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Abstract: Neurodegeneration is the pathological condition, in which the nervous system or neuron
loses its structure, function, or both, leading to progressive degeneration or the death of neurons, and
well-defined associations of tissue system, resulting in clinical manifestations. Neuroinflammation
has been shown to precede neurodegeneration in several neurodegenerative diseases (NDs). No
drug is yet known to delay or treat neurodegeneration. Although the etiology and potential causes
of NDs remain widely indefinable, matrix metalloproteinases (MMPs) evidently have a crucial role
in the progression of NDs. MMPs, a protein family of zinc (Zn2+)-containing endopeptidases, are
pivotal agents that are involved in various biological and pathological processes in the central ner-
vous system (CNS). The current review delineates the several emerging evidence demonstrating
the effects of MMPs in the progression of NDs, wherein they regulate several processes, such as
(neuro)inflammation, microglial activation, amyloid peptide degradation, blood brain barrier (BBB)
disruption, dopaminergic apoptosis, and α-synuclein modulation, leading to neurotoxicity and neu-
ron death. Published papers to date were searched via PubMed, MEDLINE, etc., while using selective
keywords highlighted in our manuscript. We also aim to shed a light on pathophysiological effect of
MMPs in the CNS and focus our attention on its detrimental and beneficial effects in NDs, with a
special focus on Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), Alzheimer’s disease
(AD), multiple sclerosis (MS), and Huntington’s disease (HD), and discussed various therapeutic
strategies targeting MMPs, which could serve as potential modulators in NDs. Over time, several
agents have been developed in order to overcome challenges and open up the possibilities for making
selective modulators of MMPs to decipher the multifaceted functions of MMPs in NDs. There is still
a greater need to explore them in clinics.

Keywords: neurodegenerative diseases; matrix metalloproteases; Alzheimer’s disease; multiple
sclerosis; Parkinson’s disease

1. Introduction

Metalloproteinases (MPs), an important protease family, including matrix metallo-
proteinases (MMPs), are vital for several physiological and pathological processes, which
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have been obtained in the past two decades [1,2]. In the central nervous system (CNS),
MPs act via the regulation of signaling cascade during synaptic dysfunction, blood-brain
barrier (BBB) disruption, neuroinflammation, or neuronal loss [3,4]. In CNS, the MMPs
are present in different cells, among which some of the family members are implicated in
the development, repair, and injury in neurodegenerative diseases (NDs), which makes
them attractive for therapeutic targets in certain diseases [2,5]. MMPs are pivotal for
the development of brain due to their correlation with essential neurophysiological pro-
cesses and functions [6,7]. In certain pathological conditions, such as neuroinflammatory
conditions and neurodegenerative disorders (NDs) including Parkinson’s disease (PD),
amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), multiple sclerosis (MS), and
Huntington’s disease (HD), augmented MMP expression has been recognized, resulting in
the exacerbation of neuroinflammation-induced brain damage [8].

NDs are a debilitating group of disorders that involves considerable neuronal dete-
rioration in certain regions of the brain and well-defined associations of tissue system,
resulting in clinical manifestations [9,10]. The activities of MMPs are stringently controlled
and its deregulation leads to certain pathologies in NDs. MMPs are widely involved in
the development of neurons, having the capability to alter the response to NDs [5]. In
various NDs, neuroinflammation has been shown to precede neurodegeneration, wherein
MMPs are vital in neuroinflammation and perhaps implicated in neurodegeneration [8].
MMPs regulates several processes, including inflammation, microglial activation, blood
brain barrier (BBB) disruption, dopaminergic (DAergic) apoptosis, and α-synuclein modu-
lation [3,11,12]. At CNS barriers, the activity of MMP prompts the rise in permeability by
changing the extracellular matrix (ECM) and tight junctional properties [13].

On the other hand, the activation of MMPs is known to take part in angiogenesis,
neurogenesis, and tissue repair [1]. MMPs are pivotal in the pathological conditions
in the brain as a part of neuroinflammatory response in ischemic injury, infection, and
vascular dementias causes [5]. MMPs are divided into four primary categories, as follows:
Stromelysins, Collagenases, Gelatinases, and Film sort (MT)-MMPs. MMP-2 and -9 belong
to Gelatinases, are part of neurogenesis and angiogenesis through basal lamina corruption,
thus resulting in cell death. MT-MMPs activate development components and proteases
at the cell surface. Stromelysins (MMP-11, -10, -7, and -3) are known to degrade the
ECM [14–17]. In addition, studies have also indicated MMPs in the vascular cognitive
impairment (VCI)-associated neurodegeneration [5,18]. They have been subject to wide
research, due to the leading role of MMPs’ in neuroinflammation and several NDs [19].

The present review is an overview that is related to the multifaceted role of MMPs in
NDs via cellular functions (such as remodeling and degradation of the ECM and proteolysis
of cell signaling factors). We aimed to shed a light on pathophysiological activities of MMPs
in the CNS, with our attention being focused on its detrimental/beneficial effects in NDs,
with special approach on PD, AD, ALS, MS, and HD. Moreover, various therapeutic
strategies targeting MMPs, which could serve novel treatment for NDs, were discussed.

2. An Overview of Matrix Metalloproteinases (MMPs)-Basic Structure and Function

Belonging to a superfamily of metzincin, like the reprolysins, serralysins, astacins,
and adamalysins or disintegrin metalloproteinases (ADAMs), MMPs form calcium (Ca2+)-
and zinc (Zn2+)-dependent endopeptidases involved in the regulation of biological func-
tions and several pathological processes, once activated [20–22]. MMPs have the abil-
ity to digest diverse forms of substrates, including the ECM components and basement
membrane [22,23]. MPs play a vital role in ECM remodeling by cell surface protein activa-
tion, the proteolytic degradation of ECM components, and shedding of membrane-bound
receptor molecules. They are widely known for the regulation of activity of chemokines,
growth factors, cell receptors, and other proteinases, and it regulates certain biological
processes, such as cell differentiation, survival, migration, and proliferation, in different
forms of cellular processes and functions [23,24].
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The basic structure of MPs consists of a catalytic domain and pro peptide sequence [25,26].
In addition, MMPs comprise multiple domains, as follows: pro peptide-maintains MMPs’
latency; N-terminal signal peptide-cleaved in the secretory pathway; catalytic domain-
holds the Zn2+ ion that is required for the enzymatic activity; hinge region–serve as
linking sequences; and, C-terminal hemo-pexin-like (PEX) domain—as needed for the
identification of substrate [27]. Alongside common domains as mentioned, some of the
MMPs have additional domains and different peptide structures [28]. MMPs are divided
into four primary categories: Stromelysins (MMP-3, -7, -10, and -11), Collagenases (MMP-1,
-8, and -13), Gelatinases (MMP-2 and -9), and Membrane type (MT)-MMPs [14–17]. The
synthesis of all these MMPs occurs with a common N-terminal sequence, which is further
cleaved as proenzyme in the endoplasmic reticulum [29,30]. MT-MMPs, at the C-terminals,
contain the glycosyl phosphatidyl inositol (GPI)-anchored domain, which is anchored
to the cell membrane via formation of covalent bonds [31]. The production of MMPs
occurs as pro-MMP (zymogens) via cysteine switch mechanism. Pro-MMP is activated
by free radicals or other enzymes, wherein the binding of the thiol group (present in N-
terminal domain) to the Zn2+ atom blocks its active site; removal or blockade of thiol group
initiates the activation of MMPs [32]. MMPs are known to be crucial agents in several
pathological processes and as biological regulators in the body, once activated. In addition,
MMPs aid in the degradation of ECM and its components along with several non-matrix
substances [33,34].

ECM is a vital structure that provides an adhesion site for different cells and aids
several physiological processes. It also acts as a storage region for multiple growth fac-
tors, proteins, and signaling molecules, thereby affecting cell migration and development.
ECM mainly contains proteoglycans, glycosaminoglycans, and fibrous proteins (laminin,
fibronectin, and collagen). ECM proteolysis or cleavage by MMP influences embryogenesis,
cell migration, and various processes in adult organism and during development [35,36].
Being widely known to play a vital role in cell adhesion and intracellular signaling, ADAMs
(MP and a-disintegrin) are transmembrane-anchored MPs that have identical catalytic MMP
domains, but do not have a PEX domain, and rather have three extra epidermal growths
factor-like domains together with disinterring domain. At the C-terminal region, ADAMTS
(MP with thrombospondin motifs and a-disintegrin) family members comprise different
type-1 thrombospondin (TSP-1) domains [23,24,37]. The tissue inhibitors of metallopro-
teinases (TIMPs) are 21–28 kDa proteins that bind the MMPs’ active site in 1:1 [28,38]. The
tight regulation of MMP activity occurs via pro-MMP proteolytic activation and its natural
inhibitor, TIMPs. Insufficient TIMP control and MPs overexpression leads to the dysregula-
tion of tissue remodeling, which results in various diseases, including NDs [3,39–41]. A
variety of stimuli activates MMPs, including several growth factors and proinflammatory
cytokines, which can commence an intracellular signaling process, resulting in the acti-
vation of nuclear factor kappa light chain enhancer of activated B cells (NFkB), Activator
protein -1 (AP-1), or E26 transformation-specific (ETS) transcription factors, with the subse-
quent transcription of MMP [42]. Moreover, high reactive oxygen species (ROS) levels can
induce and initiate MMPs activation [43]. In spite of the fact that early attempts of targeting
MMPs were ineffective in clinical trials, MPs still persist to be potential therapeutic target,
depending on their vital role in the disease progression [26].

3. Involvement of MMPs in CNS

MMPs have been observed in the CNS, which are produced by endothelial cells,
microglia, oligodendrocytes, neurons, and astrocytes [44]. Under normal conditions, it has
been observed that MMPs are either present or absent at undetectable concentrations and
expressed at modest levels in the mature brain. A dysregulation in the MMP activity could
alter the balance, inducing a continuation of the inflammation [45,46]. Furthermore, MMPs
are engaged in the maintenance of CNS barrier in order to enhance the barrier permeability
during inflammation. The suggested process involves ECM components’ degradation (e.g.,
collagen and laminin), which mainly impede access to different substances through barriers
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and assist the cellular structures [47–49]. In addition, the augmented activity of MMP
negatively affects the function of tight junctions at the brain barriers [49–52]. Instead, some
MMPs have been observed to activate free radicals and proinflammatory cytokines that
augments the inflammation, inducing BBB disruption [4,13,15]. Upon inflammation condi-
tions, MMPs are secreted, thereby contributing to disrupting the barriers and aggravating
the inflammation [53,54]. Together with TIMPs, MMPs contribute to physiology of nervous
system during neurogenesis, ontogenesis, neuronal plasticity, and angiogenesis [21,55]. In
neuronal plasticity, MMPs involvement has been linked to influence memory and learn-
ing ability and underlying long-term potentiation (LTP) [22,56,57]. Figure 1 presents the
representation of MMP activation, their interactions with chemokines and cytokines, and
the outcome.
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Figure 1. Representation of MMP activation, their interactions with chemokines and cytokines, and
the outcome. ECM, extracellular matrix; MMPs, matrix metalloproteinases.

Furthermore, MMPs have been involved in the migration of neural cells, synap-
togenesis, and regeneration of nervous tissue [6,58,59]. MMP upregulation has been
widely recognized in an innumerable pathological condition, including neuronal death,
hypoxia/ischemia, neuroinflammation, BBB disruption, as well as demyelination [6,60–63].
Neuroinflammation is a common characteristic of such CNS pathologies, wherein the
activation and production of particular MMPs initiates or amplifies by immune cells (lym-
phocytes, macrophages, neutrophils, etc.) or neural cells (microglia, astrocytes, endothelial
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cells, etc.) [64]. Nevertheless, being considered to be multifaceted enzymes, MMPs mediate
various biological and pathological pathways in CNS, where the outcome needs to be
carefully assessed while allowing their inhibition, so as to anticipate/avoid undesirable
side effects [65].

The Links between MMPs and Aquaporin-4

This review focuses on an important point, which is the role of MMPs, with a par-
ticular focus on BBB disruption. Lines of evidence showed that neuroinflammation and
pro-inflammatory cytokines secretion caused aquaporin-4 (AQP, a water channel protein,
encoded by the AQP4 gene) disorganized, leading to brain edema. This has been recently
demonstrated by Kitchen et al., where they showed that the targeting AQP4 following
ischemia and hypoxia not only reduces edema, sbut also stabilizes the BBB/BSCB bar-
riers [66]. Multiple aspects of the links between MMPs and AQPs (in particular AQP4)
have been established by recent of previous published studies [67–69]. The results of the
study by Higashida et al. showed that AQP-4 plays a role in the formation of brain edema
and BBB disruption via a molecular pathway cascade involving MMP-9 and AQP4. The
pharmacological blockade of this pathway may provide a novel therapeutic strategy [67].
The study conducted by Cao et al. also showed that hydrogen sulphide attenuated brain
edema formation reduces the MMP-9 expression and suppresses AQP4 expression via the
alleviation of glia activation and pro-inflammatory cytokines secretion [68]. A study by Li
et al. showed that the expressions of MMP-9 and AQP4 were increased in the vehicle group
that was associated with cerebral vasogenic edema or cytotoxic edema. The MMP-9 and
AQP4 up-regulations were significantly inhibited by the administration of astragaloside IV,
proposing that the anti-edema potential of astragaloside IV was related to the regulation of
MMP-9 and AQP4 [69].

AQPs are historically known to be passive transporters of water. Evidence in the
last decade has highlighted the diverse function of AQPs beyond water homeostasis [70].
Additionally, a subgroup of AQP water channels also facilitates transmembrane diffusion
of small, polar solutes, not only water, aquaglyceroporin [71,72]. The increased AQP4
expression and redistribution/surface localization can be two different concepts. Previous
studies have shown an increased in AQP4 membrane localization in primary human
astrocytes that was not accompanied by a change in AQP4 protein expression levels [73,74]

Moreover, AQPs have been validated as an important drug target, but there is no
single drug that has yet been approved to successfully target it, as there are not many
studies that investigated the mentioned future therapies in term of the communication
between MMPs and AQPs (mainly AQP4) [75,76].

Brain injury and ischemia are known to reduce blood supply and, hence, oxygen
(hypoxia), which affects the energy homeostasis in the brain and BBB remodeling. It was
highlighted the role of the changes in brain energy metabolism and how ischemia/hypoxia
affects different signaling pathways that are known to also affect the adhesion to endothelial
cells and, hence, transport through BBB and toxicity to the brain [8,77–79]. It has been
illustrated that the brain has a high energy requirement due to the high number of neurons
and maintenance of a delicate interplay between neurotransmission, energy metabolism,
and plasticity. Energy balance disturbances, to quality control of mitochondria or to
glia-neuron metabolic interaction, may result in malfunctioning of brain circuit or even
severe neurodegenerative disorders [77]. The data in clinical patient populations suggest
that MMPs may disrupt the permeability of BBB and interfere with cell signaling in
the neurovascular unit. Thus, the validation of MMP blockers serve as a therapeutic
opportunity, because BBB perturbations may also occur in neurodegeneration. Hence,
MMPs and associated mechanisms may also be potential targets for neurodegenerative
disorders [79].
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4. Involvement of MMPs in NDs
4.1. Parkinson’s Disease (PD)

With multifaceted etiologies and about two percent prevalence in the older popula-
tions (mainly >60 age), PD is one of the most common, long-term, age-related ND, which
has been causing significant burden and disability in the quality of life [80]. It is proposed
that the progression and pathogenesis of PD is associated with prominent characteristic i.e.,
α-synuclein inclusions in the Lewy bodies in affected areas of brain [81]. Such inclusions
are made up of parkin, fibrillar, synphilin, α-synuclein, neurofilaments, and proteins of the
synaptic vesicle. Being characterized by typical motor symptoms, such as resting tremor,
bradykinesia, rigidity, and postural instability, the PD results not only from progressive
DAergic damage and neuron deficit in the substantia nigra (SN), rather most probably
caused by environmental and genetic factors.

The SN, along with globus pallidus, subthalamic nucleus, and the striatum, modulates
motor brain activity [82]. Several symptoms, such as olfactory functional loss, depression,
mild motor abnormalities, cognitive and autonomic dysfunction, or rapid eye movement,
may antedate the initial clear motor symptoms through a number of years; yet, no one
of the either pre-motor symptoms is definite for PD development. Therefore, several
hypotheses suggest neuroinflammation to be a pivotal part that is involved in the disease
aggravation and promotion [83–85].

Various studies on in vivo imaging and postmortem PD tissue revealed microglia
overactivation, astrogliosis, and peripheral immune cells infiltration into regions of brain
affected in PD [86–88], wherein active microglia is detected in certain regions along with
Lewy bodies [89]. In concordance with the findings, active microglia have been observed
in the SN of familial PD patients after exposure to 1-methyl-4-phenyl-1,2,3,6- tetrahydropy-
ridine (MPTP) [89,90]. The study proposed the early activation of microglia after injecting
MPTP, which leads to cell death of neurons, T cell infiltration, and astrogliosis [83]. Ac-
tivated microglia secrete inflammatory mediators, which thereby increase the levels of
proinflammatory cytokine in the CSF and SN in PD [91,92].

Moreover, IL-6 and IL-1β were observed to be higher in CSF of PD patients [93,94].
Some studies proposed that persistent microglial over-activation and proinflammatory
cytokines production can contribute to the degeneration of neurons in PD [91,95]. Indeed,
damaged DAergic neurons can further activate microglia via the release of neuromelanin
and α-synuclein, leading to ROS production [96]. Being secreted by neurotoxin-stressed
DAergic neurons, MMP-3 is considered to be an independent player in microglial activation
when any other inflammatory molecule lacks, which suggests its vital role in apoptosis.
MMP-3 can break the connections between ECM and apoptotic cells by facilitating phago-
cytosis. Furthermore, it might also activate microglia, contributing to cytokine release and
phagocytosis [97]. As per the in vitro study, the induction of extracellular-signal-regulated
kinase (ERK) signaling pathway in microglia were observed preceding the stimulation of
MMP-3. In addition, hypothesis proposed that both MMP-3 (active and catalytically active)
could lead to microglial activation, which thereby exacerbate the apoptosis of deteriorated
neuronal cells in order to induce the death of neighboring DAergic neurons. The study is
further encouraged by studies that were conducted on postmortem brain, which suggests
the progressive DAergic damage of neurons in MPTP treated monkeys and humans for
10 years [88,98]. Besides, microglia activated by MMP-3 could generate super oxides, which
is known to be part of in vitro and in vivo DAergic neuronal cell death [99–101].

Another study described the active production of MMP-3 by neurons [102]. The
upregulation of MMP-9 activity was observed in both SN and striatum following treatment
with MPTP and MMP inhibitors protected against neurotoxicity [103]. Furthermore, the
localization of MMP-2 and MMP-9 was proposed to be in microglia, and astrocytes and
neurons respectively. It was observed that TIMP-2 levels remained unchanged in the
same study, but the up surging of TIMP-1 was found in SN not in the hippocampus and
cortex [104]. An elevated expression of MMP-9 in SN was further supported by another
study, which also suggested the expression of MMP-9 in striatum [105]. Additionally,
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MMP-9 is widely expressed in astrocytes and microglia, identifying it to be an important
factor for neuroinflammatory processes in PD. The experimental studies performed in
MMP-9-deficient mice propose that reactive microglia decline the neuronal survival in
PD [105]. An elevation in astrocytes and striatal neurons labeled by MMP-9 was also seen
in the primate PD model (MPTP-injected macaques). Leakage in BBB was demonstrated
in animal PD models in areas of brain and was linked with DAergic neurodegeneration
and microglial activation [106,107]. Recently, evidence also suggests the MMPs proteolytic
activity, which might be included in the modification of α-synuclein conformation, thereby
encouraging its aggregation, microglial activation, and Lewy body formation [108]. It was
observed that α-synuclein proteolysis that is dependent on MMP in DAergic neuronal cell
line results in an increased formation of aggregates. In this mechanism, MMP-3 was found
to be effective, but MMP-1, -2, and -14 exhibited alike features [109]. It was further studied
that the cleavage of α-synuclein by MMP showed that both MMP-3 and -1 regulate the
increased aggregation of α-synuclein as compared to proteinase K and trypsin [110].

4.2. Alzheimer’s Disease (AD)

It is the most common ND, whose well-known features include reduced arborization
of dendrites in the subcortical areas and cerebral cortex, and brain atrophy, caused by cell
death of neurons [111–113]. The key players that are detected in AD are neurofibrillary
tangles and the presence of amyloid plaques that are further associated with the atrophy
of cerebrum [114]. Amyloid plaques in the parenchyma of brain act as extracellular
deposits, comprising of Aβ fibrils [115]. Being considered as a signature lesion for AD, Aβ
deposition mainly occurs due to the excessive multiplication of amyloid precursor protein
(APP) [116,117]. Certain MP family members, including the ADAM proteins; ADAM-
17, -9, and -10, can lead to the cleavage of APP at the cleaving site of α-secretase [118].
Aβ depositions are mainly surrounded by reactive astrocytes, dystrophic neurites, and
activated microglia, creating dense core plaques in the regions of brain parenchyma [119].

Various authors pinpoint the role of disturbed ROS generation and antioxidant activity
in AD [120]. The fact behind the same is the excessive generation of free radicals, which
could act as a driving force for neurodegeneration, along with various stressors, including
inflammation, aging, cerebral hypoperfusion, and hypoxia [121]. Some of the theories
suggest a fundamental role for reactive microglia close to the amyloid plaques in the CNS.
The idea is that reactive microglia produce large amounts of inflammatory chemokines
and cytokines, which withstand a prolonged inflammation, eventually leading to neuronal
cell death [122]. Besides the well-known effect of neurotoxicity, Aβ can exhibit indirect
proinflammatory activity via the microglial activation, which lead to the secretion of TNFα,
NO, and super oxides [123–125].

Bjerke et al. suggested TIMP-1 and MMP-9 as AD biomarkers, next to P-tau, T-
tau, white matter lesions, and Aβ1–42, in order to outlook the association between AD and
MMPs [126,127]. Amazingly, a relationship between MMP-9 and cognitive impairment was
speculated in mild cognitive impairment (MCI) patients [128]. In concordance, Lorenzl et al.
speculated elevated MMP-9 levels in AD patients (serum) [129]. The expression of MMP-9
have been observed to be upregulated in patients of AD in neurofibrillary tangles, neuronal
cytoplasm, vascular tissue, and amyloid plaques [130]. Yan et al. also exhibited that
MMP-9 can degrade amyloid plaques and in vitro Aβ fibrils from APP/PS1 mice in brain
slices [131]. An increase in the activity of MMP-9 has been observed in hippocampus
while using intracerebroventricular (icv) injections of distinctive Aβ peptides in animal
models, which augments cognitive impairment that is induced by Aβ and confirms the
results using MMP9 knockout mice and MMP inhibitors [132]. MT1-MMP and MMP-2
expression were found in active astrocytes near amyloid plaques in the transgenic AD
mouse model wherein elevated levels of Aβ1–42 augments the formation of MMP-3, -12,
and -13 in microglia [133,134]. In addition, MMP-12 aggravates the proteolytic processes
by consequent MMP activation, such as MMP-3 and -2 [134].
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Furthermore, an increase in the activity of MMP-9 and -2 was observed, and broad-
spectrum inhibition of MMP altered the disruption of BBB that is induced by Aβ. Besides,
they established these results in transgenic model of mouse by demonstrating the improved
MMP-9 immunoreactivity near cerebral capillaries, resulting in the modification of tight
junction components. The most important threat for the development of late AD onset
is the occurrence of apolipoprotein E ε4 allele in the genome [135]. APOE ε4 leads to
breakdown of BBB through activation of cyclophilin A/MMP-9 pathway in the pericytes in
both humans and in transgenic mice, which forms guardians of BBB integrity and crucial
components of the neurovascular unit. This ultimately leads to the deterioration of the
proteins of basement membrane and BBB tight junctions [136,137]. Significant upregulation
of MMP-3 levels was observed in plasma, similarly to what was seen in cerebrospinal fluid
(CSF) of AD patients [138].

Strikingly, we reported that Aβ oligomers (icv injection) persuades the integrity loss
at the blood-cerebrospinal fluid barrier (BCSFB), which is associated with the augmented
expression of MMP-3. Besides, the leakage that is induced by Aβ1–42 oligomers of the
BCSFB could be prohibited by the inhibition of MMP [52]. Leake et al. observed a promi-
nent enhancement in MMP-1 levels in CNS of AD patients [139]. A study conducted by
Langenfurth et al. reported the upregulation in the expression of macrophage or microglia
in AD patients’ tissues and in a mouse AD model [140]. Lastly, C-reactive protein and
TIMP-1 levels were augmented AD patients, and they declined amazingly after acetyl-
cholinesterase inhibitor therapy, which is among the limited existing treatment of AD [141].
Recently, MT5-MMP has been identified as a key player in AD whose colocalization was
found to be with amyloid plaques in the brain of AD patients, suggesting it as a participant
of the remodeling of injured regions. Moreover, independent efforts from different teams
have presented that MT5-MMP mediated APP processing results in the production of
fragments via the activity of η-secretase, ultimately resulting in neurotoxic effects in vivo
and in vitro [1,142].

4.3. Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS) is marked by motor neuronal degeneration in the
spinal cord, brainstem, and brain. It involves all of the nerve cells, which affect voluntary
muscles, wherein the muscle weakens, leading to atrophy, followed by paralysis, and finally
respiratory collapse and death [56]. Remarkably, 1/3 of ALS patients displays pathology
or symptoms similar to those of AD [143]. The disease occurrence is comparatively rare,
and the incidence is mainly in between the 45–65-year age group of people [144]. Some
sporadic and familial cases are mainly due to gene mutation for Zn2+-Cu 2+ superoxide
dismutase 1 (SOD1) [145].

In addition, ALS is related with inclusions of protein, which is composed particularly
of cytoplasmic trans active response DNA binding protein 43 (TDP-43) in the damaged
spinal cord and brain areas [146,147]. The etiology of ALS is not well-known, but several
mechanisms have been suggested, which include oxidative stress damage, glutamate
excitotoxicity, neuroinflammation, mitochondrial dysfunction, deficits in neurotrophic
factors, and protein misfolding and aggregation [148,149].

Additionally, reactive microglia were shown in the regions of brain in ALS, such as
pons, motor cortex, and thalamus. Remarkably, microglia activation was correlated with
ALS progression [150]. An in vitro study described that the overexpression of TDP43 by
microglia enhanced the production of proinflammatory cytokines upon treatment with LPS
in contrast to microglia (wild type) [151]. The hypothesis also proposes that BSCB and BBB
breakdown could lead to motor neuronal cell deterioration, because of the significance of
BBB in homeostasis regulation in the brain. The involvement of MMPs came from studies
on spinal cord and neocortex of ALS patients, considering them as the key players in
alteration of barrier, where the localization of MMP-9 was observed in pyramidal neurons
in the motor neuron and cortex. Moreover, the activity of MMP-9 was augmented in
spinal cord whereas activity of MMP-2 was declined in motor cortex [152]. Because the
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disruption of BSCB [153,154] in ALS is followed by mRNA downregulation for proteins
of tight junction, Miyazaki et al. proposed the involvement of MMP-9 in disruption of
barrier [155,156]. The other group speculated diminished activity of MMP-9 during the
progression of disease, with the peak ALS onset, and demonstrated the same profiling for
MMP-2 [157]. Another two groups suggested significant elevation in active-MMP-9 and
pro-MMP-9 of ALS patients’ serum in comparison to healthy individuals [158,159].

It has been reported that, in mild ALS cases, MT-MMP-1, -2, -9, and TIMP-1 expressions
are increased in the serum relative to CSF, where MMP-2, MT-MMP-1, and TIMP-1 were
unchanged, while the levels of MMP-9 have been declined [160]. Moreover, it was found
that MMP-9 increases in CSF of ALS patients, which is quickly progressing; thereby this
finding is proposed to be associated with poor patients’ survival, disease progression,
and neuronal degeneration. Nonetheless, MMP-2 levels have been progressively declined
with the ALS development [161]. In one study, the declining function of MMP-9 by
pharmacological, viral, or genetic involvement was speculated for the prolonged survival
in a mouse model [162–164]. In addition, the pre-expression of MMP-9 only occurred in
fast motor neurons that have been shown to be mainly vulnerable to neuronal degeneration
in ALS patients. Such outcomes suggest MMP-9 to be a key player in the disease onset and
pinpoint it as a therapeutic strategy. Kaplan et al. speculated the early diseased state and
MMP-9 expression by neurons. On the other hand, Kiaei et al. focused on later diseased
stages and found MMP-9 expression by active microglia, contributing to the theory that
microglia-secreted cytokines regulate its pathology [165].

4.4. Multiple Sclerosis (MS)

MS is an inflammatory, chronic, and autoimmune CNS disease. The key characteristic
of the disease is moderate axonal preservation with demyelinated areas. In comparison
with most NDs that are predominant in aged persons, the prevalence of MS in individuals
is between 20–45 years of age [166]. The environmental and genetic factors encourage its
development, yet the cause is not known. Remarkably, various epidemiological studies
showed an association with UVB radiation exposure, smoking, and unsaturated fatty acids
intake [167]. MS exist in four main classes, as follows: (1) relapsing-remitting MS (RRMS)—
disease interchanges between improvement periods (remission) and deterioration periods
(relapses); (2) secondary progressive MS (SPMS)—characterized by constant deterioration
of the symptoms; (3) primary progressive MS (PPMS)—shows continuous disease wors-
ening with no relapses or remissions; and (4) progressive relapsing MS (PRMS—rarest
category with occasional occurrence of relapses without remission. RRMS is categorized as
a neuroinflammatory state at late onset [168]. Various patients go in SPMS after 10 years,
which is seen more as neurodegenerative state leading to permanent debility [169]. Besides,
inflammation is primarily involved in MS; recent acknowledgements also consider it as
a neurodegenerative disorder due to the recent findings [170]. Some of the reports have
observed patients suffering from ALS and MS simultaneously [171]. The disrupted BBB in
MS leads to the infiltration of peripheral blood leukocyte, succeeded by myelin degradation,
and the disruption of axons and cell loss of neurons. Finally, the involvement of MMPs in
the above processes is shown by various studies and data [172–174]. Alterations in the BBB
functionality were identified in the postmortem brains of MS patients [175].

In addition, data suggest the breakdown of BBB further lead to immune cells in-
filtration [176]. In MS, the secretion of MMPs by several immune and brain cells have
been observed, contributing and leading to the breakdown of BBB [177,178]. It has been
speculated that the secretion of MMP-9 and -7 occurs in blood vessels of postmortem brain
samples and macrophages, respectively [179]. The other study confirmed and showed
MMP3 expression in endothelial cells, MMP-1, -2, -3, and -9 in macrophages around
necrotic and active lesions [85]. It was examined that CSF samples from PPMS and RRMS
patients showed an upsurge in the level of MMP-9 during both phases of MS. Although,
MMP-9 was augmented in about 1

2 of the samples in PPMS patients with smaller amounts
than in the remitting-relapsing period. They debated that this pinpoints the fact that
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macrophages and T-cells are mainly responsible for MMP-9 secretion in MS. Moreover,
they suggested the continuous increase in MMP-9, which might lead to the damage of
neighboring tissue and cell loss of neurons [180]. Increased MMP-9 levels have also been
seen in MS patients’ serum, along with increased TIMP-1 and -2. The same study [181]
highlighted the correlation of these augmentation with the lesions that were detected by
MRI. Nevertheless, the study found an increase in the MMP-9 levels in serum with no such
TIMP-1 elevation.

Other data developed a comparison of the levels of MMP-1, -3, -7, -9, and -14, and
TIMP-1 in MS patients’ blood, finding that all were upregulated with the exception of
MMP-14 [182]. In an interesting study, transgenic mice using the EAE model express
TIMP-1, which had a general phenotype, yet symptoms of experimental autoimmune
encephalomyelitis (EAE) were reduced [183]. Remarkably, some studies, using (EAE)
model, proposed a limited amelioration and restoration of BBB after the administration of
MMP inhibitors [184]. Finally, MMP-9 knockout mice have been less susceptible to EAE
induction [185].

Apart from the leakage, the activation of BBB also takes place, which means that cells
constituting the BBB, together with pericytes, astrocytes, and endothelial cells, initiates the
expression and secretion of several factors that are part of the functioning and recruitment
of leukocytes [175]. The continuous migration of leukocyte mainly occurs via BBB in active
lesions in MS, which is rigorously regulated by various molecules, including chemokines,
integrins, cell adhesion molecules (CAM), and cytokines.

Further, the infiltration of leukocytes exacerbates the breakdown of BBB, as shown
in in vitro studies [186]. An interferon β treatment downregulated the MMP-9 expression
and abolished the MMP-2 expression, therefore reducing consequent T-cell migration [187].
Newman et al. presented MMPs microinjection into white matter, which results in axonal
injury. The most potent MMP has been found to be MMP-9 out of the several MMPs,
succeeded by MMP-7 and MMP-2 [188]. The suggested mechanism of action of MMP is via
ECM degradation, yet MMPs have a well-developed function in the apoptosis of distinctive
cell types [189]. Some favorable roles of MMPs have also been observed in MS [190]. For
example, MMP-9 has a distinguishing role in the process growth of oligodendrocyte [152].
It has been considered that this can be the reason of diminished remyelination and a
reduced number of oligodendrocytes in MMP9/-12 null mice and MMP-9 [191].

Figure 2 highlights the role of MMPs in the pathogenesis of NDs.

4.5. Huntington’s Disease (HD) and Other NDs

The involvement of MMPs has been observed in other NDs, including HD. HD is an
autosomal dominant, inherited ND, which is associated with chromosome 4 mutation in
huntingtin (Htt), a protein that is responsible for gene coding. The disease is characterized
by a reduction in the mental ability and muscle coordination. It has been observed that Htt
(mutant) proteolysis contributes to its pathology, yet the role of Htt is not well defined [192].
Apart from the role that is played by calpains and caspases as proteases in HD, it is
speculated that MMPs play a distinguishing role in Htt cleavage. It was observed that
the knock down of MMP-10, -14, and -23 in striatal cells (cultured) expressing mutant Htt
declines the toxicity. In addition, MMP-10 is involved in the direct cleavage of Htt, and
the generation of toxic fragments of Htt is diminished upon MMP-10 silencing [193]. HD
patients’ analysis suggested an upsurge of MMP-9 in contrast to controls, together with
cytokine upregulation in cerebellum and cortex [194]. The major areas affected in HD is the
striatal pathway, wherein the upregulation of IL-10 and chemokine ligand 2 (CCL2) takes
place. New data for MMP-9 involvement in HD mainly come from the 3-nitropropionic
acid animal model [195]. The group of authors exhibited MMP-9 to be responsible for
the disruption of BBB that takes place in HD. Furthermore, a significant elevation in the
MMP-9 levels were seen in the plasma of HD patients and R6/2 mouse model of HD [196].
It has been suggested that MMP-9 (together with VEGF, IL-6, and TGF-β) serves as a HD
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biomarker. As long as the involvement of TIMP is concerned, it has been speculated that
levels of TIMP-1 and -2 augments in the CSF of HD patients [197].
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Figure 2. Highlighting the role of MMPs in the pathogenesis of neurodegenerative diseases. (a) MMPs in PD contributes
to microglia activation, dopaminergic apoptosis, DJ-1 degradation, and α-synuclein cleavage; (b) in AD, the deposition
of amyloid plaques results in the activation of astrocytes and microglia, inducing the MMP production, which contribute
to the BBB degradation; (c) in ALS, MMPs contributes to BBB alteration, the downregulation of tight junctional proteins,
and neuronal degradation; and, (d) MMPs contribute to MS pathogenesis via BBB degradation, myelin degradation,
proinflammatory cytokine release, and infiltration of immune cells. Legends Aβ, β-amyloid; AD, Alzheimer’s disease; ALS,
Amyotrophic lateral sclerosis; BBB, blood brain barrier; BSCB, blood-spinal cord barrier, DJ-1, protein in humans encoded
by PARK7 gene; MMP, matrix metalloproteinase; MS, Multiple sclerosis; PD, Parkinson’s disease.

Different MMPs were shown to be altered in individuals suffering from dementias in
other NDs. In people with frontotemporal dementia, declined TIMP-2 levels were observed
in the serum, and the downregulation of TIMP-1 was indicated in people with vascular
dementia [128]. Augmentation in the levels of active MMP-2, proMMP-9, TIMP-1, and
TIMP-2 were shown in a rare type of dementia, Creuztfeldt–Jakob disease [198].

Table 1 summarizes the role of MMPs in NDs.
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Table 1. The role of MMPs in neurodegenerative diseases.

MMPs Involved/
Neurodegenerative

Disease
Model System Role of MMPs Ref.

MMP-2/PD

In vitro (PC12 cells) Activates microglia [97]

Patients Detected in microglia and astrocytes [99]

In vitro (neuron-glia culture) Induces DAergic neuronal death in
culture of glia-neuron (mesencephalic) [103]

MMP-2/AD
In vivo (rats) Involved in synaptic plasticity [199]

In-vitro (microglial cell line) Increased microglial expression after
Aβ oligomer stimulation [133]

MMP-1/AD
In vitro (primary astrocytes)

Low MMP-9 levels and decreased
MMP-2 activity after Aβ

oligomer stimulation.
[139]

Patients Increased MMP-1 levels in AD patients [200,201]

MMP-3/PD

In vitro (primary cultured
DAergic neurons) MMP-3 neuronal secretion [102]

In vitro (primary
mesencephalic cultures) Induces NO production in microglia [98,100]

In vitro (human DAergic
neuroblastoma) α-synuclein proteolysis [202]

MMP-3/AD

Patients Significant upregulation of MMP-3
plasma levels [138]

In vivo (icv injections of Aβ
oligomer) Increased MMP-3 expression [52]

In vitro (APP-CHO cells) Ability to degrade Aβ [203]

In vivo (icv injection of Aβ
oligomer) Enhanced permeability of BCSFB [52]

MMP-2/ALS
Patients Increased permeability of BBB [204]

Patients (serum) To evaluate ALS progression [161]

MMP-9/AD

In vitro (astrocytes) Detected in astrocytes when treated
with fibrillar and soluble Aβ [205]

In vivo (rats) Involved in synaptic plasticity [199]

In vivo (mice) Increased levels in hippocampus on
icv injection [132]

Patients (CSF) Activation of MMP-9/CypA in
pericytes, BBB disruption [137]

In vitro (isolates from brain of
patients) Cleavage of Aβ1-40 by MMP-9 [206]

MMP-3/ALS

In vivo (G93A SOD1 mice) Upregulation of neuronal FasL
and TNF [157]

In vivo (mutant SOD1
transgenic mice)

Dysregulated MMP-3 activity with
ALS progression [165]

In vivo (G93A SOD1 mice) Encourages motor cell death in neurons [165]
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Table 1. Cont.

MMPs Involved/
Neurodegenerative

Disease
Model System Role of MMPs Ref.

MMP-1/MS
Patients (monocytes) Increased mRNA levels of MMP-1 [182]

Patients (postmortem brain
samples) Weak astrocytic expression [207]

MMP-3/MS

Patients (monocytes) Increased mRNA levels of MMP-3 [182]

Patients (postmortem brain
samples) Expression in endothelial cells [207]

MMP-9/HD In vivo (3-nitropropionic acid
animal disease model) Increased expression of MMP-9 [195]

MMP-9/PD

Patients (postmortem brain
tissues) Increased expression of MMP-9 in SN [116]

In vivo (MPTP induced PD in
monkey and mouse model)

Primary localization of MMP-9
in neurons [103]

MMP-7/MS
Patients (monocytes) Increased mRNA levels of MMP-7 [182]

Patients (postmortem brain
samples) Secreted by blood vessels [179]

MMP-9/ALS

Patients (CSF and skin)
Patients (CSF)

Elevated in CSF and skin
Low CSF levels of MMP-9 [160,161]

Patients (serum) MMP-9 as marker distinguishing
between healthy individuals and ALS [204]

MMP-10/HD In vitro (striatal cell culture) Cleaves huntingtin [181]

MMP-9/MS

Patients (CSF samples) Secreted by macrophages and T-cells,
leads to damage of tissue [160]

Patients (serum) Increased serum levels together with
TIMP-1 and -2 [173]

MMP-14/HD In vitro (striatal cell culture) MMP-14 knockdown reduces toxicity [181]

MMP-12/AD In vitro (microglial cell line) Increase in microglia [126]

MMP-23/HD In vitro (striatal cell line) MMP-23 knockdown reduces toxicity [193]

MMP-13/AD In vitro (microglial cell line) Increase in microglia [126]

Aβ, β-amyloid; AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; APP, amyloid precursor protein; BBB, blood-brain barrier;
BCSFB, blood-CSF barrier; CSF, cerebrospinal fluid; Cyp A, cyclophilin A; Dopaminergic, DAergic; FasL, Fas ligand; G93A SOD1 mice,
transgenic mice form; HD, Huntington’s disease; i.c.v., intracerebroventricular; MMP, matrix metalloproteinase; MPTP, 1-methyl-4-phenyl-
1,2,3,6- tetrahydropyridine; MS, multiple sclerosis; NO, nitric oxide; PC12 cells, classical neuronal model; PD, Parkinson’s disease; SOD,
superoxide dismutase; TIMP, tissue inhibitor of metalloproteinases; TNF, tumor necrosis factor.

5. Potential Role of MMP-3 in Neurodegeneration

In the last few years, there has been wide attention on the role of MMP-3 in several
mechanisms taking place in the brains of mammals in biological as well as pathological
conditions [8]. Numerous studies have shown the involvement of MMP-3 in neurodegener-
ation. Although neurodegeneration is not well understood process, but neuroinflammation
and neuronal apoptosis are considered to function. In vivo, MMP-3 may contribute to
neurodegeneration that is based on available data by participating in these processes. The
extracellular activation of proMMP-3 is performed by the serine proteinases [208]. MMP
-3 cleaves the components of ECM, such as aggrecan, fibronectin, laminin, tenascins, as
well as TNF-α and interleukin 1b [209]. Choi et al. showed the proMMP-3 activation
also occuring inside the DAergic neurons, which go through cellular stress, where serine
proteinases have activated pro-MMP-3 zymogen [102]. MMP-3 plays a pivotal function as
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a signaling molecule in apoptosis somewhere downstream and upstream of caspase 12 and
caspase 3, respectively, under stressful conditions.

The elevated activity of MMP-3 is due to the proteolytic activation of the zymogen,
induction of gene expression, and degradation of TIMP-1. Moreover, active MMP-3 is
extracellularly released, leading to the activation of microglia, which then produces various
cytotoxic proinflammatory molecules. These harmful molecules thereby prompt the neu-
ronal death via the activation of death receptors, leading to oxidative stress. Additionally,
the production of MMP-3 by activated microglia occurs in the ECM, thereby accelerating
the neuroinflammation (Figure 3). By triggering various pathways, MMP-3 may be re-
quired for organizing rapid and effective clearance and death of the neurons. An increased
MMP-3 has been shown in different PD experimental models.
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Various data support the potential role of MMP-3 in NDs. In an animal PD model,
a increase in MMP-3 immunoreactivity was observed in the SN region, such as animals
(rats) that are injected with the selective DAergic toxin; LPS and 6-OHDA [109,210]. In
another MPTP induced animal PD model, the DAergic neuronal degeneration in the SN
was lesser in MMP-3 KO animals relative to wild type [211]. Cell culture models of PD
that are produced by tetrahydrobiopterin and MPP+ exposure also exposed the MMP-3
induction [99,210]. The neuronal cell demise in aforementioned PD models was diminished
by gene knockdown and pharmacologically inhibition method [102]. MMP-3 is a driving
factor in prompting neuroinflammation in response to oxidative or stress to neuronal
cells; thereby, neuroinflammation is the central process towards the neurodegeneration.
Because the release and production of MMP-3 occurs from these neurons, the SN could be
more susceptible to neuroinflammation and lastly neurodegeneration. Moreover, MMP-3
contributes the disruption of BBB that might permit immune cell infiltration to the damaged
areas [212].

The published study also implies a role of MMP-3 in the AD pathophysiology. It has
been proposed that that toxicity of Aβ may elicit the induction of MMP-3 activity and
expression [49]. Mixed hippocampal neuronal culture and astrocytes that were treated with
Aβ1–40 express MMP-3 together with increased catalytic activity of MMP-3 [213]. Aβ1–42
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induces the expression of MMP-3 in microglia [130]. Moreover, the protein level of MMP-3
is augmented in the AD brains and it has been identified in the astrocytes of white matter
and interstitium between myelinated axons in AD patients [214]. Figure 3 depicts the role
of MMP-3 in neurodegeneration.

6. Therapeutic Opportunities

Over the last decades, the role of MMPs became well appreciated in NDs. Several
MMPs have been involved in the development and progression of NDs, thereby opening
up the possibility of therapeutically targeted MMPs. Neuroinflammation is seen either
during or before the development of the pathological features of NDs. MMPs increase
the BBB permeability during neuroinflammation by the destruction of the tight junctional
proteins or degradation of the ECM, thereby leading to immune cell infiltration via BBB
and cell demise [211].

The inhibition of MMP activity in neurodegenerative disorders occurs at different
phases of disease progression. An inflammatory stimulus (e.g., burns, protein aggregates,
or infection) triggers the expression of MMP, in turn inducing an inflammatory process,
therefore opening up the possibility of anti-inflammatory drugs as a therapeutic agent in
abolishing the MMP activation or expression. Consequently, the use of synthetic broad-
spectrum inhibitors might target and inhibit MMPs. Yet, the specific inhibition of MMP
could be suitable, which might prevent the undesirable effects of broad-spectrum MMP
inhibitors. Ordinarily, the inhibition of MMP occurs by binding to the Zn2+ in the active
site [215,216]. Moreover, interference with the substrates that are involved in the sequence
of MMPs could also serve as a potential target or have therapeutic value.

6.1. Alzheimer’s Disease

The MMP inhibition in AD is mainly dependent on the seemingly favorable effect
of MMP-9 and it is very speculative. This is because of the involvement of MMP-9 in
degradation of amyloid plaques and contribution to the Aβ clearance from the brain.
Moreover, MMP-2 has been reported in the cleavage of Aβ at the α-secretase [164,217,218].
It was also speculated that full-length APP is also cleaved by MMP-2, which suggests that
it can either degrade Aβ in the ECM or generate α-APPs at the plasma membrane that can
result in a decline of Aβ burden in the CNS [219].

Several data pinpointed the role of MMP-9 and -2. Similarly, treatment with GM6001, a
broad spectrum MMP inhibitor, caused an upsurge in Aβ in transgenic mice overexpressing
the Swedish variant of APP [220]. In an in vitro study, GM6001 has been observed to inhibit
the alterations that are induced by Aβ in BBB permeability and ZO-1 expression in an
in vitro study. Likewise, GM6001 prevents the degradation of blood-CSF barrier induced
by Aβ oligomer [52]. Furthermore, GM6001 induced MMP inhibition diminished the
oxidative stress that is linked with CAA in a transgenic mouse model of AD [221–223].
TIMPs have been found near the neurofibrillary tangles and Aβ plaques of brain samples
that are affected by AD. TIMPs and MMPs were found to encourage the lesions’ evolution.
In addition, MMPs are well-known to be produced in large amounts at the sites of lesions
by immune cells of effected areas, and TIMPs might regulate the MMP activity, indicating
that TIMPs’ deregulation also results in AD progression [223,224]. The importance of
MMPs in AD is not well established [225–227].

6.2. Parkinson’s Disease

In PD, as long as therapeutic strategies of MMP inhibition are understood, the ex-
pression MMP-1, -2, -9, and TIMP-1 and -2 have been reported in the SN of postmortem
brain samples of PD patients [104]. Thus, MMP inhibition could hold promise for PD man-
agement, due to DAergic neuronal death, which has been found to be linked with MMP
release. The apoptosis of DAergic neurons leads to the release of MMP-3 that contribute to
the process of microglial activation in vitro, also suggesting MMP-3 as a signaling molecule.
The proinflammatory cytokines are released by activated microglia that could cause the cell
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death of neurons [97]. In mouse mesencephalic cells, the treatment of a selective dopamin-
ergic neuronal toxin, tetrahydrobiopterin (BH4), diminished the survival of cell. However,
the treatment of cells with MMP-3 inhibitor, N-isobutyl-N-[4-methoxy phenylsulfonyl]-
glycyl hydroxamic acid (NNGH), extended cell survival through the decline of TNF-α
secretion from activated microglia [102].

6.3. Amyotrophic Lateral Sclerosis

A number of theories were suggested concerning the role of MMPs in the ALS de-
velopment. Moreover, the specific inhibition of MMP could be therapeutic target in ALS.
In a study, the MMP-9 expression and immunoreactivity were increased in G93A SOD1
mice (spinal cord tissue), a familial ALS model by crossing MMP-9 knockout mice with
G93A SOD1 mice [165]. The diminished activity of MMP-9 has been shown to extend
survival in the mutant SOD1 expressed mouse model of ALS, indicating MMP-9 to be better
therapeutic target [224]. In general, neuronal TNF-α is stimulated by MMP-9 by cleaving
from its membrane-bound form, prompting the neuronal cell demise via the activation of
other proinflammatory cytokines [165]. Unusually, degraded matrix elements and elevated
MMP-9 levels encourage the progression of ALS [152].

6.4. Multiple Sclerosis

Numerous reports on the utilization of synthetic MMP inhibitors have been developed
to improve the EAE, and protease inhibitor therapy were recommended in EAE in early
1982 [228]. The activity of MMP has been suggested to upsurge three times in the CSF
of two acute EAE models [229]. MMP inhibitors, which are broad spectrum in nature,
such as RO31-9790, GM6001, UK221,316, BB1101, and d-penicillamine were indicated to be
advantageous in EAE [230–233]. The levels of MMP-9 were elevated in the CSF and at the
lesion sites of MS. Likewise, correlation of MMP-9 with the disrupted BBB was also seen in
MRI reports [234]. After the clinical disease onset, GM6001 administration hindered with
EAE development, and also diminished the clinical symptoms in SJL/J mice. Similarly,
decrease in the activity of MMP-9 was shown in treated mice [234]. It has been considered
that the inhibition of MMP leads to the repair of disrupted BBB, therefore ameliorating the
inflammation.

Another study showed a reduction in the clinical signs in the MS patients while using
RO31-9790 in EAE model three days after or on the day of disease induction [235]. The other
broad-spectrum inhibitor, BB1101, ameliorated symptoms in SJL/J mice and declined the
intensity of disease in Lewis rats [229,236]. BB1101 therapy decreased the demyelination
and glial scar, which was also efficient in the prolonged relapsing in SJL/J mice in EAE.
Besides, B1101 altered the profile of cytokines to an anti-inflammatory state [184]. To date,
no such molecular mechanism has been known to delineate the amelioration of symptoms
in MS, but broad-spectrum MMP inhibitors have been proposed to inhibit the migration
of immune cells into the brain, thereby leading to decreased TNF levels and diminished
demyelination through ADAM17 inhibition [237,238].

7. Conclusions and Future Directions

MMPs play a pivotal, yet multifaceted, role in NDs by several cell signaling and
functions. They degrade ECM and disrupt the BBB tight junctions, thereby, they act as
driving forces in the progression of NDs. MMPs, along with their inhibitors, TIMPs,
mediate functions of cell signaling, which are vital in numerous diseases. In this article, we
have reviewed the multifaceted functions of MMPs in main NDs, mainly PD, AD, ALS,
MD, and HD, as well as their potential therapeutic interest. Although the etiology and
potential causes of NDs remain widely indefinable, MMPs are evidently involved in the
progression of these diseases.

New emerging evidence demonstrated the effects of MMPs in NDs, including mi-
croglial activation, amyloid peptide degradation in AD, apoptosis of daergic neurons in
PD, damage to white matter in VCI patients, and disruption of BBB in MS and ALS [239].
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Moreover, in the aforementioned diseases, the key role of the neuroinflammatory response
that is regulated by production of MMP has also been discussed. Numerous MMPs are
associated with NDs, including MMP-2, -3, and -9, as the pivotal players in the diseases
that are discussed in this review. They act via common route of pathological alterations in
the homeostasis of CNS, resulting in increased CNS permeability, thereby leading to cell
demise. Because the MMPs’ involvement in the regulation of the pathological modifications
in NDs is unraveling, there is a need to explore these in the clinics. The animal studies
showed that MMP inhibition can decrease the tissue injury and damaged vessels in each
of these diseases. Over time, several agents have been developed in order to overcome
challenge and open up the possibilities of making selective modulators of MMPs to de-
cipher the multifaceted functions of MMPs. The multifaceted role of MMPs impedes the
attempts of broad spectrum MMP inhibitors as strategic target. However, thefine-tuning
between MMPs and TIMPS is probably a key to the development of efficient and selective
therapeutics whose investigation needs to be continued.

Future directions could include, but are not limited to, the use of humanized self-
organized models, organoids, 3D cultures, and human micro vessel-on-a-chip platforms,
especially those that are amenable for advanced imaging, since they enable real-time
monitoring of BBB penetration and permeability [240–242].
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