmaturation [25, 26], personality dimensions such
as trait impulsivity [27] and extraversion [28], and self-
consciousness [16]. Thesefindings suggest a close relationship
between scale-free dynamics during spontaneous brain
activity and those during behavioral performance. However,
studies explicitly focusing on the relationship between scale-
free dynamics during spontaneous brain activity (specifically
in the infraslow frequency range as measured by fMRI) and
behavioral measures during a task are still lacking.

Studies on different psychiatric disorders such as anxi-
ety [29], autism [30], depression [31], and schizophrenia
[32] revealed changes in scale-free dynamics during spon-
taneous or task-state brain activity. These changes indicate
an association between scale-free dynamics and face pro-
cessing, which remains to be tested on a healthy brain. It
is likely that scale-free dynamics during spontaneous and
task states are not only affected by emotions but are also
associated with behavioral performance parameters (e.g.,
reaction time) [3, 17].

The aim of our study was to investigate firstly the
modulation of spontaneous activity PLE using a face
processing task and secondly the association of PLE dur-
ing both spontaneous and task-evoked activities with
behavioral measures, for example, mean reaction time
(mRT). To this end, we conducted an fMRI investigation
of both spontaneous activity (resting state) and task-
evoked activity (task state) using a face processing para-
digm in a block design described in our previous report
[32]. More specifically, we aimed for the following: (i)
determination of brain regions showing an increase or
a decrease in blood-oxygen-level-dependent (BOLD) sig-
nals between face processing and control conditions,
(ii) determination of PLE in both the resting state and
task state in the brain regions associated with face pro-
cessing, and (iii) correlation of PLE in both the resting
and task states with mRT in response to the recognition
of an emotional face and control. On the basis of previ-
ous studies that showed a positive association between
PLE in the cingulate cortex in the resting state and
self-consciousness scale score [16] or depression rating
scale score [31], we hypothesized that PLE during
resting-state and task-state fMRI predicts the associated
behavioral performance parameters (e.g., mRT), that is,
a higher PLE in the resting state in the brain areas that
contribute to responses during a task might be associ-
ated with the higher efficiency in processing of the task,
which results in a shorter RT during the task.

2. Materials and Methods

2.1. Subjects. Fifteen participants (age range, 21–37 years;
mean age, 26.5± 4.8 years; all males) were enrolled on the
basis of the following exclusion criteria: history of neurolog-
ical/psychiatric illness or a traumatic event (e.g., serious acci-
dent or physical/sexual abuse), chronic medication, chronic
alcoholism, substance abuse, parental divorce, and history
of psychiatric illness in first-degree relatives (see Table 1).
For the evaluation of the past and current psychological con-
ditions, the Structured Clinical Interview for DSM-IV Axis I
Disorders [33] was used. All the subjects enrolled in this
study were right-handed, as assessed using the Edinburgh
Handedness Inventory [34]. All the subjects provided their
written informed consent in accordance with the Declaration
of Helsinki. The study protocol was approved by the Ethics
Committee of Gunma University.

2.2. T1-Weighted Anatomical Imaging and Functional MRI
Data Acquisition. Brain MRI was performed using Siemens
3-T Trio with a 12-channel head coil (Siemens, Erlangen,
Germany) in Gunma University Hospital. High-resolution
T1-weighted anatomical images [magnetization-prepared
rapid acquisition with gradient echo (MP-RAGE) sequence]
were acquired as follows: repetition time=2000ms; echo
time= 2ms; inversion time=990ms; flip angle = 90°; field of
view (FOV)= 256× 256mm2; matrix size = 256× 256; voxel
size = 1× 1× 1mm3. Functional images acquired in the resting
and task states were collected using an echoplanar imaging
(EPI) sequence (TR=2500ms, TE=25ms, flip angle = 90°,
FOV=220× 220mm2,matrix size = 64× 64with pixel dimen-
sions of 3× 3mm2). Thirty-five axial slices with a thickness of
4mm and an interslice gap of zero were acquired.

2.3. Experimental Design. During the experiment, fMRI
recordings were taken in both the resting state for 4min
and the task state for 4min. During the resting-state record-
ings, the subjects were instructed to relax, stay awake, and
keep their eyes open and fixed on the crosshairs on the
screen. The details of the task state in this experiment are
described in a previous paper [35]. Grayscale pictures of 24
unfamiliar faces (12 males and 12 female) were employed
as stimuli. They were divided into three groups: negative

Table 1: Demographic characteristics of study subjects.

Male

Number 15

Age (y) 24.1± 2.5
Education (y) 16.0± 0.7
Face processing task

Reaction time under emotional face
condition (s)

1.2± 1.6

Percent correct under emotional face
condition (percent)

94.9± 4.6

Reaction time under control condition (s) 0.7± 1.4
Percent correct under control condition (percent) 99.7± 0.9
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emotion (angry, disgusted, or sad), positive emotion (happy),
and neutral emotion. Ten healthy controls rated each face by
emotion type and intensity. The probabilities that the emo-
tional faces were correctly discriminated was 98% and 99%
for the negative and positive emotion faces, respectively.
The task had a block design with face processing and control
conditions. Under the face processing condition, the subjects
were instructed to discriminate the emotional face between
two faces displayed on the screen, one emotional and the
other with a neutral emotion (Figure 1). Under the control
condition, the subjects were shown two squares of different
sizes and instructed to choose the larger one. A subject indi-
cated his choice by pressing a button, using his right-hand
fingers. Each of these discrimination tasks lasted 2.5 s, which
were conducted eight times per block (20 s/block). In one
4min task, there were 12 blocks: six emotional face condition
blocks (described above) and 6 control condition blocks. The
condition blocks were presented alternately throughout the
task. We measured mRT in each of the emotional face
condition blocks, control condition blocks, and emotional
face + control condition blocks in the above-mentioned task
with correct responses.

2.4. Definition of Regions of Interest (ROIs) and Calculation of
PLE. First, we analyzed the fMRI data acquired during the
face processing task to compare between the emotional face
condition and the control condition using the fMRI Expert
Analysis Tool (FEAT) Version 6.0, which is part of FMRIB’s
Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl) for
extracting the ROIs in the gray matter associated with face
processing. For prestatistical processing, we performed
motion correction using MCFLIRT [36], nonbrain region
removal using BET [37], spatial smoothing using a Gaussian
kernel corresponding to a FWHM of 8mm, mean-based
intensity normalization of all volumes using the same factor,
and high-pass temporal filtering (Gaussian-weighted LSF
straight line fitting, with sigma=100 s). Moreover, the
acquired fMRI images were nonlinearly registered to the
MNI-152 template. Time-series statistical analysis was
carried out using FILM [38] with local autocorrelation cor-
rection. Individual subjects’ Z (Gaussian transformed) statis-
tical images were thresholded using clusters determined at
Z> 4 and a whole-brain (corrected) cluster significance

threshold of p = 0 05. Furthermore, only gray matter regions
with voxels sizes (n)> 90 in significant clusters identified by
the above-mentioned FSL analysis were used as the ROIs of
this study. The percent BOLD signal changes between emo-
tional face and control conditions were calculated in the
ROIs in the gray matter regions associated with face process-
ing and identified by the above FSL analysis, namely, the
medial prefrontal cortex (mPFC), posterior cingulate cortex
(PCC), amygdala (AMYG), and fusiform face area (FFA),
using the AFNI program (3dDeconvolve) [39].

Then, we calculated PLE from the 4min resting- and
task-state fMRI data in each of the ROIs in mPFC, PCC,
AMYG, and FFA (Figure 2). PLE is β, calculated from the
formula power ∝ 1/frequency β [1–4, 6–8, 16]. Thus, PLE
is the slope of the linear regression of the log power and log
frequency of the power spectrum of BOLD signals. After
the prestatistical processing, the time course per voxel was
normalized to the zero mean and unit variance (z value)
[40]. Because the variance is equal across all ROIs, all spectra
have the same integrated area. Using methods previously
optimized for fMRI [41], the normalized power spectrum of
fMRI signals was computed for each voxel using the AFNI
program (3dPeriodogram). The power spectrum of fMRI
signals was further smoothed using a Hamming window of
7 (HM=7) neighboring frequency bins. Additionally, we
performed smoothing using other Hamming window sizes
(HM=3 and 5), to test the robustness of our results, as
described in a previous paper [16].

First, using the fast Fourier transform, power and fre-
quency were computed from BOLD signals with the time
course of each voxel within the ROI, that is, mPFC, PCC,
AMYG, and FFA. Secondly, the obtained power spectra
were averaged across voxels within a certain ROI. Then,
PLE was defined as the slope of the linear regression of
log power on log frequency. In the next step, the power
spectra averaged across voxels within each of the ROIs were
extracted for each subject. A power spectrum was fitted
with a power-law function P∝1/fβ by least-square estima-
tion (in a log frequency by log power plot) at frequencies
of <0.1Hz [2]. Finally, the power-law exponent β of each
subject’s ROI was defined as the slope of the linear regres-
sion of log power on log frequency corresponding to the
straight-line regime.
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Figure 1: Paradigm of face processing task.
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2.5. Statistical Analyses. To assess task difficulty, the paired
Student t-test was applied to both percent correct responses
and reaction time under the control and face processing con-
ditions. To assess the relationship between mRT in the face
processing task and PLE in each of the ROIs, namely, mPFC,
PCC, AMYG, and FFA, Pearson’s correlation test was per-
formed. The paired Student t-test was used for the compari-
son of PLE between the resting and task states. A statistical
threshold of p < 0 05 was used.

3. Results

3.1. Percent Correct and Reaction Time Duration Difference
between Control and Face Processing Conditions. The paired
Student t-test showed significant differences in both percent
correct responses and reaction time duration between con-
trol and face processing conditions (p < 0 01).

3.2. Task-Evoked Activity Differences between Face Processing
and Control Conditions. The face processing condition
showed a significantly decreased BOLD signal intensity in
mPFC [(x, y, z) = (4, 44, −2); voxel size = 209; maximum Z-

score = 4.98] and PCC [(x, y, z) = (2, −32, 44); voxel size = 170;
maximum Z-score = 5.52]. In contrast, a significantly
increased task-evoked BOLD signal intensity was observed in
bilateral AMYGs [left, (x, y, z) = (−20, −6, −16); voxel
size = 106; maximum Z-score = 5.36, and right, (x, y, z) = (26,
−2, −14); voxel size = 99; maximum Z-score = 5.16] and bilat-
eral FFAs [left, (x, y, z) = (−38, −50, −18); voxel size = 1421;
maximum Z-score = 5.96, and right, (x, y, z) = (44, −54, −20);
voxel size = 1399; maximum Z-score = 6.02], as compared
with the control condition (Figure 3).

3.3. Comparison of PLE between Resting and Task States. The
log transformation of the power spectrum for HM=7 is
shown in Figure 4 as the main data. PLE in the task
state was significantly lower in mPFC than in the resting
state (p < 0 05). In contrast, PLE in the left FFA was signifi-
cantly higher in the task state than in the resting state.
Finally, the other regions such as PCC, left and right AMYGs,
and right FFA did not show any significant difference in PLE
between the resting state and the task state (Figure 5). More-
over, the additional analyses using HM=3 and 5 showed that
in mPFC, PLE in the task state was significantly lower than
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that in the resting state (p < 0 01 and p < 0 05, resp.), and in
left FAA, PLE in the task state was significantly higher than
that in the resting state (p < 0 05, resp.). Furthermore, the
other regions such as PCC, left and right AMYGs, and right
FFA did not show any significant difference in PLE between
the resting state and the task state.

3.4. Relationship of mRT and PLE with Percent BOLD Signal
Changes in Resting State, Task State, and Resting-Task
Difference. Pearson’s correlation analysis (1000-sample boot-
strapping) showed that in mPFC, mRT under emotional face
+ control conditions was significantly negatively associated
with PLE in the resting state (r = −0 688; 95% CI: −0.239 to
−0.902; p = 0 005). Moreover, mRT under the emotional
face + control conditions also correlated with the resting-
task difference PLE in mPFC (r = −0 659; 95% CI: −0.352
to −0.869; p = 0 008). In contrast, no significant correlation
was found between task-state PLE in mPFC and mRT
(Figure 6). Also, additional analyses using HM=3 and 5
showed that in mPFC, the mRT in the emotional face + con-
trol conditions was significantly negatively association with
the PLE of the resting state (HM=3, r = −0 676; 95% CI:
−0.211 to −0.900; p = 0 006, and HM=5, r = −0 682; 95%
CI: −0.240 to −0.900; p = 0 00, resp.). Moreover, mRT under
the emotional face + control conditions was significantly neg-
atively association with the resting-task difference in mPFC
(HM=3, r = −0 660; 95% CI: −0.376 to −0.867; p = 0 007,
and HM=5, r = −0 657; 95% CI: −0.372 to −0.867; p =
0 008, resp.). The analyses using both HM=3 and 5 showed
no significant correlation between task-state PLE in mPFC
and mRT. Unlike in mPFC, we observed no correlation of
mRT with PLE in the resting state, task state, and resting-
task difference in the other regions, namely, PCC and

bilateral AMYGs and FFAs in all analyses using HM=3,
5, and 7. On the other hand, mRT under each of emo-
tional face condition or control condition showed no
significant association with resting-state PLE, task-state
PLE, and resting-task difference PLE for all ROIs.

Finally, we found no significant correlation of percent
BOLD signal changes with mRT in all the regions. In addi-
tion, Pearson’s correlation analysis showed no significant
correlations of age, years of education, or predicted IQ with
any of the measures above, for example, percent BOLD signal
changes, resting-state PLE, task-state PLE, and resting-task
difference PLE for all ROIs.

4. Discussion

Here, we investigated the relationship between scale-free
dynamics, in terms of PLE, in the resting and/or task state
and the behavioral performance in the face processing task.
Our findings in mPFC show the following: (i) a significant
decrease in PLE in the face processing task compared with
that in the resting state, (ii) a significant correlation between
resting-state PLE and mRT under the emotional face + con-
trol conditions, and (iii) a significant correlation between
resting-task difference PLE and mRT under the emotional
face + control conditions. Taken together, these findings
underline the central relevance of scale-free dynamics in the
resting state and task-evoked activity to task performance
parameters (e.g., mRT).

In the analysis of the BOLD signal changes under the face
discrimination condition relative to the control condition in
this study, AMYG and FFA were activated whereas mPFC
and PCC were deactivated. These findings are in agreement
with recent brain imaging findings on facial emotion process-
ing [42, 43]. The deactivation we observed in midline regions
such as mPFC and PCC has also been observed in other stud-
ies on emotion and cognitive processing [44]. We further
observed a task-evoked decrease in PLE specifically in mPFC,
which is in agreement with the previous finding of PLE mod-
ulation by sensory and motor tasks in the high-frequency
ranges, as measured mostly by EEG/MEG [2, 7, 18–20].
Those previous findings together with our results suggest that
the PLE decrease from the spontaneous state to the task state
is observed in not only brain areas corresponding to sensory
and motor functions but also other areas such as those
involved in face processing. Moreover, our findings show
differential PLE modulation in different regions, that is,
mPFC showed a task-evoked decrease in PLE whereas PCC
showed no such decrease. This differential PLE modulation
observed in this study suggests specific roles of mPFC in
mediating PLE modulation and the task-evoked modulation
of PLE during the face processing task, which is in accor-
dance with the previous findings that PLE in mPFC is
involved in mediating emotions [45] and self-consciousness
[16]. A high PLE suggests greater dependence of future
dynamics on past dynamics within a range of low frequencies
[2, 46]. In contrast, a decrease in PLE from the spontaneous
state to the task state in mPFC may indicate less temporal
dependence of future dynamics on past dynamics and a
higher efficiency in current information processing required
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Figure 3: BOLD signal changes under face processing and control
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during task-evoked activity. Our assumption based on these
results is that the higher PLE in the resting state and the lower
PLE in the task state may result in higher efficiency in the
processing of a task. This assumption is supported by the
negative correlations of resting-state PLE and resting-task
difference PLE with mRT.

Additionally, FFA showed an increase in PLE during task-
evoked activity comparedwith the resting state activity, which
indicates that FFA is likely required in face processing but not
under the control condition [47]. The task-evoked PLE
decrease is equivalent to the ratio of slow 5 (low frequencies,
0.01 to 0.027Hz) to slow 4 (high frequencies, 0.027 to
0.073Hz) shifting to more slow 4. Therefore, the task-evoked

PLE increase in FFA may be related to this shift towards slow
5 relative to slow 4.Whether such a relative power shift in slow
5may be related to the block paradigmwith blocks of 20 s and
emotional blocks occurring every 20 s remains unclear how-
ever. Our task-evoked PLE in the FFA showed an increase in
power specifically every 40 s, which corresponds to 0.025Hz,
which is due to our block design; this suggests that the task-
evoked PLE in FFA somewhat encoded the temporal structure
of the paradigm. This remains to be a tentative thought and
should be addressed in future studies.

In this study, we observed that resting-state PLE in mPFC
inversely correlated with mRT under the emotional face
+ control conditions: the higher the PLE in the resting state,
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the shorter the mRT during the task. An analogous relation-
ship was observed in the PLE difference between the resting
and task states in this same region. On the other hand, PLE
during the task-evoked activity itself, independent of the rest-
ing state, showed no relationship with task performance
parameters, for example, mRT. This suggests that in mPFC,
interindividual variability in mRT is related to interindivid-
ual variability in the scale-free dynamics in the spontaneous
state (e.g., resting-state PLE) and the degree of task-evoked
modulation from the scale-free dynamics in the spontaneous
state to those in the task state.

Here, we mention the limitations of our study. We
acquired MRI data for 4min to calculate PLE both in the task
and resting states, which is relatively short for determining
PLE with sufficient S/N ratios. We set this duration because
we had to acquire data for a moderate duration to weaken
any effect of habituation during this face processing task.
FFA exhibits task-evoked periodicity, as shown in Figure 4,
owing to the block-task design in task-state fMRI. Although
we discussed about the effect of this periodicity on our results,
there still remain some issues. Tomanage this periodicity fur-
thermore is very interesting but this is not within the scope of
our study. We did not include any psychophysiological mea-
sures nor subjective measures, such as arousal, valence, or
dominance, in the measurement of emotion-related effects
in our study. The time series of these measures could have
by themselves (such as heart rate) been analyzed for power-
law distribution and then correlated with neuronal measures,
carried out in previous EEG/MEG studies [7, 19, 20]. More-
over, one may point out that our task used to analyze PLE
in this study included both emotional and control conditions;
although our ROIs were based on face-processing-related
effects (face versus control), the PLE measurement itself had
to include both face processing and control conditions. Fur-
thermore, in this study, significant differences were observed
in percent correct response and reaction time between con-
trol and emotional face conditions, suggesting that the emo-
tional face task is more difficult than the control task. Since

a previous investigation revealed that the difficulty level of a
task can contribute to PLE attenuation [48], the difference
in task difficulty between control and emotional face condi-
tions might affect on our results. Therefore, in future studies,
paradigms with specific emotional conditions separate from
control conditions should be designed, for example, nonemo-
tion blocks, and there should be a balance in difficulty
between task and control blocks.

In summary, we demonstrated that both resting-state
PLE and resting-task difference PLE in mPFC were associ-
ated with task performance parameters, for example, mRT.
This finding suggests a specific role of the scale-free dynamics
of spontaneous brain activity in mediating task-evoked activ-
ity and behavioral performance in the face processing task.
Our results complement previous studies showing the rele-
vance of scale-free dynamics in perception, action, and cog-
nition. This study further underlines the close relationship
between spontaneous and task-evoked activities as shown
by how scale-free dynamics mediate the transition of these
processes and impact the associated behavioral performance.
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(1000-sample bootstrapping) showed that in mPFC, mRT under the emotional face + control conditions was significantly negatively
associated with PLE in the resting state (r = −0 688; 95% CI: –0.239 to −0.902; p = 0 005).
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