
Sensors 2011, 11, 8028-8044; doi:10.3390/s110808028 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

A Noise-Aware Coding Scheme for Texture Classification 

Mohammad Shoyaib 1, M. Abdullah-Al-Wadud 2 and Oksam Chae 1,*  

1 Department of Computer Engineering, Kyung Hee University, Yongin 446-701, Korea;  
E-Mail: shoyaib@khu.ac.kr 

2 Department of Industrial and Management Engineering, Hankuk University of Foreign Studies, 
Yongin 449-791, Korea; E-Mail: wadud@hufs.ac.kr 

* Author to whom correspondence should be addressed; E-Mail: oschae@khu.ac.kr;  
Tel.: +82-31-201-2948; Fax: + 82-31-202-1723. 

Received: 15 June 2011; in revised form: 1 August 2011 / Accepted: 11 August 2011 /  
Published: 15 August 2011s 
 

Abstract: Texture-based analysis of images is a very common and much discussed issue in 
the fields of computer vision and image processing. Several methods have already been 
proposed to codify texture micro-patterns (texlets) in images. Most of these methods 
perform well when a given image is noise-free, but real world images contain different 
types of signal-independent as well as signal-dependent noises originated from different 
sources, even from the camera sensor itself. Hence, it is necessary to differentiate false 
textures appearing due to the noises, and thus, to achieve a reliable representation of 
texlets. In this proposal, we define an adaptive noise band (ANB) to approximate the 
amount of noise contamination around a pixel up to a certain extent. Based on this ANB, 
we generate reliable codes named noise tolerant ternary pattern (NTTP) to represent the 
texlets in an image. Extensive experiments on several datasets from renowned texture 
databases, such as the Outex and the Brodatz database, show that NTTP performs much 
better than the state-of-the-art methods. 

Keywords: noise tolerant ternary pattern; adaptive noise band; texlet 
 

1. Introduction  

Noise is an inherent property of images and becomes a major obstacle in detecting texture patterns. 
Different types of noises might originate from different sources. For example, photons coming from an 
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object undergo a series of processing, and finally form a pixel in a CCD/CMOS sensor based digital 
camera, where there may be a possibility of inclusion of different types of noises in every stage, such 
as photon shot noise (signal dependent noise) and readout noise (signal independent noise).  

Over the last few decades several proposals have been proposed for detecting texture micro-patterns. 
Among them, Gabor wavelet [1,2] and local binary pattern (LBP) [3] based methods have become 
popular for their competitive accuracies. Gabor features are obtained by a 2-D Gabor wavelet 
transformation of the grayscale image. A family of Gabor kernels (usually eight different orientations 
and five different scales) is convolved with an image to extract micro-patterns, such as lines and edges, 
in different scales and orientations. The statistics of such micro-patterns can be used to describe the 
underlying textures in the image, and has been used for different types of image based applications [4-8]. 
However, the cost of convolving an image with the Gabor kernels is very high as the expensive 
convolution process needs to be performed several times for each pixel. Furthermore, miniaturizing 
hand-held devices demands computation of different applications with fewer resources (e.g., CPU and 
memory) while maintaining higher accuracy. Thus Gabor-based methods may not be suitable for many 
devices. LBP, which is calculated simply by comparing a pixel with its neighbors, has gained 
popularity for its computational simplicity and robustness against monotonic changes in illumination. 
It has already shown its capabilities in several image processing applications such as face detection [9], 
face recognition [10], facial expression detection [11], moving object detection [12], finger biometric 
recognition [13] and many others [14-16]. However, LBP is very noise sensitive, especially in near 
uniform regions. Small changes in intensities due to noises in near uniform regions may lead to 
erroneous LBP codes (Example 1 in Section 3.2 presents one such example). Thus even for small 
intensity fluctuations, which are very common in digital images, LBP and most of its variants fail to 
generate the same code for the same type of texture structures. Keeping this in mind, Tan and Triggs 
proposed Local Ternary Pattern (LTP) [10], which uses three-value encoding and shows tolerance to 
noise up to a certain level as they assume noises in an image usually vary within a fixed threshold (±5). 
However, the amount of noise may vary with the intensity level of pixels in an image [17-19]. Thus the 
fixed threshold may fail to deal with different types of noises, especially the signal dependent noises. 
Hence, different thresholds may be required to deal with the presence of different extent of noises in an 
image. Furthermore, LTP uses difference of Gaussian (DoG) filtering as a preprocessing step, which is 
a band pass filtering used to reduce, for instance, aliasing and noise effects. However, this expensive 
filtering may also eliminate some important texlets, which might aid the classification scheme. 
Recently, a few promising variants of LTP have also been proposed, focusing mainly on the medical 
application domain. For example, elongated quinary pattern (EQP) [20], dominant local ternary pattern 
(DLTP) [21] and extended local ternary pattern (ELTP) [22]. Among them, EQP uses five-value 
encoding to handle noises, however increasing the number of quantization levels also increase the size 
of the feature vector and computational demands. Further, gradient filtered images are used to calculate 
ELTP features. However, these variants are mostly proposed targeting on specific domains. Hence, 
they may not always fit for general purpose texture detection.  

To get rid of the curse of sensitivity of LBP code due to noise, LBP variance (LBPV) [23] follows a 
tricky way where it uses local variance information to suppress the effects of inconsistent LBP code in 
near uniform regions and magnifies the effects of LBP code calculated in highly textured regions. 
However, as long as the original code is not reliable, such suppression and magnification based on 
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local variances might mislead the classification. The reason is that it might suppress (or magnify) the 
contribution of textures important (or unimportant) for classification. Further, the variances may 
change with the change of image contrast. This may lead to different values in feature vectors for 
similar textures with different contrast, which may affect the performance. Recently, Completed Local 
Binary Pattern (CLBP) [24] considers both the signs and the magnitudes of the differences between a 
pixel and its neighbors, and it also incorporates the pixel information itself. Thus, in CLBP, the 
incorporation of magnitude information with sign may help for retaining huge information to describe 
texlets for classification. However, combining such different information make the size of feature 
vector very large, which increases computational time and memory requirements. Moreover, though 
the use of magnitude along with sign information may implicitly handle some noisy fluctuations in 
intensities, it does not offer any effective mechanism of handling different noises while generating the 
texlet codes. This may hamper the performance.  

To solve the aforementioned problems, we first introduce an adaptive noise-band (ANB) to provide 
an estimate of noise within certain limits. The ANB is then used to generate a noise tolerant ternary 
pattern (NTTP) at every pixel in an image. Finally, the NTTP codes are used to form a feature vector to 
describe an image, which possesses the desired characteristics for texture classification, namely: 

• simplicity in computation, and 
• robustness against common noises appearing in digital images. 

All these properties of the proposed NTTP lead to a better accuracy in texture classification than the 
state-of the-the-art methods. The rest of this paper is organized al follows. Section 2 briefly describes 
some well-known state-of-the-art methods, the proposed method is illustrated in Section 3, 
experimental results along with related discussion are presented in Section 4, and finally Section 5 
concludes the paper. 

2. A Brief Overview on Existing Feature Descriptors 

In this section, we briefly describe four state-of-the-art methods, namely local binary pattern, local 
ternary pattern, local binary pattern with variance, completed local binary pattern. Besides these 
methods, we also briefly discuss dominant local binary pattern along with a few LTP-based methods. 

2.1. Local Binary Pattern  

Local Binary Pattern (LBP) [3] is an n-bit binary code at a pixel, c, in a grayscale image is 
generated by Equation (1), which compares c’s intensity with that of its n neighbors. These neighbors 
are located at uniform distances on a circle centered at c with radius r:  ܤܮ ܲ,ሺݔ, ሻݕ ൌ  ሺ݃ݍ െ ݃ሻ2ିଵୀ , ሺܽሻݍ ൌ ቄ1 if ܽ  00 otherwise (1) 

where ሺݔ,  ሻ is the pixel co-ordinate of c, ݃ and ݃ are the intensities of c and the ݈୲୦ neighboringݕ
pixel, respectively. The LBP codes can represent texlets such as edge, corner and line-end. Figure 1 
presents such patterns.  
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Figure 1. Examples of the texlets encoded by LBP. 

 

Usually, ݊ Ԗ ሼ4, 8, 16, 24ሽ  and ݎ Ԗ ሼ1, 2, 3,4ሽ  are used for the calculation of LBP. Increasing the 
number of neighbors, n, in LBP code helps to incorporate more spatial information. However, this 
grows the size of the code, which increases the computational as well as space complexity. Using such 
LBP codes of an image, a histogram is built to represent the feature vector of that image. Equation (2) 
derives the ݇௧ component of the histogram of an image of size ܯ ൈ ܰ: 

ܪ ൌ   ߰, , ߰, = ൜1 if ܤܮ ܲ,ሺ݅, ݆ሻ ൌ ݇0 Otherwiseேିଵ
ୀ  

ெିଵ
ୀ  (2) 

2.2. Uniform Local Binary Pattern  

An LBP is defined as uniform local binary pattern (ULBP) if there are at most two bit transitions in 
its binary equivalent [25]. In other words, for a uniform pattern, the value of U(⋅) in Equation (3) can 
be at most 2: UሺLBP,ሺݔ, ሻሻݕ ൌ ሺ݃ିଵݍ| െ ݃ሻ െ ሺ݃ݍ െ ݃ሻ|   ሺ݃ݍ| െ ݃ሻ െ ିଵୀ ሺ݃ିଵݍ െ ݃ሻ| (3) 

For example, 11100011 is a uniform pattern, while 11101011 is not. When uniformity is taken into 
consideration, all the non-uniform patterns are accumulated in a single bin during histogram formation. 
With n = 2, there are 58 different uniform patterns, and hence the histogram will contain 59 bins  
in total.  

2.3. Local Ternary Pattern  

Local Ternary Pattern (LTP) [10] mainly follows the same spirit of LBP. The key difference is that 
it introduces a new bit to manage the intensity fluctuations. Thus, LTP becomes a ternary code at a 
pixel c, which is generated by Equation (4): ܶܮ ܲ,ሺݔ, ሻݕ ൌ  ሺ݃ݍ െ ݃ሻ3ିଵୀ , ሺܽሻݍ ൌ ൝ 1   if     ܽ  െ1ߙ   if   ܽ  െ0ߙ  Otherwise   (4) 

Here, the value of α is set to 5. To reduce the size of the feature vector, an LTP code is usually split 
into two binary codes (upper pattern and lower pattern). For an image, two histograms are built 
separately for the two types of codes to represent the feature vector of that image. Tan et al. [10] also 
propose to perform some pre-processing before the code generation, such as difference of Gaussian 
filtering (DoG) filtering, gamma correction, illumination normalization and masking.  
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2.4. Local Binary Pattern with Variance 

The methodology for code generation of LBPV [23] is same as LBP. The only difference is the way 
of calculating the histogram (Equation (6)), where it incorporates local variance (Equation (5)) as a 
weight ݓ,:  

,ݓ ൌ 1݊  ൭݃ െ 1݊  ݃ିଵ
ୀ ൱ଶିଵ

ୀ  (5) 

ܪ ൌ   ,߰,ேିଵݓ
ୀ  

ெିଵ
ୀ  (6) 

2.5. Completed Local Binary Pattern  

Completed local binary pattern (CLBP) [24] consists of three components: a code generated using 
only the sign value of the differences between a pixel and its neighbors (CLBP_S), a code using the 
magnitudes of those differences (CLBP_M) and a code from center pixel’s intensity with respect to the 
average image intensity (CLBP_C). The generation procedure of CLBP_S is exactly same as LBP. 
CLBP_M is generated following Equation (7): ܯ_ܲܤܮܥ,ሺݔ, ሻݕ ൌ  ሺ|݃ െ ݃|, ሻ2ିଵୀݐ , ,ݖሺ ሻݐ ൌ ቄ1 if     ݖ  0ݐ otherwise (7) 

where t is the mean of all |݃ െ ݃| values in the whole image.  
The CLBP_C is coded as: ܥ_ܲܤܮܥሺݔ, ሻݕ ൌ ,ሺ݃ ,ூሻݐ ,ݖሺ ூሻݐ ൌ ቄ1 if ݖ  ூ0ݐ otherwise (8) 

where ݐூ is the average gray level of the whole image.  
These three codes (CLBP_C, CLBP_S and CLBP_M) can be combined in one of two ways. The 

first way is by building a joint 3D histogram, which is denoted by CLBP_S/M/C, and the second way 
is to: (i) build a 2-D joint histogram using CLBP_S (or CLBP_M) and CLBP_C, denoted as 
CLBP_S/C (or CLBP_M/C), (ii) convert this 2-D histogram into a 1-D histogram, and then (iii) 
concatenate CLBP_M (or CLBP_S) to generate a joint histogram denoted by CLBP_M_S/C (or 
CLBP_S_M/C). 

2.6. Dominant Local Binary Pattern and some LTP Variants 

To cope up with the changes of LBP codes due to noisy fluctuations, dominant local binary pattern 
(DLBP) [26] combines the strength of both LBP and the Gabor filter. Here only the most frequently 
occurring LBP patterns are used, which are assumed to provide the descriptive textural information. 
On the other hand, Gabor-based features supply global textural information. Thus the combination of 
both frequent LBP codes and Gabor features is expected to perform well.  

Following DLBP, Nanni et al. [21] proposed to select histogram bins with higher variance from the 
original LBP and LTP patterns as dominant patterns. In [20], instead of three levels of quantization as 
in LTP, the authors analyzed more levels of quantization along with different shapes of neighborhoods 
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information, and concluded that an elliptical shape neighborhood with five level quantization works 
well. For duodenal texture classification, an adaptive LTP is also proposed in [22], where the 
thresholds are determined based on a weighted combination of training and observed data. 

3. Proposed Methodology  

The proposed method comprises with two basic parts: noise band approximation based on the 
observed signal and generation of a texture code with the aid of this band. In this section, we first 
introduce the noise band estimation methodology, and then present the proposed NTTP coding scheme. 

3.1. Adaptive Noise Band  

When a digital image is captured using CCD/CMOS sensors, images might be contaminated with 
different types of noises, for instance, photon shot noise, dark current noise, read noise, thermal noise 
and quantization noise [27]. Thus an observed signal, ݃ሺݔሻ, can be written as the combination of noise 
free original signal, ݂ሺݔሻ, and the noise, δሺݔሻ, as follows: ݃ሺݔሻ ൌ ݂ሺݔሻ  δሺݔሻ (9) 

Here, δሺݔሻ may represent signal dependent or independent noise, or a combination of them [17,18]. 
In this proposal, we focus on the approximation of an upper bound of the resulting noise δሺݔሻ at a 
given pixel when the extent of noise in the image is within certain limit (if the noise contamination is 
too high, then special treatment is required, which is beyond the scope of this paper). Such an 
approximation of noise helps to differentiate between actual texture patterns and noisy fluctuations 
around a pixel. For considerable values of signal-to-noise-ratio (SNR) around a pixel, we propose that 
the extent of δሺݔሻ can be approximated by taking the square root of the observed signal values, ݃ሺݔሻ. 
Lemma 1 justifies this approximation. 

Lemma 1: ඥ݃ሺݔሻ  δሺݔሻ when SNR is higher than a certain value.  

Proof: Let ߛ ൌ ሺ௫ሻ
δሺ௫ሻ. 

Now:      ඥ݃ሺݔሻ  δሺݔሻ ֜ ඥ݂ሺݔሻ  δሺݔሻ  δሺݔሻ ֜ ඥߛδሺݔሻ  δሺݔሻ  δሺݔሻ ֜ δଶሺݔሻ െ ሻݔδሺߛ െ δሺݔሻ  0 ֜ δሺݔሻ  ߛ  1. 
Replacing δሺݔሻ by ሺ௫ሻఊ  yields: ݂ሺݔሻ  ଶߛ   (10) ߛ

Thus ߛ  sets a limit on ݂ሺݔሻ  for ඥ݃ሺݔሻ  δሺݔሻ  to be true. For example, when ߛ ൌ 15 , the 
condition will be true when ݂ሺݔሻ  241. Again, from Equation (10), we get: 
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ቆߛ െ െ1  ඥ1  4݂ሺݔሻ2 ቇ ቆߛ െ െ1 െ ඥ1  4݂ሺݔሻ2 ቇ  0 (11) 

Equation (11) gives the lower bound on ߛ as:  ߛ  െ1  ඥ1  4݂ሺݔሻ2  (12) 

To cover the grayscale values of the whole dynamic range, i.e., [0, 255], we put ݂ሺݔሻ ൌ 255 in 
Equation (12), which yields ߛ  15.47655. Hence, the lemma holds. 

Lemma 1 gives a lower bound on ݂ሺݔሻ/δሺݔሻ to be higher than 15.48. Such a condition is usually 
fulfilled by digital images if there is not too much outer world noise. We can, therefore, approximate 
the possible contamination of noises for a given pixel by taking the square-root value of that pixel, and 
thus we define the adaptive noise band (ANB) in Definition 1. 

Definition 1: Adaptive noise band (ANB) 

An adaptive noise band defines the maximum possible extent of noise that can be contaminated 
with the observed intensity, i, of a pixel, and can be approximated by the square root of that intensity. 

When the difference between two neighboring pixel values is within the ANB, we consider that the 
difference is due to noise. In some pixels, the ANB may results in inclusion of orignial texture patterns 
into the noise band. However, this may not casuse much harm to the classification; rather this helps to 
distinguish prominent and less prominent patterns, which results in improved classification.  

Analyzing the Photon Transfer Curve (PTC) [28] presented in Figure 2, we find that the noise 
characteristics do not remain same for different intensity region. For low intensity region (R1), the 
dominant noises are independent of signal and remain constant. Another point here is that this PTC 
curve is calculated in the sensor domain (light space), but our focus is to deal with noises in the given 
image (image space). This problem is addressed by Faraji et al. in [17], where it is shown that this 
constant behavior is also observed in the image space. Since the gray levels at this region are low, the 
noises are usually higher than the square root of the observed intensity. We, therefore, slightly modify 
the ANB at intensity i as:  ܤܰܣ ൌ ൜ േ߬ if ݅ ൏ ܴേ√݅ otherwise (13) 

where R is the boundary point separating the low-intensity region in image space that corresponds to 
the R1 region in Figure 2, and ߬ is a constant to be set empirically. The value of R can be found in 
different ways. According to the method in [17], the value of R can be picked from the plot of  
intensity vs. noise standard deviation. In such plots, the breaking points in the curve represent different 
noise regions. Beside this, since noise remains constant for the low intensity regions, we can have the 
amount of noise in this region by calculating the average of the standard deviation of pixel intensities 
in some homogenous patches in the given image. This gives the horizontal line indicating the constant 
noise. Again according to [29], skellam parameters maintain a linear relationship with the pixel 
intensities, and the signal dependent noises (SDN) can be calculated from the skellam parameters. 
Thus we can approximate another line from the plot of intensity vs. SDN. The intersecting point of 
these two lines gives the value of R. 
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Figure 2. A photon transfer curve for CCD output signals. 

 

3.2. The Proposed Texture Descriptor 

The proposed NTTP uses the aforementioned ANB to encode the texture pattern for a given pixel, 
where the NTTP code at a pixel c, coordinated at ሺݔ,  :ሻ is generated by comparing its intensity ݃ with its neighbors according to Equation (14)ݕ

ܰܶܶ ܲ,ሺݔ, ሻݕ ൌ  ሺ݃ݍ െ ݃ሻ3ିଵୀ , ሺܽሻݍ ൌ ቐ 1 if ܽ  ౙെ1ܤܰܣ if ܽ  െܤܰܣౙ0 Otherwise   (14) 

where ݊ is the predefined number of neighbors at equal distance on a circle of radius r centered at ሺݔ,  ሻ. Here ANB helps to distinguish the fluctuation of intensities due to noises, which in turn helpsݕ
to generate a reliable code for texture description.  

According to Equation (14), the total number of different possible ܰܶܶ ܲ, codes is 3, which is 
huge and computationally not feasible to use. To handle it, we split a ܰܶܶ ܲ, code into two separate 
binary codes: an upper (ܰܶܶܲ_ܷ, ) and a lower (ܰܶܶܲ_ܮ, ) code by modifying Equation (14)  
as follows: ܰܶܶܲ_ܷ,ሺݔ, ሻݕ ൌ  ሺ݃ݍ െ ݃ሻ2ିଵୀ , ሺܽሻݍ ൌ ൜1 if ܽ  ౙ0ܤܰܣ Otherwise  

,ݔ,ሺܮ_ܲܶܶܰ (15) ሻݕ ൌ  ሺ݃ݍ െ ݃ሻ2ିଵୀ , ሺܽሻݍ ൌ ൜1 if ܽ  െ ܤܰܣౙ0 Otherwise  

An example of such splitting is demonstrated in Figure 3 using ݊ ൌ 8 and ݎ ൌ 1. It is noteworthy to 
point here that we can get back the original ternary code by combining (performing logical XOR and 
using sign information) these two binary codes. So, such decomposition is lossless. Example 1 presents 
the robustness of ܰܶܶܲ  over LBP and LTP, which represents the capability of handling noisy 
fluctuations and thus helps to generate stable code in different situations. 

Example 1: Let us consider that Figure 4(a) shows a texture pattern around the pixel having 
intensity 50 in an image, and Figure 4(b) shows the same pattern but the intensities 49 and 53 are 
changed to 51 and 56, respectively, due to noisy fluctuations.  
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Figure 3. Conversion of a ternary pattern into two equivalent binary patterns used in NTTP. 

 

Figure 4. Change of intensity due to noisy fluctuations. (a) Original pattern; (b) The pattern 
when two pixel values are changed due to noisy fluctuations. 

(a) (b) 

Here LBP cannot handle the change in intensity 49 as the corresponding bit (calculated by 
comparing it with 50 in the LBP) changes from 0 to 1 when the pixel value becomes 51. LTP is robust 
against the fluctuation of the intensity from 49 to 51 since both values will lead to 0 in the 
corresponding bit of the LTP code because of the threshold ߙ ൌ 5 in Equation (4). However, LTP fails 
to handle the fluctuation from 53 to 56, where the corresponding bit changes from 0 to 1. In the 
proposed NTTP, ܤܰܣହ ൎ 7, and hence it can generate the same code in spite of the presence of these 
intensity fluctuations.  

As we have discussed so far, the NTTP considers only the comparisons between a pixel and its 
neighbors. However, the grayscale of the center pixel also possesses some meaningful information, 
which is important for classification [30]. Hence, following [24], we codify the center pixel’s grayscale 
value, ݃, with respect to the whole image using Equation (16), and represent it as ܰܶܶܲ_ܥ,: ܰܶܶ ܲ,ሺݔ, ሻݕ ൌ ,ሺ݃ ,ூሻݐ ,ݖሺ ூሻݐ ൌ ቄ1 if ݖ  ூ0ݐ otherwise (16) 

where ݐூ is the mean gray level of the whole image. 
To describe the pattern in an image, we only consider uniform patterns (described in Section 2.2) 

for both upper and lower NTTP codes. This results in a much reduced sized feature vector. To build 
the feature vector, we first calculate two 2-D histograms using NTTP_U and NTTP_C, and NTTP_L 
and NTTP_C. We then convert each of these 2-D histograms into a 1-D histogram, and then 
concatenate them to build the final NTTP feature vector.  
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Algorithm 1 presents a picture of whole procedure for NTTP feature vector generation, which is 
simple and easy to calculate. In comparison with LTP, the added computational complexity is the 
calculation of ANB and the incorporation of the center pixel information, which is linear time process.  

Algorithm 1. Extraction of NTTP feature vector of an image. 

Input: An image I and parameters n, r, ߬ and R.  
Output: The NTTP feature vector of I. 

1. Initialize all the entries in two 2-D histograms ܪ and ܪ to zero. 
2. For each center pixel do 

(a) Calculate ܰܶܶܲ_ܷ, and ܰܶܶܲ_ܮ, according to Equation (15)  
(b) Calculate ܰܶܶܲ_ܥ, according to Equation (16) 
(c) Assign the uniform code indices of ܰܶܶܲ_ܷ, and ܰܶܶܲ_ܮ, to U and L, respectively 
(d) Increase the corresponding bins ܪ[ܰܶܶܲ_ܥ,][U] and ܪ[ܰܶܶܲ_ܥ,][L] by 1 

3. End For  
4. Convert both ܪ and ܪ into 1-D histograms and concatenate them to form a 1-D histogram H  
5. Return H 

4. Experimental Results and Discussion 

In this section, we first describe the evaluation protocol used in our experiments that includes the 
sources and descriptions of the experimental datasets (in Section 4.2) as well as the criteria to evaluate 
the performances of different methods (in Section 4.2), and then we present the experimental results 
(in Section 4.3). 

4.1. Source of Experimental Data 

We use the well-known Outex texture database [31] to compare the performance of NTTP with four 
state-of-the-art methods, namely LBP, LBPV, CLBP and LTP. Among several datasets available 
within this database, we use the first ten datasets for our experiments, namely Outex_TC_00000 
(TC00), Outex_TC_00001 (TC01), Outex_TC_00002 (TC02), Outex_TC_00003 (TC03), 
Outex_TC_00004 (TC04), Outex_TC_00005 (TC05), Outex_TC_00006 (TC06), Outex_TC_00007 
(TC07), Outex_TC_00008 (TC08) and Outex_TC_00009 (TC09). For all the experiments, we use the 
same setup for training and test data that is provided along with the database unless otherwise 
specified. Each of these dataset includes 24 different textures as displayed in Figure 5. The datasets 
differ in the number of training and test images and the size of the images. Different sizes of windows 
are used to crop different sizes of images from the 24 source images. For example, for the windows of 
sizes 128 × 128, 64 × 64 and 32 × 32, total 20, 88 and 368 images, respectively, can be cropped from a 
given source image. The cropped images are randomly divided into two halves of equal sizes to have 
the training and test sets. Such division ensures an unbiased performance estimate. Furthermore, for a 
given test suite, this random partitioning is repeated 100 times, resulting in a test suite of 100 individual 
problems, for each of the ten datasets, which offers more reliable performance evaluation.  
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Figure 5. Sample 24 texture images in the Outex texture database. 

 

 

 

 

 

 

We also use the Brodatz database (available online: http://www.outex.oulu.fi/index.php?page= 
contributed; contrib_TC_00004 dataset) [32,33], which consists of 32 different textures, to show the 
robustness of the proposed NTTP coding scheme. Even though the Outex is one of the more 
appropriate databases for the evaluation of our method (because the images are taken here under sensor 
based camera and they provide reference background images) we choose the Brodatz database as it is 
the mostly used benchmark database. The images are 256 × 256 in size with 256 gray levels. From 
these images, a total of 2,048 images of size 64 × 64 pixels are cropped, where there are 64 samples for 
each of the 32 texture classes. We apply a 10-fold cross validation on this dataset, which randomly 
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partitions the dataset into 10 parts and generates 10 different problem sets considering nine parts as 
training and the other part as test set.  

4.2. Classification and Evaluation Protocol  

In the literature several classifiers are available, whose performance varies in different data and 
applications. However, in this paper our goal is to show the relative performances of different texture 
descriptors. So, without looking for best suited classifier relevant with our dataset, we adopt two well 
known classifiers in our experiments. The first one is the well known the nearest neighbor classifier 
using simple chi-square distance (Equation (17)). Here, for a given feature vector (X) of a texture 
image, we find the distances from all the known models (feature vectors), and assign it to the class 
whose model (Y) gives the minimum distance: ܦሺܺ, ܻሻ ൌ  ሺ ܺ െ ܻሻଶሺ ܺ  ܻሻିଵୀ  (17) 

where L is the size of the feature vector.  
We also apply support vector machine (SVM) [34] to classify the textures, and to test the 

performances of the different feature vectors in machine learning algorithms. For this, we follow the 
one-against-one strategy and use the library of SVM described in [35]. We use simple percentage of 
correct detections as the evaluation protocol for generating different results in our experiments.  

4.3. Result and Discussion  

The main goal of this proposal is to achieve a robust coding scheme, which is able to generate same 
code for same texture irrespective of the presence of noisy fluctuations of intensities, for texture based 
analysis of images. To show the robustness of the proposed NTTP coding scheme as compared to the 
state-of-the-art methods, we keep all the parameters the same and compare the basic coding schemes 
only. In our experimentations, we use ݊ ൌ 8 and ݎ ൌ 2, and uniform pattern (except CLBP, as the 
original proposal does not include uniform pattern) for all the methods. Further, using some 
homogenous patches and skellam parameters we approximate the value of R as 26. In our experiments, 
we set ߬ = 5 following [10] as this value works well for low intensity region. No preprocessing is 
performed on the images unless stated otherwise. 

The official website (http://www.outex.oulu.fi/index.php?page=classification) of the Outex 
Database maintains the best results (BR) to date based on the submission of different authors. We 
incorporate these results from the website in Table 1. Moreover, we include the results of Gabor filter 
on the same datasets from [31]. Besides these two best results (from website and from [31]), we 
calculate the average results over the 100 test sets from each dataset for the four state-of-the-art 
methods and for the NTTP. Table 1 summarizes the performances.  

In case of ሺpreሻܲܶܮ  , we use the preprocessing proposed in [10]. As mentioned earlier, such 
preprocessing, especially the expensive DoG filtering, may filter out some important micropatterns and 
degrade the results. For this reason, ܲܶܮ without preprocessing performs better. Again the main reason 
behind the better performances of LTP in many cases is its fixed noise band. This band helps it to 
manage some noisy intensity fluctuations during the texture codification. On the other hand, the NTTP 
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shows excellent performance as compared to the others in every case. This is mainly achieved by using 
adaptive noise band. Further, the influence of the center pixel information also increases the overall 
performances.  

Table 1. Classification rates (%), using chi-square distance and nearest neighbor classifier, 
of the state-of-the-art methods and the proposed method. 

 TC00 TC01 TC02 TC03 TC04 TC05 TC06 TC07 TC08 TC09 LBP 99.58 97.76 84.21 99.15 97.76 83.80 97.93 87.34 97.87 87.43 CLBP_S/M/C 99.16 98.52 86.17 99.14 98.51 86.23 98.13 88.13 98.17 88.30 LTPሺpreሻ 99.16 96.40 76.55 99.35 96.45 74.92 96.42 82.26 96.58 81.65 LTP 99.50 97.40 90.00 99.61 99.12 90.01 98.96 91.52 98.95 91.67 LBPV 99.58 97.32 82.76 99.32 97.35 81.98 97.12 85.39 98.70 85.52 
Gabor filter [31] 99.50 97.80 92.20 Nil 97.90 92.30 97.90 94.80 97.80 94.80 
BR 99.50 98.60 92.60 99.60 98.50 86.00 98.60 94.50 98.60 94.70 NTTP 99.96 99.41 94.81 99.99 99.44 94.74 99.16 95.07 99.10 95.09 

 
In CLBP, there are three different proposals. In Table 1, we only include the results of the best 

performing proposal, denoted as ܥ/ܯ/ܵ_ܲܤܮܥ. However, its performances are even comparable with 
that of the basic LBP proposal in many cases, which is demonstrated in Table 1. This is because, like 
LBP, CLBP is also sensitive to near uniform region. By including three different types of information 
such as sign, magnitude and center pixel information, the patterns due to the fluctuation of intensities 
(caused by noises) are expected to result in scattered accumulation in different histogram bins while 
the prominent patterns may contribute to some specific bins. Therefore, the noisy patterns are assumed 
to have less effect on the performance. However, this may not be always true because both noisy and 
actual patterns may contribute to the same bins, which may lead to poor performance as it is shown in 
Table 1. LBPV gives higher weights for the codes in high variance regions. This is because it is 
generally assumed that high variance area has better discrimination power. However, codes from 
low/moderate variance area may have good contributions for classification. Thus, the performances of 
LBPV become even lower then LBP in many cases.  

To check the reliability and the stability of the codes, we further consider four difficult datasets 
such as TC02, TC05, TC07 and TC09, where the performances of all the methods are relatively lower 
according to the Table 1. In this experiment, we calculate the mean, minimum, maximum and standard 
deviation of the accuracies over the 100 test sets from each dataset for all the methods. Table 2 shows 
the results of this experiment for our method along with the sate-of-the-art methods. It is observed 
from the Table 2 is that the NTTP achieves not only the highest accuracies but the differences between 
the maximum and minimum accuracies as well as the standard deviation of the results are also the 
lowest. This advocates for the better reliability of NTTP than the other methods. 

For observing the robustness of different methods when extra additive noises are added to the 
images, we add white Gaussian noise (WGN) to the test images in the TC02 dataset. Such an 
experimental setup helps to identify the strengths of different coding schemes under noisy 
environments. Using the chi-square distance and the nearest neighbor classifier, the correct detection 
rates of LBP, LBPV, CLBP_S/M/C, LTP and NTTP are found as 65.38%, 73.56%, 72.96%, 76%, 
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87.44%, respectively, which also show the better noise tolerance of the proposed method as compared 
to other methods.  

Table 2. Maximum, minimum and average accuracies (%) along with the standard 
deviation for different methods using chi-square distance and nearest neighbor classifier.  

 LBP CLBP_S/M/C LTP(pre) LTP LBPV NTTP 

T
C

02
 Average 83.27 86.17 76.55 90.01 82.07 94.74 

Maximum 84.21 86.63 77.12 90.60 82.76 95.24 
Minimum 82.60 85.75 75.92 88.94 81.02 94.18 
Std. dev. 0.45 0.31 0.39 0.35 0.44 0.24 

T
C

05
 Average 83.23 86.23 74.92 90.01 81.98 94.74 

Maximum 84.30 86.82 76.08 90.85 82.83 95.51 
Minimum 82.12 85.16 73.39 89.01 81.15 93.99 
Std. dev. 0.54 0.37 0.50 0.38 0.42 0.31 

T
C

07
 Average 87.35 88.14 82.16 91.52 85.39 95.07 

Maximum 91.81 92.27 87.86 94.45 90.56 97.30 
Minimum 79.56 78.27 71.84 86.46 75.00 90.82 
Std. dev 2.73 2.62 3.22 1.63 2.87 1.24 

T
C

09
 Average 87.43 88.30 81.65 91.67 85.52 95.09 

Maximum 91.73 92.37 88.38 94.67 90.51 97.35 
Minimum 78.45 77.90 74.17 86.41 75.31 91.39 
Std. dev. 2.48 2.47 3.42 1.66 2.72 1.18 

 
In addition to the chi-square distance along with the nearest neighbor classifier, we also use the well 

known machine learning approach, SVM, to test the performances of different methods. In this 
experiment, we use radial basis function (RBF) as kernel, and TC02 and TC09 datasets from the Outex 
database. In each case, we perform a 10-fold cross validation test, and the averages of the accuracies 
are presented in Table 3. It shows that using SVM, we get better accuracies than the nearest neighbor 
classifier for all the pattern codes. However, the proposed NTTP shows better performances over the 
other existing coding mechanisms. 

Table 3. Classification rates (%) of the different pattern codes using SVM as classifier. 

 LBP CLBP_S/M/C LTP LBPV NTTP 
TC02 92.32 94.00 95.89 93.81 97.90 
TC09 92.4 93.31 96.16 93.01 97.62 

Finally, to test the consistency of the codes, we apply both of our adopted classifiers on a dataset 
collected from the well known Brodatz database. The average of the 10-fold cross validation results 
are presented in Table 4. Here, the performances of all the methods are relatively better as compared to 
those obtained for the Outex database. However, NTTP shows better results compare to others in this 
dataset too. 
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Table 4. Classification rates (%) of the different coding schemes on the Brodatz dataset. 

Classifier LBP CLBP_S/M/C LTP LBPV NTTP 
Chi-square and nearest neighbor 92.89 94.63 95.98 93.13 96.27 
SVM 95.21 98.85 98.87 96.14 99.07 

5. Conclusions 

In this paper, we propose NTTP to encode the texlets in images. It is computationally simple, but 
robust against the noises that generally appear in images. This robustness is achieved by dint of using 
an adaptive noise band (ANB) that is capable of managing, up to a certain extent, different noises like 
the sensor/camera noises. Thus the proposed NTTP can be used for different kind of texture based 
classification like face recognition, facial expression recognition, content based image analysis and 
several different applications in the presence of common noises in the images. In our proposal, the 
ANB approximates noises based on single pixel information only. However, it may fail to handle very 
a large extent of noise contamination. Incorporating more information (such as neighboring pixel 
information) and/or some filtering process with our coding scheme might help in this regard. We leave 
it here as our future work. 
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