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Abstract: Endoplasmic reticulum (ER) stress is involved in non-alcoholic fatty liver disease (NAFLD),
but the relationship between oxidative stress, another well-known risk factor of NAFLD, and ER
stress has yet to be elucidated. In this study, we treated mice with tunicamycin (TM) (2 mg/kg body
weight) for 48 h to induce ER stress in the liver and examined the metabolic pathway that synthesizes
the endogenous antioxidant, glutathione (GSH). Tunicamycin (TM) treatment significantly increased
mRNA levels of CHOP and GRP78, and induced lipid accumulation in the liver. Lipid peroxidation
in the liver tissue also increased from TM treatment (CON vs. TM; 3.0 ± 1.8 vs. 11.1 ± 0.8 nmol
MDA/g liver, p < 0.001), which reflects an imbalance between the generation of reactive substances
and antioxidant capacity. To examine the involvement of GSH synthetic pathway, we determined
the metabolomic changes of sulfur amino acids in the liver. TM significantly decreased hepatic
S-adenosylmethionine concentration in the methionine cycle. The levels of cysteine in the liver
were increased, while taurine concentration was maintained and GSH levels profoundly decreased
(CON vs. TM; 8.7± 1.5 vs. 5.4± 0.9 µmol GSH/g liver, p < 0.001). These results suggest that abnormal
cysteine metabolism by TM treatment resulted in a decrease in GSH, followed by an increase in
oxidative stress in the liver. In HepG2 cells, decreased GSH levels were examined by TM treatment in
a dose dependent manner. Furthermore, pretreatment with TM in HepG2 cells potentiated oxidative
cell death, by exacerbating the effects of tert-butyl hydroperoxide. In conclusion, TM-induced ER
stress was accompanied by oxidative stress by reducing the GSH synthesis, which made the liver
more susceptible to oxidative stress.

Keywords: non-alcoholic fatty liver injury; endoplasmic reticulum stress; oxidative stress;
sulfur amino acids metabolism; glutathione

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of liver conditions from simple
lipid accumulation to steatohepatitis, liver fibrosis, and hepatocellular carcinoma [1–3]. Excessive lipid
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accumulation in the liver, namely fatty liver or hepatic steatosis, is caused by abnormal lipid
metabolism, and subsequent progression is exasperated by inflammatory cytokines and oxidative
stress [4–6].

The endoplasmic reticulum (ER) is the major site of lipid metabolism in hepatocytes,
and disruption of homeostasis in the ER, referred to as ER stress, plays a critical role in the progression
of fatty liver and hepatic lipid accumulation [7,8]. Although ER stress is considered a major contributor
to the induction of fatty liver disease, accumulating studies suggest that oxidative stress is another
critical factor in the development of NAFLD [9–11]. Oxidative stress is a primary cause of fat
accumulation in the liver and is involved in the development of fibrosis in NAFLD patients [12–14].
In a liver with accumulated fat, increased production of reactive oxygen species (ROS) causes lipid
peroxidation, followed by inflammation and fibrogenesis [7,15]. Therefore, it is currently accepted
that these two cellular stresses, ER-stress and oxidative stress, are closely linked in the maintenance of
hepatic homeostasis [16]. However, the functional interactions between ER stress and oxidative stress
in the development and progression of NAFLD remain unclear.

Several reports demonstrated that tunicamycin (TM) could efficiently induce ER stress in the liver
of mice [17,18] and it has been used as an experimental model to study the effect and mechanism by
which ER stress regulates lipid metabolism [19–23], energy homeostasis [24,25], inflammation [26,27],
and fibrogenesis [28] in the liver. The purpose of this study was to investigate how ER stress-induced
hepatic lipid accumulation affects the redox balance in the liver. Specifically, this study was
focused on the changes in the metabolic pathway of sulfur-containing substances by acute treatment
of the ER stressor, TM. The metabolism of sulfur-containing substances is connected with the
biosynthesis of glutathione (GSH), a potent antioxidant that scavenges reactive metabolites, and the
homeostasis of this metabolic process plays a critical role in the susceptibility to toxic oxidants [29–31].
Here, we demonstrated that exposure to TM-induced abnormal changes in the metabolism of
sulfur-containing substances weakened the antioxidant capacity via the inhibition of de novo GSH
synthesis in the liver, specifically.

2. Results

2.1. ER Stress-Mediated Lipid Accumulation in the Liver of Tunicamycin (TM)-Treated Mice

The expression of binding immunoglobulin protein/glucose-regulated protein 78 kDa
(Bip/Grp78), as a representative ER chaperone, was examined in the liver 48 h after treatment to
monitor the TM-induced ER stress response. As shown in Figure 1A, BIP/GRP78 mRNA expression
was significantly elevated in the liver of TM-treated mice. Simultaneously, the mRNA expression
of CCAAT/enhancer-binding protein homologous protein (CHOP), one of the ER stress-response
genes, was also significantly enhanced by tunicamycin (TM) treatment. In a line with previous studies,
TM treatment induced lipid accumulation in the liver, as evidenced by Oil Red O lipid staining of liver
tissue (Figure 1B) and biochemical analysis of hepatic lipid levels (Figure 1C).
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Figure 1. Endoplasmic reticulum (ER) stress-mediated lipid accumulation in the liver of tunicamycin 

(TM)-treated mice. (A) mRNA levels of glucose-regulated protein 78 (Grp78) and 

CCAAT/enhancer-binding protein homologous protein (CHOP), and (B) Oil Red O staining in the 

liver (20× magnification). (C) Levels of triglyceride in the homogenates of the liver. Each value 

represents the mean ± SD. *** Statistically significant difference between control (white) and 

TM-treated mice (black) at p < 0.001 (Student’s t-test). 
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TM-Treated Mice 

In the animal model and human patients of NAFLD, ER stress was accompanied by hepatic 

steatosis, inflammation, as well as fibrosis lesion in non-alcoholic steatohepatitis (NASH) [27,28]. To 

examine whether TM-induced ER stress has an impact on the inflammation and fibrosis, we 

determined the levels of mRNA associated with inflammatory response and fibrogenesis. The 

mRNA levels of inflammatory genes, such as tumor necrosis factor alpha (TNF-α), monocyte 

chemoattractant protein-1 (MCP-1), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) were 

significantly increased to 5.7-, 4.2-, 6.4-, and 4.9-fold, respectively, in the liver of TM-treated mice 

(Figure 2A). Fibrosis markers, such as transforming growth factor beta 1 (TGF-β1), alpha smooth 

muscle actin (α-SMA), alpha-1 type I collagen (Col1α1), and fibronectin also increased significantly, 

but the increased range was smaller than that of inflammatory response genes (Figure 2B). These 

results suggest that the acute challenge of TM induces similar stage to NASH that shows lipid 

accumulation, inflammation, weak fibrosis. 

 

Figure 2. mRNA expression associated with (A) inflammatory response and (B) fibrogenesis in the 

liver of TM-treated mice. Each value represents the mean ± SD. *, **, and *** Statistically significant 

difference between control (white) and TM-treated mice (black) at p < 0.05, < 0.01, and < 0.001, 

respectively (Student’s t-test). 

2.3. Increased Hepatotoxicity Accompanied with Oxidative Stress due to TM 

Figure 1. Endoplasmic reticulum (ER) stress-mediated lipid accumulation in the liver of
tunicamycin (TM)-treated mice. (A) mRNA levels of glucose-regulated protein 78 (Grp78) and
CCAAT/enhancer-binding protein homologous protein (CHOP), and (B) Oil Red O staining in the liver
(20×magnification). (C) Levels of triglyceride in the homogenates of the liver. Each value represents
the mean ± SD. *** Statistically significant difference between control (white) and TM-treated mice
(black) at p < 0.001 (Student’s t-test).

2.2. Changes in mRNA Level Related with Inflammatory Response and Fibrogenesis in the Liver of TM-Treated Mice

In the animal model and human patients of NAFLD, ER stress was accompanied by hepatic
steatosis, inflammation, as well as fibrosis lesion in non-alcoholic steatohepatitis (NASH) [27,28].
To examine whether TM-induced ER stress has an impact on the inflammation and fibrosis,
we determined the levels of mRNA associated with inflammatory response and fibrogenesis.
The mRNA levels of inflammatory genes, such as tumor necrosis factor alpha (TNF-α),
monocyte chemoattractant protein-1 (MCP-1), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6)
were significantly increased to 5.7-, 4.2-, 6.4-, and 4.9-fold, respectively, in the liver of TM-treated mice
(Figure 2A). Fibrosis markers, such as transforming growth factor beta 1 (TGF-β1), alpha smooth
muscle actin (α-SMA), alpha-1 type I collagen (Col1α1), and fibronectin also increased significantly,
but the increased range was smaller than that of inflammatory response genes (Figure 2B). These results
suggest that the acute challenge of TM induces similar stage to NASH that shows lipid accumulation,
inflammation, weak fibrosis.
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Figure 2. mRNA expression associated with (A) inflammatory response and (B) fibrogenesis in the
liver of TM-treated mice. Each value represents the mean ± SD. *, **, and *** Statistically significant
difference between control (white) and TM-treated mice (black) at p < 0.05, < 0.01, and < 0.001,
respectively (Student’s t-test).
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2.3. Increased Hepatotoxicity Accompanied with Oxidative Stress due to TM

The serum concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST),
and lactate dehydrogenase (LDH) in TM-treated mice (2 mg/kg body weight) significantly increased
compared to control mice 48 h after treatment (Figure 3A). Hematoxylin and eosin (H&E) staining
of liver tissues to examine histopathological changes did not show clear differences between the
control and TM-treated mice (Figure 3B), suggesting that a TM concentration of 2 mg/kg induced only
low-grade toxicity in the liver, as evidenced by the increased biochemical indices. Recently, it has been
suggested that the highly interrelated processes between ER stress and redox imbalance are involved
in the pathogenesis of human disease [32]. Interestingly, hepatic 4-hydroxynonenal (4-HNE) staining
(Figure 3C) and the levels of malondialdehyde (MDA) (Figure 3D) in the liver, which evaluated lipid
peroxidation, were significantly enhanced by the treatment of TM. These results suggest that liver
injury by TM might be involved in both ER stress and oxidative stress.
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Figure 3. Increased hepatotoxicity accompanied with oxidative stress by tunicamycin (TM)
treatment. (A) Serum activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST),
and lactate dehydrogenase (LDH) in TM-treated mice (2 mg/kg body weight). (B) Hematoxylin
and eosin (H&E) staining of liver tissues to examine histopathological changes (20×magnification).
(C) Immunohistochemistry of hepatic 4-hydroxynonenal (4-HNE; 20× magnification) and
(D) malondialdehyde (MDA) levels in the liver tissues to evaluate lipid peroxidation. Each value
represents the mean ± SD. ** and *** Statistically significant difference between control (white) and
TM-treated mice (black) at p < 0.01 and < 0.001, respectively (Student’s t-test).

2.4. Changes in Hepatic Metabolism of Sulfur Containing Substances due to TM Treatment

To determine the effect of TM treatment on the GSH synthetic pathway in the liver,
the concentration of sulfur containing substances and their metabolites were monitored in control
and TM-treated mice. Hepatic methionine, cysteine, hypotaurine, and taurine levels were 150%,
200%, 130%, and 120% of control values in TM-treated mice, respectively (Figure 4). Whereas the
hepatic concentration of S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and GSH
were significantly decreased to 50%, 80%, and 50% of control values in TM-treated mice, respectively.
There were no significant differences in hepatic homocysteine levels.
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Figure 4. Changes in the hepatic sulfur containing substances by the TM treatment. Hepatic concentration
of methionine, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), homocysteine, cysteine,
hypotaurine, taurine, and glutathione (GSH) were measured in TM-treated mice (2 mg/kg body weight)
using the analytic system of high-performance liquid chromatography (HPLC). Each value represents the
mean ± SD. *, **, and *** Statistically significant difference between control (white) and TM-treated mice
(black) at p < 0.05, < 0.01, and < 0.001, respectively (Student’s t-test).

The metabolic changes of sulfur-containing substances were determined by measuring the protein
levels of the hepatic enzymes involved in this metabolism using western blotting. The protein
expression of methionine adenosyltransferase (MAT) I/III, which converts methionine to SAM using
ATP, was significantly increased, and the protein expression of CDO, a rate-liming step of the taurine
synthesis, also increased, but the increase was not significant (Figure 5A,B). The protein levels of
GCLC, the catalytic subunit of GCL, which is involved in de novo synthesis of GSH, were dramatically
decreased in the liver of TM-treated mice, reflecting the low concentrations of GSH (Figure 5A,B).
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Figure 5. Changes in protein expression of enzymes involved in transsulfuration pathway after TM
treatment. (A) Protein expression of hepatic methionine adenosyltransferase (MAT) I/III, CDO, and the
catalytic subunit of GCL (GCLC) were determined by immunoblot analysis in TM-treated mice (2 mg/kg
body weight), and (B) were quantified densitometrically. Each value represents the mean ± SD. ** and
*** Statistically significant difference between control (white) and TM-treated mice (black) at p < 0.01 and
< 0.001, respectively (Student’s t-test).

2.5. Decreased Levels of Cellular GSH by TM Treatment in a Dose-Dependent Manner and Potentiation of
t-BHP Induced Cell Death by Pre-Exposure of TM in HepG2 Liver Cells

Our animal study suggests that TN treatment reduced GSH synthesis and weakened the
antioxidant capability of the liver. Therefore, it is hypothesized that pre-exposure to TM can make
cells sensitive to the second oxidant attack, which would potentiate the harmful effects of oxidative
stress. Cellular GSH levels were decreased in a dose-dependent manner at 24 h after TM treatment
in HepG2 liver cells (Figure 6A). To investigate whether the decrease in cellular GSH due to TM
treatment affected cell viability in the presence of exogenous oxidative stress, TM-treated HepG2



Int. J. Mol. Sci. 2018, 19, 4114 6 of 13

cells were subsequently exposed to t-BHP, which produces ROS, and cell viability was examined 6 h
post-treatment (Figure 6B). As expected, cells that were pre-exposed to TM were more sensitive to
t-BHP treatment, leading to 70% cell death from 20% cell death induced by TM alone or t-BHP alone.
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Figure 6. Effect of TM treatment on the cellular level of GSH, and potentiation of oxidative cell death
by the pre-exposure of TM in HepG2 liver cells. (A) Cellular levels of GSH at 24 h after treatment with
the indicated concentration of TM. (B) Cells were exposed to 5 µg of TM for 24 h before treatment with
300 µM of tert-butyl hydroperoxide (t-BHP) for 6 h, followed by an MTT assay. Each value represents
the mean ± SD. * and *** Statistically significant difference from vehicle treated cells indicated by “TM
0” at p < 0.05 and < 0.001, respectively (Student’s t-test). Values with different letters are significantly
different from one another (ANOVA followed by Newman-Keuls multiple range test p < 0.05).

2.6. Involvement of Mitochondrial Dysfunction in the Enhancement of t-BHP-Induced Mitochondrial
Dysfunction in the TM Pre-Exposed HepG2 Liver Cells

ER stress can cause mitochondrial dysfunction and increase mitochondrial ROS generation,
leading to oxidative stress. The mitochondrial membrane potential (∆ψ) is a sensitive indicator
for the energetic state of the mitochondria, and it was measured to assess mitochondrial function.
JC-1, a dye that selectively enters the mitochondria, reversibly changes color as the ∆ψ changes.
As shown in Figure 7, treatment with TM alone for 24 h did not induce a change in ∆ψ compared
to control cells. t-BHP treatment alone significantly increased depolarized cells from 5.8% in control
cells to 21.2% of t-BHP treated cells. Whereas exposure to t-BHP after TM treatment significantly
increased the depolarized cell population to 32.7% of total cells, suggesting that pretreatment
with TM made the mitochondria more vulnerable to additional stress, followed by aggravating
mitochondrial dysfunction.
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Figure 7. Enhancement of t-BHP-induced mitochondrial dysfunction by the pre-exposure of TM in
HepG2 liver cells. (A) Cells were exposed to 5 µg of TM for 24 h before treatment with 100 µM of t-BHP
for 3 h to accomplish FACS analysis of JC-1 staining. (B) Quantification of the mitochondrial membrane
potential (∆ψ) was represented in the three independent experiments. Each value represents the mean
± SD. Values with different letters are significantly different from one another (ANOVA followed by
Newman-Keuls multiple range test p < 0.05).
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2.7. Enhancement of t-BHP-Induced Apoptotic Cell Death by Pre-Exposure of TM in HepG2 Liver Cells

The effect of TM and t-BHP treatments on apoptosis was determined by flow cytometry analysis
using Annexin V and PI staining. As shown in Figure 8A,B, an increase in apoptosis (sum of upper and
lower right quadrants) was clearly observed in cells treated with t-BHP after TM exposure (apoptosis in
41% of total cells) compared with TM alone (apoptosis in 13% of total cells) or t-BHP alone (apoptosis in
15% of total cells).
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Figure 8. Potentiation of t-BHP-induced apoptotic cell death by the pre-exposure of TM in HepG2
liver cells. (A) Cells were exposed to 5 µg of TM for 24 h before treatment with 100 µM of t-BHP for
6 h. Fluorescence-activated cell sorting (FACS) analysis of propidium iodide uptake and annexin V
binding in non-permeabilized cells (Lower-left, live cells; Lower-right, early apoptotic cells; upper-right,
late apoptotic cells). (B) Quantification of apoptotic cells was represented in the three independent
experiments. Values with different letters are significantly different from one another (ANOVA followed
by Newman-Keuls multiple range test p < 0.05).

3. Discussion

NAFLD is considered one of the main causes of chronic liver disease worldwide [1]. In many
patients, NAFLD does not progress further than simple hepatic steatosis; however, there is a significant
proportion of patients with NASH, a severe form of NAFLD, which can lead to cirrhosis, hepatocellular
carcinoma (HCC), and liver disease-related death [2,3]. The ‘two-hit hypothesis’ was a widespread
theory that explains the pathogenesis and progression of NAFLD [33]. This theory suggests that in the
steatosis alone, due to a high fat diet or alcohol intake, a second hit from other factors, such as oxidant
insult was required for the development of NASH [9]. However, it is not appropriate to describe the
complex molecular and metabolic changes that occur in NAFLD. Accumulating studies have shown
that multiple sequential or parallel pathways are involved in disease progression, and the crosstalk
between the multiple pathways still remains to be explored [34–37]. In this study, we observed that
TM-induced ER stress in the liver was accompanied with multiple changes, such as a decrease in GSH
concentration, an increase in inflammatory response and fibrogenesis, which could contribute to the
progression of the disease. Among them, we have further investigated the effect of TM-induced ER
stress on the GSH synthetic pathway leading to a redox imbalance.

In the present study, it is notable that the liver of TM-treated mice showed a significant increase
in oxidative stress, as evidenced by higher levels of 4-HNE and MDA compared to the liver of
vehicle-treated mice. Oxidative stress is considered a key role in the progression of NAFLD from
disease initiation to NASH, even if the cause and effect relationship between oxidative stress and the
pathogenesis of NAFLD has not yet been clearly elucidated [38]. Oxidative stress is caused by the
elevated formation of ROS and the suppression of the endogenous antioxidant capacity, which initiates
lipid peroxidation. Subsequently, highly reactive aldehyde components, such as 4-HNE and MDA,
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cause intracellular damage [16]. In fact, markers reflecting lipid peroxidation have been observed
in NAFLD/NASH patients, and the concentration of these markers are proportionally related to the
severity of liver disease [39–42].

Oxidative stress by TM treatment seems to be caused by the changes in the synthetic pathway
of GSH, which is the most abundant non-protein thiol available to defend reactive metabolites in
all mammalian tissues. GSH is a tripeptide composed of glutamate, cysteine, and glycine, with the
thiol group in cysteine, in particular, providing the antioxidant ability of GSH. GSH is synthesized
from the essential amino acid, methionine, through a transsulfuration process, and the synthesis
of GSH in the liver is mainly regulated by two factors, the availability of cysteine and the activity
of GCL (Figure 9) [30,43]. In this study, protein expression of GCLC was dramatically inhibited
by TM, which resulted in a decrease in GSH synthesis in the liver of TM-treated mice. In contrast,
CDO expression was slightly increased with elevation of both hypotaurine and taurine concentrations.
The results suggest that cysteine catabolism into taurine was favored over GSH production, which may
have intensified the TM-induced GSH depletion in the liver. Moreover, a chemical oxidant, tert-butyl
hydroperoxide (t-BHP), induced potent cell death in ER stress-induced liver cells. These findings
suggest the importance of sulfur amino acid metabolism in the ER stress-dependent fatty liver.
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In conclusion, TM-induced ER stress was accompanied by oxidative stress, due to a reduction in
GSH synthesis, which made the fatty liver of TM-treated mice more susceptible to additional oxidative
stress. Thus, this study supports the possibility that supplementation with antioxidants may help to
inhibit the progression of NAFLD.

4. Materials and Methods

4.1. Animals Experiment

Seven-week old male DBA/2Korl mice were kindly provided by the Department of
Laboratory Animal Resources in the National Institute of Food and Drug Safety Evaluation
(NIFDS, Cheongju, Korea). Animals were acclimated to the temperature (22 ± 2 ◦C) and humidity
(55 ± 5%) controlled rooms with a 12 h light/dark cycle for one week before use. Mice were treated
with TM (2 mg/kg, ip) and sacrificed 48 h after treatment. The use of animals was in compliance with
the guidelines established and approved by the Animal Care and Use Committee in Pusan National
University (approval No. PNU-2016-1192).
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4.2. Hematological Evaluation Indicating Hepatotoxicity

The serum activities of ATL, AST, and LDH in blood samples were examined with an Automated
Chemistry Analyzer (Prestige 24I; Tokyo Boeki Medical System, Tokyo, Japan).

4.3. Histopathological Analysis

The liver tissues were fixed in 10% buffered neutral formalin and embedded in a low-melting-point
paraffin. Tissue sections 5 µm in thickness were stained with H&E and mounted using DPX mountant,
followed by microscopic examination (Olympus CX41RF; Olympus Co., Tokyo, Japan).

4.4. Determination of Triglyceride (TG) in the Liver

Total lipids were extracted from a homogenate prepared from 200 mg of a mouse liver in
a chloroform/methanol mix (2:1, v/v). TG levels in the total lipid extract were determined
enzymatically using a commercially available enzymatic kit (Sigma Chemical Co., St. Louis, MO, USA)
according to the manufacturer′s protocol. In addition, to evaluate lipid staining in the liver, 5 µm-thick
cross sections of the left lateral lobe of the liver were immersed in propylene glycol and stained with
Oil Red O reagent.

4.5. Examination of Lipid Peroxidation in the Liver

A cross section of the liver was sliced at 5 µm and stained using rabbit polyclonal anti-4-HNE
(Abcam, Cambridge, MA, USA) and goat anti-rabbit polyclonal secondary antibodies (Vectastain ABC
IHC kit; Vector Laboratories, Burlingame, CA, USA) to evaluate 4-HNE adducts. Overall, liver lipid
peroxidation was determined by a thiobarbituric acid reactive substrate (TBARS) assay as described
by Volpi and Tarugi [44]. The liver lysate was mixed with 0.2% thiobarbituric acid in 2 M sodium
acetate buffer containing 5% butylated hydroxytoluene. The mixtures were incubated at 95 ◦C for
45 min followed by centrifugation. The supernatant was injected into high performance liquid
chromatography (HPLC), equipped with a fluorescence detector (FLD-3100; Thermo Scientific,
Sunnyvale, CA, USA) and a 5 µm Symmetry C18 reversed phase column (4.6 mm × 150 mm;
Eka Chemicals, Bohus, Sweden). The complex of MDA and thiobarbituric acid was monitored
by fluorescence detection with excitation at 515 nm and emission at 553 nm.

4.6. Real-Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

The total RNA was isolated from cells using the Direct-zol™ RNA kit
(Zymo Research, Orange, CA, USA). The cDNA was synthesized by the iScript™ cDNA Synthesis
system (Bio-Rad, Hercules, CA, USA). The reak-time RT-PCR was accomplished by using the
SensiFAST SYBR qPCR mix (Bioline, London, UK) according to the manufacturer’s protocol.
The relative values of gene expression were normalized to GAPDH. The primer sequences are
provided in Table 1.

Table 1. List of mouse primer used for real-time reverse transcription-polymerase chain reaction (RT-PCR).

Genes Primer Sequences

Grp78 F: TGGTATTCTCCGAGTGACAGC R: AGTCTTCAATGTCCGCATCC
Chop F: CACGCACATCCCAAAGCC R: GGGCACTGACCACTCTGTT
TNFα F: GGCCTCTCTACCTTGTTGCC R: CAGCCTGGTCACCAAATCAG
CCL2 F: CCAGCAAGATGATCCCAATG R: CTTCTTGGGGTCAGCACAGA
IL1β F: TTCACCATGGAATCCGTGTC R: GTCTTGGCCGAGGACTAAGG
IL6 F: TTGCCTTCTTGGGACTGATG R: CCACGATTTCCCAGAGAACA

TGFβ1 F: GCCCTGGATACCAACTATTGC R: TGTTGGACAGCTGCTCCACCT
αSMA F: GGCTCTGGGCTCTGTAAGG R: CTCTTGCTCTGGGCTTCATC
Col1a1 F: ACCTGTGTGTTCCCTACTCA R: GACTGTTGCCTTCGCCTCTG

Fibronectin F: ATGACGATGGGAAGACCTAC R: GGCTGGAAAGATTACTCTCG
GAPDH F: GTTGTCTCCTGCGACTTCA R: GGTGGTCCAGGGTTTCTTA
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4.7. Western Blotting

Liver tissue was lysed with ice-cold PRO-PREPTM protein extract solution
(iNtRON; Sungnam, Gyunggi, Korea), and the concentration of the protein was determined by
the BCA reagent (Thermo Scientific, Sunnyvale, CA, USA). Equal amounts of protein were separated
by SDS-PAGE and transferred onto a nitrocellulose membrane (Bio-Rad, Hercules, CA, USA).
The membranes were incubated with TBS-T containing 5% milk and the primary antibodies
against MAT I/III, GCLC, α-tubulin (Santa Cruz Biotechnology, Santa Cruz, CA, USA), and CDO
(Abcam, Cambridge, MA, USA). After washing with TBS-T, the membrane was incubated with the
appropriate horseradish peroxidase-conjugated secondary antibodies. The antigen was detected using
a Western Bright ECL HRP substrate kit (Advansta, Menlo Park, CA, USA).

4.8. Determination of Sulfur-Containing Substances

Methionine, hypotaurine, and taurine were derivatized with o-phthalaldehyde/2-mercaptoethanol
and quantified using an HPLC with a fluorescence detector (FLD-3100; Thermo Scientific;
excitation 338 nm and emission 425 nm) [43,45]. They were separated with a Hector T-C18 column
(3 µm× 4.6 mm× 100 mm; Chiral Technology Korea, Daejeon, Korea). The examination of both SAM
and SAH concentrations were determined by HPLC separation with a UV detector (UltiMate™ 3000 VWD;
Thermo Scientific; 254 nm). Homocysteine, cysteine, and GSH were analyzed by the SBD-F derivatization
method [46] using an HPLC with a fluorescence detector (FLD-3100; Thermo Scientific; excitation 385 nm
and emission 515 nm). The chromatographic separation was achieved with a Hector M-C18 column
(3 µm× 4.6 mm× 150 mm: Chiral Technology Korea).

4.9. Cell Culture

HepG2 human liver cells (ATCC, Manassas, VA, USA) were grown in Dulbecco’s modified eagle’s
medium (DMEM) with 10% fetal bovine serum (FBS), 2 mM glutamine, 100 U/mL penicillin, and 100µg/mL
streptomycin (GenDEPOT, Barker, TX, USA) at 37 ◦C in a humidified incubator with 5% CO2.

4.10. Determination of Cell Viability

Cell viability was determined by the MTT assay, as instructed by the manufacturer.
Briefly, after incubation with MTT (0.5 mg/mL, Sigma Chemical Co.) for 4 h at 37 ◦C,
formazan precipitates formed by mitochondrial dehydrogenases in viable cells were extracted with
DMSO. The absorbance of the converted dye was measured at 540 nm using the MULTISKAN GO
reader (Thermo Scientific), and the results were expressed as a percentage (%) compared to the
vehicle-treated cells.

4.11. Analysis of Mitochondrial Membrane Potential (∆ψ)

HepG2 cells were incubated with 5 µg/mL of TM for 24 h, and later treated with 100 µM t-BHP for 3 h.
After treatment, cells were incubated with 10 µM JC-1 in media for 30 min in the dark, and later collected
by scraping. After the cells were washed in PBS, they were subjected to fluorescence-activated cell sorting
(FACS) analysis. There are two excitation wavelengths, 527 nm (green) for the JC-1 monomer and 590 nm
(red) for JC-1 aggregates. With normal mitochondrial function, mitochondrial membrane potential (∆ψ)
is high, and the red fluorescence signal is predominant. However, when there is mitochondrial injury,
mitochondrial membrane potential (∆ψ) is reduced, leading to an increase in the green fluorescence signal.
Quantitation of red and green fluorescent signals reflects whether mitochondria are damaged. The change
in ∆ψ was monitored by the Becton Dickinson FACSscan flow cytometer and BD FACSDiva software
(BD Biosciences, San Jose, CA, USA).
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4.12. Determination of Apoptotic Cells Using FACS Analysis

FACS analysis using Annexin V-fluorescein isothiocyanate (FITC) staining identified both
apoptotic and live cells. HepG2 cells were incubated with 5 µg/mL of TM for 24 h, and the cells were
later treated with 100 µM of t-BHP for 6 h. After harvesting, the counted cells were stained in propidium
iodide and Annexin V-FITC solution (Annexin V-FITC Apoptosis Detection Kit; BD Biosciences)
at room temperature for 15 min in the dark. The stained cells were analyzed by flow cytometry within
1 h. Both apoptotic and live cells were analyzed by the Becton Dickinson FACSscan flow cytometer
and BD FACSDiva software (BD Biosciences).

4.13. Statistical Analysis

All results, expressed as mean ± SD, were analyzed by a two-tailed Student’s t-test or
a one-way analysis of variance (ANOVA) followed by the Newman-Keuls multiple comparisons
test. The acceptable level of significance was established at p < 0.05.
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