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Abstract

The mouse is an important model organism for investigating the molecular mechanisms of body weight regulation, but a
quantitative understanding of mouse energy metabolism remains lacking. Therefore, we created a mathematical model of
mouse energy metabolism to predict dynamic changes of body weight, body fat, energy expenditure, and metabolic fuel
selection. Based on the principle of energy balance, we constructed ordinary differential equations representing the
dynamics of body fat mass (FM) and fat-free mass (FFM) as a function of dietary intake and energy expenditure (EE). The EE
model included the cost of tissue deposition, physical activity, diet-induced thermogenesis, and the influence of FM and
FFM on metabolic rate. The model was calibrated using previously published data and validated by comparing its
predictions to measurements in five groups of male C57/BL6 mice (N = 30) provided ad libitum access to either chow or high
fat diets for varying time periods. The mathematical model accurately predicted the observed body weight and FM changes.
Physical activity was predicted to decrease immediately upon switching from the chow to the high fat diet and the model
coefficients relating EE to FM and FFM agreed with previous independent estimates. Metabolic fuel selection was predicted
to depend on a complex interplay between diet composition, the degree of energy imbalance, and body composition. This
is the first validated mathematical model of mouse energy metabolism and it provides a quantitative framework for
investigating energy balance relationships in mouse models of obesity and diabetes.
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Introduction

The mouse has become the most popular model organism for

investigating the molecular mechanisms regulating energy metab-

olism and body weight (BW). However, a quantitative under-

standing of energy expenditure in mice remains lacking as

highlighted by recent articles addressing problems with the

interpretation of indirect calorimetry measurements [1–4]. Indeed,

it is often unclear whether an observed BW change in mice is a

result of altered energy intake (EI), energy expenditure (EE), or

both. While we know that diet and EE impact metabolic fuel

selection and body fat change over time, their quantitative

relationship is uncertain. From a physiological perspective, a

proper understanding of the metabolic phenotypes of various

mouse models requires quantitative integration of these variables

and how they change over time.

To begin addressing these issues, we present a mathematical model

of EE and metabolic fuel selection in male C57BL/6 mice. Our EE

model incorporated the influence of body fat mass (FM), fat-free mass

(FFM), the energy cost of tissue deposition, physical activity, and diet-

induced thermogenesis (DIT). We combined the EE model with a

mathematical model of energy partitioning to predict changes of BW,

FM, and respiratory quotient (RQ) in response to measured changes of

food intake. The model was validated by accurately predicting the BW

and FM data from an independent set of experiments in C57BL/6

mice without adjusting any model parameters. The mathematical

model demonstrates the complex relationships between metabolic fuel

selection, diet composition, energy imbalance, and body composition

change and provides a quantitative framework for investigation of

murine energy metabolism.

Methods

Modeling Energy Expenditure and Body Composition
Change

We begin with the law of energy conservation, also known as the

energy balance equation:

rFM

dFM

dt
zrFFM

dFFM

dt
~EI{EE ð1Þ

where rFM = 9.4 kcal/g and rFFM = 1.8 kcal/g are the energy

densities for changes in FM and FFM, respectively [5]. EI is the total

metabolizable energy intake rate corrected for spillage. We assumed

that the calculated metabolizable energy intake based on food

intake measurements adequately accounted for any differences of

digestibility between the diets. We did not directly measure the

energy content of the feces to confirm this assumption.
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We previously showed that there is a well-defined, time-

invariant function, a, that describes the relationship between

changes of FFM and FM in adult male C57BL/6 mice:

a:
dFFM

dFM
~czd exp k|FMð Þ ð2Þ

where the parameters c = 0.1, d = 1.8961024, and k = 0.45 g21

specify the shape of the empirically measured function a [6]. This

function allows us to write equation 1 as a pair of differential

equations specifying the rates of change of FM and FFM [6,7]:

rFFM

dFFM

dt
~

arFFM

arFFMzrFM

� �
EI{EEð Þ

rFM

dFM

dt
~

rFM

arFFMzrFM

� �
EI{EEð Þ

ð3Þ

Given measurements of EI, solving equation 3 requires a model

of EE which was adapted from published human models [8–10]:

EE~KzbDEIzlBWzcFFMFFMzcFMFM

zgFM

dFM

dt
zgFFM

dFFM

dt

~KzbDEIz cFFMzlð ÞFFMz cFMzlð ÞFM

zgFM

dFM

dt
zgFFM

dFFM

dt

ð4Þ

where K is a thermogenesis parameter which was assumed to be

constant for a fixed environmental temperature and l represents

physical activity whose energy cost was assumed to be proportional

to BW. The values for K and l were determined in the model

calibration procedure described below. The parameter b accounts

for the thermic effect of feeding as well as adaptive changes of EE

as a result of diet changes. We will refer to the product bDEI as

diet-induced thermogenesis (DIT) where DEI is the change of

energy intake compared to baseline chow and the value b = 0.4

was determined in a recent analysis of rodent feeding and body

composition data [11]. The parameters gFM = 0.18 kcal/g and

gFFM = 0.23 kcal/g account for the biochemical efficiencies

associated with fat and protein synthesis [11] assuming that the

change of fat-free mass is primarily accounted for by body protein

and its associated intracellular water [5].

The parameters cFFM and cFM determine how metabolic rate

varies with FFM and FM, respectively. To estimate the values of

cFFM and cFM, we note that basal metabolic rate (BMR) across

species is well described by the Kleiber 3/4 power law of BW:

BMR , BW L [12]. Within a species, FFM and FM are

proportional to BW. Therefore,

BMRmouse

BMRhuman

~
BWmouse

BWhuman

� �3=4

~
cmouseBWmouse

chumanBWhuman

ð5Þ

and

cmouse

chuman

~
BWhuman

BWmouse

� �1=4

&
70 kg

0:03 kg

� �1=4

&7 ð6Þ

Using equation 6 to rescale the human values of cFFM = 22

kcal/kg/d and cFM = 3.6 kcal/kg/d [13] results in mouse values of

cFFM = 0.15 kcal/g/d and cFM = 0.03 kcal/g/d.

Data for Model Calibration
The calibration data were obtained from a previously described

study, the results of which are depicted in Figure 1 [14]. Briefly, we

studied 47 three-month-old male C57BL/6 mice that were

individually housed at a temperature of 22uC and randomly

assigned to five groups: 1) C group (N = 12) on a chow diet (24%

protein, 12% fat, and 64% carb.); 2) HF group (N = 12) on a high

fat diet (14% protein, 59% fat, 27% carb.); 3) EN group (N = 11)

on a high fat diet plus liquid EnsureH (14% protein, 22% fat, 64%

carb.); 4) HF-C group (N = 6) switched from high fat to chow after

7 weeks; 5) EN-C group (N = 6) switched from high fat plus

EnsureH to chow after 7 weeks. All animals received free access to

water and food throughout the study. The high fat diet was

provided using Rodent CAFÉ feeders (OYC International, Inc.,

MA), and liquid Ensure was provided in a 30-ml bottle with a

rodent sip tube (Unifab Co., MI) and liquid intake was measured

every day. Solid food intake was corrected for any visible spillage

and was measured every day for the high fat diet and every other

day for the chow diet using a balance with a precision of 0.01 g

(Ohaus model SP402). Body composition was measured using 1H

NMR spectroscopy (EchoMRI 3-in-1, Echo Medical Systems

LTD, Houston, TX) and was recorded longitudinally throughout

the study along with food intake and BW. The BW and FM at the

Figure 1. Mathematical model calibration. BW (A) and FM (B) data
were obtained from 47 male C57BL/6 mice that were randomly
assigned to five groups: the C group (solid circles) on a chow diet; the
HF group (solid blue triangles) on a high fat diet; the EN group (solid
magenta squares) on a high fat diet plus liquid Ensure; the HF-C group
(open red triangles) switched from high fat to chow after 7 weeks; and
the EN-C group (open green squares) switched from high fat plus
Ensure to chow after 7 weeks. The solid curves are the mathematical
model fit to these data. Error bars have been suppressed for clarity.
doi:10.1371/journal.pone.0015961.g001
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beginning of the study were used as the initial values for the model

inputs.

We certify that all applicable institutional and governmental

regulations concerning the ethical use of animals were followed

during this research. All procedures were approved by the

National Institute of Diabetes and Digestive and Kidney Diseases

Animal Care and Use Committee under protocol K009-LBM-07.

Model Calibration Procedure
We assumed that the physical activity parameter l depended on

the diet as described by the following differential equation:

t
dl

dt
~lC0z lH{lC0ð Þ d t{tswitch1ð ÞzH t{tswitch1ð Þ½ �

z lC1{lHð Þd t{tswitch2ð Þz lC2{lHð ÞH t{tswitch2ð Þ{l

ð7Þ

where the initial value l(0) = lC0 was the physical activity for the

baseline chow diet group, C. For the HF, EN, HF-C and EN-C

mice that were switched to a high energy diet at time tswitch1, the

physical activity parameter was assumed to change immediately to

the value lH (as implemented using the Dirac delta function, d)

and to remain at this level during the high energy diet (as

implemented using the Heaviside function, H). For the HF-C and

EN-C mice switched back to the chow diet at time tswitch2 we

assumed that they immediately changed their physical activity to

the value lC1 which then exponentially relaxed to a value of lC2

with a time constant of t = 14 days.

The model equations were numerically solved with the ODE45

solver using MATLAB software version R2008a (http://www.

mathworks.com). While most model parameters were defined from

analysis of previous data as stated above and tabulated in Table 1,

the parameters K, lC0, lC1, lC2, and lH had to be estimated using

data from our calibration experiment. The parameter values were

determined using the Markov Chain Monte Carlo method where

random guesses for the parameter values are proposed along with a

simple rule for updating the parameter values depending on how

closely the model results match the data [15]. Specifically, the model

was run for 100,000 rounds for each group of mice and the first

30000 were discarded as a burn-in period with one fifth of the

subsequent rounds were retained. Parameter sets were drawn from

a proposal density that was normally distributed and centered on

the previous value. The variance of the proposal density was tuned

for an average acceptance rate of around 0.25 during the burn-in

period. The convergence of the chain was assessed both by visual

inspection of the trace plots for all the parameters and through the

Geweke test [16]. At each sampling, the probability of accepting the

new parameter set given current parameter set was min(1, r), where

r is the Metropolis ratio. The energy intake in each group of animals

was normally distributed with a standard error of 0.39, 0.39, 0.41,

0.55, and 0.55 Kcal/d for the C, HF, EN, HF-C, and EN-C groups,

respectively. The 95% confidence intervals of the predicted energy

output were obtained by calculating the 2.5th and 97.5th percentiles

of the posterior distribution of energy output.

Model validation
The model was validated using data from an independent study

where 30 three-month-old male C57BL/6 mice were individually

housed at a temperature of 22uC and randomly assigned to five ad

libitum fed groups depicted in Figure 2: 1) the control group on a

chow diet (N = 6); 2) the 7HF-C group on a high fat diet for 7 wk

followed by a switch to chow (N = 6); 3) the HF-C-HF-C on a high

fat diet for 7 wk followed by a switch to chow for 3 wk, back on the

high fat diet for 10 wk and followed by a switch back to chow

(N = 6); 4) the 20HF-C on a high fat diet for 20 wk followed by a

Table 1. Mathematical model symbols and parameter values.

Symbol Description Role Value Units

IF Metabolizable fat intake Input kcal/d

IP Metabolizable protein intake Input kcal/d

IC Metabolizable carbohydrate intake Input kcal/d

FM Body fat mass Output g

FFM Fat-free mass Output g

EE Total energy expenditure rate Output kcal/d

RQ Respiratory quotient Output —

rFM Energy density of fat mass changes Parameter 9.4 kcal/g

rFFM Energy density of lean mass changes Parameter 1.8 kcal/g

cFM Metabolic rate of body fat mass Parameter 0.03 kcal/g/d

cFFM Metabolic rate of fat-free mass Parameter 0.15 kcal/g/d

gFM Deposition cost for body fat Parameter 0.18 kcal/g

gFFM Deposition cost for fat-free mass Parameter 0.23 kcal/g

b Diet-induced thermogenesis Parameter 0.4 —

lC0 Physical activity at baseline Parameter* 0.22 kcal/g/d

lC1 Physical activity immediately after switching from high fat to chow Parameter* 0.27 kcal/g/d

lC2 Physical activity at steady state after switching from high fat to chow Parameter* 0.19 kcal/g/d

lH Physical activity on a high fat diet Parameter* 0.13 kcal/g/d

K Basal thermogenesis rate Parameter* 2.1 kcal/d

The parameters indicated with ‘*’ were determined by the model calibration procedure to minimize the difference between the simulated and observed BW and FM
changes in the calibration experiment. No parameter values were adjusted for the validation experiment.
doi:10.1371/journal.pone.0015961.t001
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switch to chow (N = 6); 5) the 4HF-C group on high fat diet for 4

wk followed by a switch to chow (N = 6). The chow and high fat

diets were identical to the diets used in the calibration study. The

body composition (Tables S1 and S2) and energy intake data

(Table S3) are provided as Supporting Information.

The measured food intake rates were used as model inputs to

predict BW and FM in the validation experiment and no model

parameter values were adjusted. The energy intake in each group

of animals was normally distributed with a standard error of 0.42,

0.48, 0.50, 0.53, and 0.55 kcal/d for the five groups, respectively.

The 95% confidence intervals of the predicted energy output were

obtained by calculating the 2.5th and 97.5th percentiles of the

posterior distribution of EE.

Metabolic Fuel Selection and the Respiratory Quotient
Since we are also interested in metabolic fuel selection, we

considered the fates of dietary macronutrients including their oxidation

rates, storage in the body, as well as major inter-conversion fluxes de

novo lipogenesis (DNL) and gluconeogenesis (GNG). The following

macronutrient balance equations represented these changes:

rFM

dFM

dt
~IF zDNL{FatOx

rP

dP

dt
~IP{GNG{ProtOx

rG

dG

dt
~ICzGNG{DNL{CarbOx

ð8Þ

where P is body protein, G is glycogen, and IF, IP and IC are the

metabolizable intake rates of dietary fat, protein and carbohydrate,

respectively. The oxidation rates of fat, protein, and carbohydrate

(FatOx, ProtOx, and CarbOx, respectively) sum to EE.

To simplify the macronutrient balance equations, we note that

glycogen stores are small, especially when compared with daily

carbohydrate intake rates [6]. Thus, over the time-scale of interest

the system is in a state of average carbohydrate balance:

ICzGNG&DNLzCarbOx ð9Þ

Therefore,

rFM

dFM

dt
~IF zDNL{FatOx

rP

dP

dt
~IPzIC{DNL{CarbOx{ProtOx

~IP{ProtOxnet

ð10Þ

where the net oxidation rates were defined as:

FatOxnet:FatOx{DNL

CarbOxnet:CarbOxzDNL{GNG

ProtOxnet:ProtOxzGNG

ð11Þ

Assuming that FFM is proportional to body protein:

rFFM

dFFM

dt
~rP

dP

dt
ð12Þ

then equations 3, 8 and 9 resulted in the following expressions for

the net macronutrient oxidation rates based on the model

variables:

FatOxnet~IF {
rFM

arFFMzrFM

� �
EI{EEð Þ

ProtOxnet~IP{
arFFM

arFFMzrFM

� �
EI{EEð Þ

CarbOxnet~IC

ð13Þ

The respiratory quotient, RQ, is the carbon dioxide production

rate divided by the oxygen consumption rate and was approxi-

mated by:

RQ~ 0:7|FatOxnetz0:83|ProtOxnetzCarbOxnetð Þ=EE ð14Þ

The calculated RQ may have slight inaccuracies during rapid

transitions immediately after diet switches but will be reasonably

accurate thereafter since the net carbohydrate oxidation rate is

approximately equal to the carbohydrate intake rate on long time

scales (several days in mice). Using the measured food intake rates

along with the model calculated values of EE and FM, we applied

equations 13 and 14 to calculate the dynamic changes of metabolic

fuel selection over time. Note that these calculations did not

influence the main model predictions for BW and FM.

We compared the calculated RQ values with the food quotient,

FQ, which is a measure of the expected carbon dioxide production

rate divided by the oxygen consumption rate had the food itself

been combusted directly:

FQ~ 0:7|IF z0:83|IPzICð Þ=EI ð15Þ

In a state of energy and macronutrient balance, RQ = FQ and

any deviations from this equality reflect a situation where the

Figure 2. Experimental groups used for model validation. Mice
were assigned to five different groups and provided ad libitum access to
either a standard chow diet (black) or a high fat diet (red) for varying
durations: 1) the control group on a chow diet (N = 6); 2) the 7HF-C
group on a high fat diet for 7 wk followed by a switch to chow (N = 6);
3) the HF-C-HF-C on a high fat diet for 7 wk followed by a switch to
chow for 3 wk, back on the high fat diet for 10 wk and followed by a
switch back to chow (N = 6); 4) the 20HF-C on a high fat diet for 20 wk
followed by a switch to chow (N = 6); 5) the 4HF-C group on high fat
diet for 4 wk followed by a switch to chow (N = 6).
doi:10.1371/journal.pone.0015961.g002
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metabolic fuel mixture differs from the diet and body composition

changes will therefore result.

Results

Model Calibration
The comparison between the model simulations and the

measured values for BW and FM from the calibration study is

presented in Figures 1A and 1B, respectively. As previously

described [14], the C group that only ate chow slightly increased

BW and FM (solid circles in Figures 1A and 1B, respectively)

throughout the study. The animals on the high fat diet (HF group

shown in solid blue triangles) gained a substantial amount of

weight and fat and the animals supplemented with the liquid

Ensure (EN group shown in solid magenta squares) gained even

more. Both the HF-C and EN-C groups (open red triangles and

green squares, respectively) rapidly lost weight and fat after the

switch from the high energy diets to the chow diet and reached a

stable BW and FM four weeks after the diet switch at a level

significantly higher than the C group.

The model simulations, depicted by the solid curves in Figure 1,

agreed with the measurements for both the BW and FM

measurements thereby demonstrating that the model was able to

accurately describe the observations in the calibration study. The

best-fit model parameters for physical activity were lH =

0.13 kcal/g/d for the HF and HF-C groups and lH =

0.16 kcal/g/d for the EN and EN-C groups (note that the latter

value for lH was irrelevant for the validation study since Ensure

was not used). The baseline physical activity was lC0 = 0.22 kcal/

g/d for all groups, and following the switch to chow in the HF-C

and EN-C groups lC1 = 0.27 kcal/g/d and lC2 = 0.19 kcal/g/d.

Thus, introduction of the high fat diet resulted in a predicted drop

of physical activity by ,40% below the baseline chow diet. When

the diet was switched back to chow, there was an immediate

increase of physical activity, reaching ,20% higher than baseline,

which subsequently relaxed back to a value close to baseline. Since

all mice were individually housed and kept at the same 22uC
environmental temperature, the thermogenesis parameter K =

2.1 kcal/d was constant across all groups. The EE and RQ

predictions closely matched the previously published estimates of

these variables (not shown) [6].

Model Validation
Using the same parameter values determined in the calibration

procedure, Figure 3 shows that the model (curves) accurately

predicted the measurements (N) of BW and FM of the five

validation groups shown in the left and right columns, respectively.

The 95% confidence intervals predicted by the model (dashed

curves) and the error bars of the measurements overlapped

throughout the entire study. Moreover, most of the model

predictions fell within one standard error of the observed data

for both BW and FM.

The dynamics of EI and EE for the various groups are

presented in the left column of Figure 4. The measured EI data (N)
were first fit by the solid black curves which were used as the

model inputs. The simulated EE dynamics are depicted using solid

blue curves with the 95% confidence intervals shown using dashed

blue curves. The control group EE was only slightly lower than EI,

which is consistent with the slow increase of BW and FM in this

group (Fig. 4A). High fat feeding decreased EE at the beginning of

the experiment compared with the control group which, along

with increased EI, resulted in significant weight gain that was

accompanied by a gradual increase of EE. In the 7HF-C and HF-

C-HF-C groups (Fig. 4B and 4C), switching from the high fat diet

to chow at week 7 caused a small transient increase of EE due to

increased physical activity which, along with the dramatic fall of

EI, gave rise to the rapid BW losses shown in Fig. 3B and 3C. In

contrast to the small increase of EE observed at week 7 upon

switching to chow in the 7HF-C and HF-C-HF-C groups, the

model predicted a substantially greater increase of EE after the

diet switches at week 20 in the HF-C-HF-C and 20HF-C groups

(Fig. 4C and 4D). This was predicted to result from the same

transient increase of the physical activity parameter, l, leading to a

greater increase of EE since the BW was higher at week 20 versus

week 7 and the energy cost of physical activity is given by the

product l6BW. Furthermore, the drop of EI was not as great

upon switching to chow at week 20 versus week 7 and therefore

the decrease of DIT did not offset the increased physical activity to

the same extent as it did at 7 weeks. In the HF-C-HF-C group,

although an increase in EI was observed at week 10 when the

animals were switched from chow diet back to high fat diet, the EE

remained relatively unchanged which resulted in rapid weight

regain. The relative stability of EE at week 10 was predicted to

result from a balance between the decreased physical activity on

the high fat diet which was completely offset by the increased DIT.

The predicted dynamics of RQ (red) and FQ (black) are

presented in the right column of Figure 4. The control group had

RQ approximately equal to FQ = 0.92 corresponding to the chow

diet. The high fat diet had a lower FQ = 0.80 and RQ

immediately dropped at the onset of high fat feeding to a value

slightly higher than FQ. Subsequently, RQ gradually fell as FM

increased. When the animals were switched from the high fat diet

to chow at week 7, a transient decrease of RQ was predicted right

after the diet switch in the 7HF-C and HF-C-HF-C groups (Fig. 4B

and 4C) and a similar transient decrease of RQ was seen in the

4HF-C group at week 4 (Fig. 4D). However, such a decrease of

RQ was not predicted when switching from high fat to chow at

week 20 in the 20HF-C and HF-C-HF-C groups because their

higher FM had already dropped the RQ to a lower value at the

time of the diet switch and the decrease of EI was not as great at

week 20. When the HF-C-HF-C group was switched from the

chow diet to the high fat diet at week 10, an immediate decrease of

RQ was predicted similar to the initial onset of high fat feeding at

week 0. These results highlight the complex interplay between diet

composition, the degree of energy imbalance, and the body

composition in determining metabolic fuel selection.

Discussion

To our knowledge, there is only one previous report of a

mathematical model of mouse metabolism and BW regulation and

that model focused on the role of leptin to influence both EI and

EE [17]. While that previous model led to interesting theoretical

insights regarding feedback control of BW, the mathematical

model was not validated and did not address the issue of metabolic

fuel selection [18]. Our previous mathematical analysis used

measured BW and food intake data as model inputs to estimate EE

and fuel selection dynamics [6]. Here, we extended our previous

analysis by explicitly modeling the determinants of EE. The only

model input was food intake and this information allowed our

model to accurately predict the observed changes of BW and FM

in five independent groups of animals. Therefore, our model is the

first validated mathematical model of mouse energy metabolism.

The model also predicted dynamic changes of RQ and EE over

the entire course of the study based on the principle of energy

conservation. However, we were unable to directly confirm these

predictions since we did not have corresponding indirect

calorimetry data. Such measurements would be prohibitive over

Mathematical Model of Mouse Metabolism

PLoS ONE | www.plosone.org 5 January 2011 | Volume 6 | Issue 1 | e15961



the entire time course of the study, and measurements at isolated

time points would likely lead to behavior change in the animals as

they are removed from their home cages. Indeed, a recent elegant

study demonstrated that the indirect calorimetry procedure caused

weight loss mice that had previously been gaining weight on either

a high fat or chow diet [19]. Weight gain only occurred when mice

previously fed chow were provided with a novel high fat diet in the

indirect calorimetry chamber. While the authors presented a

Figure 3. Mathematical model validation. Model simulations (solid black curves; dashed curves are 95% confidence intervals) were compared
with data on BW (left column) and FM (right column) obtained from 30 male C57BL/6 mice randomly assigned to five groups: A) the control group on
a chow diet; B) the 7HF-C group on a high fat diet for 7 wk followed by a switch to chow; C) the HF-C-HF-C on a high fat diet for 7 wk followed by a
switch to chow for 3 wk, back on the high fat diet for 10 wk, followed by a switch back to chow; D) the 20HF-C on a high fat diet for 20 wk followed
by a switch to chow; and E) the 4HF-C group on high fat diet for 4 wk followed by a switch to chow. No model parameters were adjusted to fit these
data.
doi:10.1371/journal.pone.0015961.g003

Mathematical Model of Mouse Metabolism
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simple statistical method to adjust the indirect calorimetry

measurements based on the observed weight changes [19], the

fact remains that the behavior of the animals during the procedure

was clearly not representative of the extended study duration. Our

previously described methodology for estimating RQ and EE

avoids this difficulty [6], and the comparison of our model

predictions for RQ and EE closely matched our previous estimates

(not shown).

Regardless of the likely behavior changes introduced by the

procedure, indirect calorimetry may be useful for investigating the

contribution of FFM and FM to EE and we compared our

mathematical model of EE with the results from a recently

Figure 4. Mathematical model predictions of EE (left column) and metabolic fuel selection (right column). In the left column, the data
points (N) are the EI measurements for the experiment depicted in Fig. 2 which were fit to the solid black curves and used as model inputs. The solid
blue curves are the model predicted EE with the dashed blue curves representing the 95% confidence intervals. In the right column, the solid black
curves represent the FQ of the diets and the solid red curves are the model predicted RQ with the dashed red curves representing the 95%
confidence intervals.
doi:10.1371/journal.pone.0015961.g004
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published mouse study [4]. Our equation 4 predicts that the

coefficients describing how total EE varies with FFM and FM have

values of (cFFM + l) = 0.23 cal/g/min and (cFM +l) = 0.14 cal/g/

min averaged across all of the diets used in the present study.

These values agree reasonably well with the regression coefficients

of 0.269 cal/g/min and 0.144 cal/g/min found by Kaiyala et al.

using mice fed various diets where total EE was regressed against

FFM and FM, respectively [4]. Thus, these data lend further

independent support to our model which also includes the

influence of DIT, tissue deposition costs, and physical activity in

addition to the dependence on FM and FFM.

We assumed that physical activity depended on the diet

composition which is in accordance with previous studies showing

that high fat diets result in substantial decreases of physical activity

[14,20]. Interestingly, to match the BW data from our calibration

study our model predicted that high fat feeding caused an

immediate and sustained decrease of physical activity whereas

switching back to a chow diet causes a transient overshoot of

physical activity, which together with a dramatic reduction of EI,

resulted in rapid weight loss. This is consistent with previous

studies showing that caloric restriction leads to increased activity in

mice [21], but in our study the mice voluntarily restricted their

own intake of chow after the high fat diet was removed. The

degree of increase of total EE upon switching to the chow diet was

found to depend on BW at the time of the diet switch.

Furthermore, the decrease of EI caused a decrease of DIT that

offset the effect of increased physical activity.

Our model has several limitations. First, the time scale of the

model is days, weeks and months and therefore does not address

within-day dynamics such as the transition from fed to fasted

states. Second, physical activity behavioral changes need to be

either input directly or calibrated from previous data for mice in

similar environments. Therefore, applying the model calibrated

for individually housed mice without running wheels will not

necessarily represent the behavior of mice housed under different

conditions (e.g., with running wheels). Similarly, all of our studies

were conducted using individually housed mice kept at the same

22uC environmental temperature, but it is well-known that

temperature can significantly impact EE in mice [22,23]. This

effect could be incorporated in our model by replacing the

constant thermogenesis parameter K with a decreasing function of

temperature until thermo neutrality is reached. It may also be

necessary to make other model parameters temperature depen-

dent. For example, the DIT parameter b and the dependence of

metabolic rate on body fat, cFM, since it is possible that UCP-1

activation in brown adipose tissue is temperature dependent and

mediates DIT [24], although this effect is controversial [25].

We anticipate that modification of the model parameters will be

required to appropriately represent other strains of mice, genetic

knockouts, or transgenic mouse models. Indeed, the process of

determining the parameter modifications required to accurately

simulate different mouse models will provide important quantita-

tive information regarding their integrative metabolic phenotypes

and the differences between mouse models.

Our mathematical model provides a quantitative framework for

integrating murine data on food intake, body weight, and body fat

to help understand the complex dynamic relationships between

diet, expenditure, body composition and metabolic fuel selection.

In the future, we hope to validate our RQ and EE model

predictions by comparing with indirect calorimetry data where

mice spend many weeks inside suitably modified metabolic cages.

We also plan to incorporate a more mechanistic representation of

metabolic flux regulation and the influence on EE and metabolic

fuel selection as was recently described in more detailed

mathematical models of human metabolism published by our

research group [26,27]. Finally, we plan to include the potential

influence of circulating factors such as insulin and leptin and

eventually ‘‘close the loop’’ by modeling the regulation of food

intake in mice.
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