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Abstract: Human visual inspection of drains is laborious, time-consuming, and prone to accidents.
This work presents an Al-enabled robot-assisted remote drain inspection and mapping framework
using our in-house developed reconfigurable robot Raptor. The four-layer IoRT serves as a bridge
between the users and the robots, through which seamless information sharing takes place. The
Faster RCNN ResNet50, Faster RCNN ResNet101, and Faster RCNN Inception-ResNet-v2 deep
learning frameworks were trained using a transfer learning scheme with six typical concrete defect
classes and deployed in an IoRT framework remote defect detection task. The efficiency of the trained
CNN algorithm and drain inspection robot Raptor was evaluated through various real-time drain
inspection field trials using the SLAM technique. The experimental results indicate that robot’s
maneuverability was stable, and its mapping and localization were also accurate in different drain
types. Finally, for effective drain maintenance, the SLAM-based defect map was generated by fusing
defect detection results in the lidar-SLAM map.

Keywords: reconfigurable robot; defect inspection; drain inspection; deep learning; computer vision;
mapping

1. Introduction

Drains are the primary conduits transporting sewage, rainwater, and other liquid
waste to the point of disposal in any urban environment. Hence, a routine drain inspection
is a prerequisite in today’s scenario. Structural deterioration is a continuous process that
reduces the load-bearing capacity of drains and gives rise to various kinds of defects, which
further leads to potential infrastructural damage [1]. The traditional method for defect
detection in open and closed drains and sewers is human visual inspection. However,
it is a labor-intensive task, time-consuming, and difficult for humans to monitor many
locations simultaneously over extended periods. Additionally, the workforce shortage
is another issue that drain management companies face due to low wages, health issues,
and being prone to high risk of accidents in a complex environment. In [2], the economic
survey indicated that demand for remotely operated drain inspection devices is expected
to grow at a compound annual growth rate (CAGR) of 8.3% from 2020 to 2027. The factors
mentioned above are foreseen to drive the demand to automate drain inspection and defect
mapping tasks.

In the literature, various algorithms and tools are reported to automate drain defect
detection and mapping tasks. Closed-Circuit Television (CCTV) [3-8], sonar [9], laser
scanner [10], infrared [11], and computer vision algorithms with robot-assisted remote
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inspection [12-17] are commonly used methods. Among them, computer vision-based
robot-assisted remote inspection is a widely used method in the industry and has been
classified into two categories: the traditional approach (non-learning) and the learning-
based approach. Here, the traditional approach used feature descriptors such as Scale
Invariant Feature Transform (SIFT) [18], Speeded Up Robust Features (SURF) [19], Features
from Accelerated Segment Test (FAST) [20], Hough transforms [21], etc., for defect detection.
On the other hand, learning-based approaches such as Machine Learning (ML) and Deep
Learning (DL)-based frameworks are widely used in various defect inspection applications.
Deep learning assists in achieving greater accuracy and often requires less expert analysis
and fine-tuning [22,23].

Generally, CCTV and fixed morphology robot are widely used tools for computer
vision-based robot-assisted drain inspection and defect mapping application [13-16,23,24].
However, deploying and maintaining CCTVs for long-range drain networks is a challeng-
ing task. More cameras are required to cover a more extensive drainage system area and
to accurately pinpoint the exact location of the defect in the drain. On the other hand,
fixed morphology robot-based drain inspection has some practical shortcomings. The fixed
morphology robots are mostly designed for sewer pipe or tunnel inspection, which are
hard to fit into uneven complex open and closed drain environments for inspection. As a
result, during the inspection, versatility and efficiency is limited.

Reconfigurable robots are more flexible than fixed-size robots. In recent years, recon-
figurable morphology-based robots have been widely used for various automation applica-
tions including cleaning indoor and outdoor environments [25,26], inspecting built environ-
ments [23,27], ship hull inspection, aircraft structural inspection [28], etc. From the literature,
it is realized that designing a reconfigurable morphology-based robot is an optimal solu-
tion to overcoming the shortcomings mentioned earlier. Through reconfigurable robots,
we can access complex drain structures and constricted drain environments by changing
the morphology.

To the best of our knowledge, there is no direct case study using Al-powered recon-
figurable robots for defect detection and mapping in a drain environment. This work
presents an Al-enabled robot-assisted remote drain inspection and defect mapping using
our in-house developed reconfigurable robot Raptor. This reconfigurable robot is specially
designed for inspecting complex drain environments with the help of a DL algorithm and
the SLAM technique and generates a SLAM-based defect map.

This paper is organized as follows: Section 1 presents the introduction and motivation
to conduct this work. The literature review is presented in Section 2. Sections 3 and 4
describes the methodology and overview of the proposed system. The experimental
setup, findings, and discussion are covered in Section 5. Finally, Section 6 concludes this
research work.

2. Literature Survey

Generally, a computer vision system is an key component in automating defect de-
tection and mapping applications. This section describes a literature survey of computer
vision-based defect detection and mapping schemes using traditional and learning-based
approaches. In the traditional approach, various method were studied to identify defects
for various application. In [29], Chinthaka et al. presented an image-based automatic
road crack detection framework for achieving smooth driving on deformed roads. Otsu’s
binarization, a discriminant analysis method, was employed for crack extraction from crack
images of each sample. A detection rate of 94% was achieved. In another study [30], the
authors presented a novel method to detect moving objects using a 360-degree view camera.
Image processing steps such as gamma correction, background subtraction, noise removal,
and confirmation by contour determination were used to detect the moving object. Moving
objects almost within 10 m could be detected with a high detection rate. Wang et al. in an-
other study presented an automatic detection of rail-surface cracks [31]. The Simple Linear
Iterative Clustering (SLIC) algorithm was applied to generate superpixels of raw rail im-
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ages to identify cracks. Five classification algorithms, the Support Vector Machines (SVM),
Neural Networks (NN), Random Forests (RF), Logistic Regression (LR), and Boosted Tree
(BT), were compared, in which RF provided the best performance. In traditional computer
vision techniques, it is mandatory to choose the best features describing different classes of
objects. As the number of classes to classify increases, feature extraction becomes more and
more difficult.

The traditional computer vision system is a key module that can be combined with
artificial intelligence using Machine Learning (ML) and a Deep Learning (DL)-based
framework for different inspection applications. A DL technique is proposed for the
automatic detection of multiple sewer pipe defects in [4]. The authors used a Faster
Region-based Convolutional Neural Network (FR-CNN). The mean average precision
increased to 83% by increasing the dataset size and convolutional layers and by adjusting
the hyperparameters. Likewise, a deep learning-based framework, the YOLOv3 algorithm,
was used to detect sewer pipe defects. The training dataset for the model contained
six different defects in the drain, which were broken, holes, deposits, cracks, fractures,
and roots, and the framework detected the defect with a mean Average Precision (mAP) of
85.37% [32]. Syed et al. suggested a deep learning framework for classifying defects (defect
longitude, debris silty, joint faulty, joint open, lateral protruding, and surface damage) in
underground sewer pipes. The CNN was fine-tuned before training and trained on a total
of 47,072 images, which assisted in recording the highest accuracy of 96.33% [7].

3. Methodology

This work adopts the IoRT (Internet of Robotic Things)-based method for implement-
ing a remote drain inspection and defect mapping. The IoRT is an advanced version of the
Internet of Things (IoT). It is a combination of many technologies such as Cloud Computing,
Artificial Intelligence (Al), IoT, and robotics technology [33]. A four-layer IoRT framework
was used to set up the functional component of our proposed system. Figure 1 shows
an overview of a four-layer IoRT-based drain inspection framework. It consists of (1) a
physical layer, (2) a transmission layer, (3) a processing layer, and (4) an application layer.
Here, the physical layer is represented by the robot and its sensors and actuators. Wireless
communication between the robot and remote server was mapped in the transmission layer.
The remote server is the processing layer where the DL-based object detection framework
was employed to generate the drain defect map from Raptor-collected images along with
the SLAM algorithm. Finally, the user interface is represented as the application layer.

Rossmaster Local Cloud Cloud
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— (@)
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Figure 1. Overview of the drain inspection framework.
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4. Defect Detection and Mapping with IoRT Framework
4.1. Physical Layer

A fleet of autonomous mobile robots named 'Raptor” was developed for visual drain
inspection, capturing the drain’s wall and terrain and transmitting it to the defect detection
algorithm. The robot ‘Raptor’ facilitates the implementation of the physical layer in the
proposed drain inspection system. Figure 2 shows the different views of Raptor. Typically,
a drain inspection robot has many design constraints and challenges due to the complex
drain infrastructure, uneven and slippery terrain, and heavy payload and should be able to
perform complicated inspection tasks while being operated remotely. Furthermore, a vision
sensor was attached with a pan-tilt mechanism to handle the narrow drain path. The pan-
tilt mechanism mounted at a height allows for a broader view of the drain structures on
either side. Table 1 shows the detailed specifications of the Raptor robot. The robot is
lightweight (2.45 kg) and compact (390 x 350 x 200 mm) for easy maneuvering and offers
maximum possible rigidity in inconsistent dimensions and terrain of the drain.

(a (b) () (d)
Figure 2. Different views of Raptor. (a) Isometric view; (b) Front view; (c) Side view; (d) Top view.

Table 1. Technical specification of robot Raptor.

Description Specification

Platform Weight 2.45 kg

Payload Uptolbkg

Dimensions 0.390 x 0.350 x 0.200 m
Environmental 3D-printed nylon for prototyping
Ground Clearance 0.098 m stowed, 0.150 m unstowed

Maximum Linear Velocity 0.22m/s

Maximum Angular Velocity 0.85rad/s

Maximum Gradient 20-25 degree
Maximum Side Gradient 18-20 degree

Traverse Terrain Tested on short grassland, concrete, and road conditions

4.1.1. System Architecture

The system architecture of Raptor is depicted in Figure 3. It consists of different
modules, including locomotion modules, the control unit, the power distribution module,
the localization module, the collision detection and navigation module, and the reconfig-
urable module.
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Figure 3. System architecture.

4.1.2. Locomotion Module

The key design requirement of the locomotion module is to resist ground shocks
and impulsive reaction loads. Therefore, all four wheels of the Raptor are powered by a
DC metal gear motor 20 D x 46 L mm 12 V CB motor to prevent the locomotion module
from struggling in the complex environment of drains. The motor’s power factor provides
a maximum gradient of 20 to 25 degrees for continuous operation on uneven terrain.
Furthermore, a fork with supporting ribs is mounted to hold the wheel motors and to
distribute the load uniformly to the four wheels, and metal hubs with rims are employed to
firmly secure the Raptor’s wheels. On the other hand, rubber tire tread is used to increase
the amount of friction on the ground. The wheel’s diameter and the chassis height provide
good ground clearance to overcome various obstacles on the path.

4.1.3. Control Unit

The onboard control unit for Raptor was built using a Raspberry Pi single board
computer and Robot Operating System (ROS) middleware. It processes the data from
cameras, lidar, Inertial Measurement Unit (IMU), and Beacon modules and supports the
robot in operating in telemetry and fully autonomous capabilities. While operating with
the telemetry mode, the robot control system takes velocity and direction input commands
from the operator via a remote server and outputs individual motor speed signals using
the inverse kinematics method. On the other hand, while operating in autonomous mode,
the remote server generates navigation trajectories via the NavFn global and DWA local
planner. These trajectories in the form of waypoints are passed to the robot for autonomous
navigation. Furthermore, the onboard control unit generates individual wheel speeds based
on the trajectory and odometry information when operating in an autonomous mode.

4.1.4. Power Distribution Module

The power distribution module comprises a four-cell Lithium-ion battery (14.4 V 2800 mAh)
and two voltage regulators that generate 12 V for the motor driver and 5 V for the Raspberry
Pi hardware.

4.1.5. Localization Module

Localization is an key function used to determine the robot position in a drain envi-
ronment and used to compute the defect location. An indoor GPS is used to localize the
robot position in a drain environment. Marvelmind’s UWB Super Beacons was adopted as
the indoor GPS. It provides an accuracy of up to 2 cm. At least three stationary beacons
are required to form a map, as shown in Figure 4. Here, one beacon should be fixed in the
robot (mobile beacon), and the other beacons are positioned at different corners according
to the drain structure. When the robot moves, the position of the mobile beacon changes in
relation to the stationary beacons. These data are used to track mobile beacon positions.
Along with the UWB beacon, absolute IMU, and wheel odometry of the robot, the data are
fused together to localize the robot position accurately.
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Figure 4. UWB localization.

4.1.6. Collision Detection and Navigation Module

The navigation stack of the autonomy layer uses a dedicated ROS node called move_base
for path planning and obstacle avoidance. The move_base node links a global and local
planner together to accomplish global navigation tasks. Move_base plugin implements an
action that attempts to reach a geiven goal with a mobile platform. Running the move_base
node on the Raspberry Pi results in a robot that attempts to achieve a goal pose within a
user-specified tolerance with the robot base. The low-cost RP lidar Al was mounted at
the top of the robot to scan the surroundings, looking for any dynamic obstacles during its
navigation. With lidar’s rotation frequency of 10 Hz and 8000 sampling points per second,
the dynamic obstacles are accurately detected and are processed by the move_base algorithm
to avoid them.

4.1.7. Reconfigurable Module

The reconfiguration module plays a crucial role in Raptor functionality and is one of
the vital contributions from this work. The manual reconfigurable module uses different
stages based on the drain situation, as shown in Figure 5. Mode 1 is fully retracted, used for
more stringent and narrow passages. Mode 2 is hybrid-open and used for areas that require
maximum ground clearance. Finally, Mode 3, fully expanded, is used for more excellent
stability. The robot has two mechanisms, which are push-button and lever mechanisms,
as shown in Figure 6. As the user releases the push button, the latch slides horizontally and
removes the fork latch hook. Once unlocked, the lever handle can be adjusted to the wheel’s
position. This variation and flexibility due to the reconfiguration modes facilitate smoother
maneuverability in different drain terrains. The design considersation of individual drain
types and terrains with a simplistic approach for robots and the reconfigurable mechanism
is an innovative and essential contribution compared with state-of-the-art robot research.
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Mode 1 Mode 2 Mode 3

Figure 5. Three reconfiguration modes.

F A '\}Iéperedge push
y ; “button
g Fork latch Slider latch ) -

hook

(@) (b)

Figure 6. Reconfigurable mechanism. (a) Push button mechanism; (b) Lever mechanism.

4.1.8. Vision System with Pan-Tilt Mechanism

The robot vision system was built using a real-sense stereo camera fitted on top
of the pan-tilt mechanism. Here, the pan-tilt mechanism was designed considering the
broader field of view requirements in a drain environment with enabled high-precision
angle control capabilities in two degrees of freedom. The pan-tilt mechanism consists
of two servo motors (dynamixel mx-64), as shown in Figure 7. Here, motor A controls
the degree of freedom (d.o.f) around the z-axis and motor B controls the d.o.f around
the x-axis of the camera frame. These servo motors control the yaw and roll angles
of the pan-tilt mechanism. The yaw rotation is represented by B and the roll rotation
by alpha, as depicted in Figure 7a. The transformation between the camera frame of
reference and the robot’s frame of reference was performed using the Tf transformation
function supported by the ROS architecture. The offset information between the x, y, and
z-axes and the pitch angle was static and provided at the beginning of the experiment.
In contrast, the yaw and the roll angle changes dynamically due to the working of the
pan-tilt mechanism. Adaptive transformation is a technique that was proposed to tackle
this problem of continuous change in the coordinate frame transformation between the
sensors and robot reference frames through continuous estimation and update of the
transformation frames. The orientation of each motor was estimated through a 12-bit
absolute encoder, which was used to calculate the § and the a of the camera mounted
on motor A. These roll and yaw angles were used to update the tf between the camera
frame and the robot coordinate frame. Hence, through precious encoders and an adaptive
transformation technique, all of the defects detected by the camera were transformed and
added to the map in the robot’s frame (Equation (1)) .
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Figure 7. Pan-tilt mechanism. (a) Pan tilt camera setup; (b) Frames of reference transformation.
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R and T in Equation (2) are the rotation and translation matrices of the transforma-
tion function.

4.2. Network Layer

The network layer links the physical layer (robot nodes), processing, and application
layers; 2.4 GHz WiFi communication was used for all local communication. The D-Link 4G
/LTE mobile router built-in WiFi router was used to establish the internet communication.
It uses a USIM card to connect to the internet.

4.3. Processing Layer

The processing layer was built with a powerful processing unit (remote server or
cloud server) to manage physical, transmission, and application layer requests. This layer
handles the following tasks: ROS master function execution, defect detection, and fusion
of the defect location on the lidar generated drain map.

Deep Learning-Based Defect Detection

The Faster RCNN object detection algorithm (Figure 8) was used for detecting struc-
tural defects in the drain networks. Its two-stage object detector comprises three key
components: feature extractor, Region Proposal Network (RPN), and detector head.

Feature extractors: In our case study, the ResNet50, ResNet101, and Inception-ResNet-
v2 DCNN frameworks (Figures 9-11, respectively) were tested with Faster RCNN as the
feature extractor. These feature extractors are pre-trained on the COCO dataset and were
adopted from the TensorFlow model zoo [34].
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Figure 11. Network architecture of Inception-ResNet-v2.

All three frameworks utilize the residual learning unit, as seen in Figure 12, to alleviate
the degradation of deep neural networks, with the main merit of this residual learning unit
being the better classification accuracy without increasing the complexity of the model.
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He et al. [35] defined the residual learning unit as Equations (3) and (4), wherein the
input and output dimensions of Equation (3) must be the same if the dimensions are
different and the addition of W; allows for a linear projection to match the input and output
dimensions. The only added complexity in the case of the residual learning unit is the
negligible element-wise addition. The major difference between ResNet50 and ResNet101 is
the different depths. With the introduction of a residual learning unit, Ref. [36] formulated
Inception-ResNet-V2 based on the combination of their prior work with the inception
and He et al. [35] introduced the residual connection. In the Inception-ResNet block,
multiple-sized convolutional filters were combined via residual connections. The usage
of residual connections avoids the degradation problem caused by deep structures and
reduces the training time.

X

| weight layer I
F(x) ReLU X
| weight layer | identity
F(x)+x
ReLU
Figure 12. Residual learning unit.
y=F(x,{Wi}) +x ®)
y = F(x,{W;}) + Wsx (4)

Region Proposal Network (RPN):

The RPN is a Fully Convolutional (FC) network trained to output object proposals
with objectness scores. RPN uses a feature map from the feature extractor module to slide
a small network of n x n spatial windows over the convolution feature map to predict
the proposal regions. This operation reduces the feature map to a lower-dimensional
feature. The lower dimension layer is connected to two sibling 1 x 1 fully connected layers,
namely the classification layer (cls) and the regression layer (reg). The classification layer
predicts output probability scores for two outputs (objectness and non-objectness), whereas
the regression layer predicts the probability of four outputs (width, height, x-coordinate,
and y-coordinate). The anchor box approach implements a pyramid of reference boxes in re-
gression functions to address the issue of multiple scales and sizes. The anchor box scheme
predicts multiple region proposals at each sliding window location anchored to the center
location. Thus, the anchor box scheme generates a total of W x H x k anchor boxes. At each
location of the sampling window, anchor boxes are trained to form around the present
objects. For our use case, the k value is capped at nine. Furthermore, the Non-Maximum
Suppression (NMS) algorithm is applied to filter out the overlapping bounding boxes.

Detector and Classifier Head: The final component of Faster RCNN consists of the
Fast RCNN module, the Region of Interest (ROI) pooling layer, and a fully connected
layer. The ROI pooling layer takes inputs from the shared convolution layer of the feature
extractor module and region proposals from the RPN module. ROI extracts a fixed-sized
feature map, generally 600 pixels on the shorter side. This feature map is used to detect
and classify the bounding boxes in the following fully connected layer. Finally, object
localization accurately eliminates non-desired bounding boxes.
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4.4. Application Layer

The application layer is the user interface layer. It is used to control the robot from the
remote location and to monitor the drain defect detection framework’s results. The Opera-
tor’s Console Unit (OCU) is the main graphical interface used to operate the system in the
application layer, built using Unity 2019.4, a cross-platform engine for developing graphic
programs. The OCU must be run on a workstation connected to the same network as the
ROS master.

5. Experimental Setup and Results

This section elaborates on the experimental methods and results. The experiments
were performed in five phases: dataset preparation, validation of the Raptor robot’s
performance in a drain environment, training the drain inspection framework, evaluation
of the trained framework in an offline and real-time field test in remote and AWS cloud
servers, and comparison of the trained model with other object detection frameworks.

5.1. Dataset Preparation and Training

The training dataset comprises six different defects classes: potholes, cracks, intrusion
cracks (plants in the crack and tree roots), honeycomb defects, and deposits. A total of
1800 images were collected for each class from various online sources and a real envi-
ronment, where 1500 images were used in training for each class. Furthermore, the data
augmentation process was applied to the collected dataset to mitigate the over-fitting issue
and to enhance the learning rate of the detection framework.

5.1.1. Training Hardware and Software Details

The drain inspection algorithm was developed using the open-source TensorFlow
1.15 machine learning framework, which runs on the Ubuntu 18.04.5 LTS operating system.
The model was trained in a colab environment and used the following hardware for
training: Intel (R) Xeon (R) CPUs at 2.00 GHz, 12.69 GB Random Access Memory (RAM),
and an Nvidia Tesla P100 server graphics card (3584 CUDA cores).

5.1.2. Parameter Configuration

The drain inspection model was trained using the transfer learning method and uses
early stopping conditions. The transfer learning scheme uses pre-trained models directly as
feature extraction preprocessing and integrates easily into the object detection framework.
Furthermore, it decreases the training time for a neural network model and results in
lower generalization errors. The feature extractor models such as ResNet50, ResNet101,
and Inception-ResNet-v2 were pre-trained on the COCO dataset, and the layers from which
the features are extracted can be seen in Table 2.

D = {x,P(X)} ®)

T ={Y,P(ylx)} (6)

In [37], the author defined a framework for understanding transfer learning using
domain (Equation (5)), task (Equation (6)), and marginal probabilities. Given the source
domain Dg, the features learnt from the COCO dataset, and a source learning task 7T,
80 different object categories were detected. The target domain of Dr, features learnt
from our drain defect dataset, and a target learning task 71 detected six different crack
defects. Transfer learning can be used to improve the learning of new drain defect features.
The various layers in which the features learned from Dg were extracted and fed into the
Faster RCNN two-stage object detection framework, as shown in Table 2.

Under early stopping conditions, the models ResNet50, ResNet101, and Inception-
ResNet-v2 were converged at 115532, 118356, and 276438 epochs, respectively, and the
following training parameters were used: a batch size of 16, the RMS Prop algorithm
with 0.9 momentum, and an initial learning rate of 0.004. The k-fold cross-validation
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procedure was used to evaluate the picture dataset. This approach divides images into k
groups, with k-1 being utilized for training the network. The remaining one set is used for
evaluating the model.

Table 2. Extracted feature layers.

Model Name First Stage Feature Extractor Second Stage Feature Extractor
ResNet50 block_1, block_2, block_3, block_4a block_4
ResNet101 block_1, block_2, block_3, block_4a, block_4b block_4
conv2d (1a, 2a, 2b, 3b, 4a), conv2d_7b,
Inception-ResNet-v2 mixed_5b, mixed_6a, mixed_7a,
block_17, block_35 block_8

After training, the defect detection framework was tested in the IoRT framework-
configured remote server, colab, and AWS cloud server. Here, the AWS G4dn instance
was used to evaluate the IoRT framework in the cloud server experiment. It was powered
by 8 NVIDIA T4 GPUs, 96 vCPUs, 100 Gbps networking, and 1.8 TB local NVMe-based
SSD storage.

5.2. Offline Test

The offline test was performed using images containing defects that were collected
from various web sources. There are 300 images used for each class to evaluate the
model’s performance, and these images were not used to train the drain structural defect
detection framework. Figures 13-15 show the defect detection experimental results of three
frameworks. Here, (a—h) indicate the concrete defect classes. Furthermore, the statistical
evaluation results for the offline experiment are reported in Table 3. Here, accuracy,
precision, recall, and Fyeqsure Were used to evaluate the model [23,38].

Table 3. Statistical measures for defect detection.

ResNet50 ResNet101 Inception-ResNet-v2

Test
Prec.

Recall F; Accuracy Prec. Recall F; Accuracy Prec. Recall F  Accuracy

Tree root intrusion 86.21

8592 8589 8619 8845 8821 88.01 8842 9134 91.03 90.82 91.27

Plant intrusion 87.56

8738 87.09 8749 8948 89.27 8893 8939 9398 93.72 93.67 9392

8698 86.79 8729 9111 90.89 90.82 91.05 9194 91.78 91.71 9196

8649 86.37 86.69 90.87 90.65 90.58 90.79 9243 92.27 92.09 9238

85.63 8559 8595 89.33 89.02 8894 8929 9382 93.61 93.55 93.73

Crack 87.34
Pothole 86.71
Bughole 85.97
Deposit 87.73

8759 8741 8771 8994 89.79 8951 89.88 9287 9263 9259 9281

The experimental results indicate that the three detection frameworks’ average de-
tection accuracies are above 85%, that Faster RCNN ResNet50 scored 86.89%, that Faster
RCNN ResNet101 scored 89.80%, and that Faster RCNN Inception-ResNet-v2 scored
92.67%. From the above analysis, we observe that the Faster RCNN 50 detection perfor-
mance was slightly lower than that for Faster RCNN 101 and Faster RCNN Inception-
ResNet-v2. Its performance score was affected due to the failure to detect a hairline crack in
the concrete and due to false classification of defects such as cracks and tree roots. On the
other hand, the detection accuracy of Faster RCNN Inception-ResNet-v2 was the highest.
However, the Faster R-CNN Inception ResNet V2 inference time was relatively low when
compared with the Faster RCNN ResNet101, as shown in Table 4 because the ResNet101
model has a dense feature extractor layer (101 convolutional layers) and uses 62.4 M param-
eters to infer the images. On the other hand, Faster RCNN Inception-ResNet-v2 uses 59.4 M
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parameters that use a combination of Inception and ResNet to extract features. In the final
analysis, the offline experimental study shows that Faster RCNN ResNet inception v2 has
a good trade-off between detection accuracy and computation time and is more suitable
for drain defect inspection tasks.

Table 4. Computationaltime analysis.

Model Name Local Server
Faster RCNN ResNet50 95 ms

Faster RCNN ResNet101 300 ms
Faster RCNN Inception-ResNet-v2 119 ms

(d) (e) (f)

Bughole: 68%

(8) (h)

Figure 13. ResNet50 defect detection results. (a) Crack; (b) Honeycomb defect; (c) Tree root intrusion;
(d) Plant intrusion; (e) Deposit; (f) Pothole; (g) Bughole; (h) Crack.
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\Crack: 96%

Bughole: 86%

(8) (h)

Figure 14. ResNet101 defect detection results. (a) Crack; (b) Honeycomb defect; (c) Tree root intrusion;
(d) Plant intrusion; (e) Deposit; (f) Pothole; (g) Bughole; (h) Crack.

\Crack: 93%

Bughole: 86%:!
R -

(d) (e) (f)

Figure 15. Cont.



Sensors 2021, 21, 7287

15 of 24

(8 (h)
Figure 15. Inception-ResNet-v2 defect detection results. (a) Crack; (b) Honeycomb defect; (c) Tree
root intrusion; (d) Plant intrusion; (e) Deposit; (f) Pothole; (g) Bughole; (h) Crack.

5.3. Real-Time Field Trial

The real-time field trial experiments include a robot maneuverability test on differ-
ent drains, evaluating the localization and mapping capabilities with multiple mapping
algorithms and validating the trained model’s defect detection efficiency from live stream-
ing videos.

5.3.1. Maneuverability Test

Robot maneuverability tests were conducted in three different drains types. Figure 16a
shows the Raptor robot with a camera pan-tilt mechanism in the maneuverability test.
The drain environment was prepared with beacon triangulation to improve the accuracy
of localization and in-range WiFi signals to improve WiFi communication. Three static
beacons and one local WiFi router were fixed on each straight stretch of the drain to avoid
signal loss. According to the manufacturer, each mobile beacon must be in a range of at
least 25 m from a stationary beacon for proper signal strength. Taking this into account,
stationary beacons were placed on alternating sides of the drain every 20 m, which is
shown in Figure 16b,c.

Figure 16b shows the robot tested in a cut-off type drain, also referred to as the C7
drain. Figure 16c presents the testing of the Raptor robot in an S2 type drain, which is
V-shaped with a smooth bottom. Finally, Figure 16d shows the operation in a flat open
drain. These drains are pathways for excess water collection, primarily from rainwater
sources, with varying depths from 1 foot to 3 feet. The drain contains different terrain
surfaces, such as sand, concrete, and wet and dry conditions. The tunnels in some of the
drains are long and closed with sharp turns, slopes, narrow pathways, and level changes.
All of the chosen drains are located inside SUTD University premises in Singapore, and 20 h
extensive field tests were conducted, including all three types of drains. The experiments
were randomly distributed in terms of drain types and a particular stretch of drain to
avoid bias. Through these trails, it is observed that the Raptor robot is able to successfully
traverse in all of the chosen terrain conditions and drain tunnel structures.
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(©)
Figure 16. Raptor robot field experiments and defect detection in different drain types. (a) Robot and
Pan-tilt mechanism; (b) Type S2 drain; (c) Type C7 drain; (d) Flat drain.

5.3.2. Drain Mapping Algorithm Evaluation

A mapping algorithm evaluation was performed to identify the optimal algorithm
for drain mapping and defect localization. The Hector SLAM (odometry-independent)
and G mapping SLAM (odometry-dependent) algorithms are trialed and compared for
map building efficiency. In autonomous navigation, mapping works in two environment
situations, namely known environments and unknown environments. When the robot en-
counters an unknown environment, the localization happens simultaneously with respect
to the generated map. Through SLAM, the robot located itself on a map and generated
a virtual map of the place simultaneously. On the other hand, for a known environment,
i.e., once the area is mapped for the first time, a subsequent inspection of the same drain is
performed using this saved static map. This reduces the computation requirements and
increases the localization accuracy of the robot.
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Both algorithms (Hector SLAM and G mapping) were compared and tested for ac-
curate loop closure in mapping and for smooth translation lines and sharp turns while
localizing and path tracking. For the experiments, the robot was teleoperated in a con-
trolled environment to form particular shapes, and the path was tracked using a green
marker, as shown in Figure 17.

(@) (b)
Figure 17. Robot ‘Raptor’ path tracking. (a) Pathplanning—right turn; (b) Pathplanning—straight.

Figure 18 shows the Hector and G mapping comparison results. Here, Figure 18A,B
shows the Hector SLAM drain mapping results. It builds a grid map and localizes the
robot using only the scan matching process as explained in [39]. Hector SLAM implements
the Gauss—-Newton approach for the scan matching algorithm, which finds the rigid body
transformation of a laser scan’s endpoints. The optimal alignment is found by minimizing
the transformation function (Equation (7)). The high update rate of the laser sensors
combined with its accuracy and scan density play crucial roles for Hector SLAM.

:argm il—M(S N2 (7)

Figure 18C,D shows the G mapping [40] algorithm results. It uses Rao-Blackwellized
particle filters to realize SLAM in mobile devices and robots. This approach computes the
trajectory x jointly with the posterior p about the map. The respective function is defined
as follows (Equations (8) and (9)).

p(x1:t, m|z1p, U1 -1) (8)

X1t = X1y eeenenn s Xt (9)

where z is the observation from 1 to f seconds, obtained from the perception sensor, and the
ul:tis the odometer measurement obtained from the position sensor of the mobile robot,
Raptor. According to [41], this is summarized by the following factorization (10):

p(-xl:t/ mlzlzt/ ul:tfl) = p<m|x1:tr Z1:ts ul:tfl) (10)

This factorization is first used to estimate the trajectory of our Raptor robot and to
compute the map using the trajectory information. Each of these factorized particles carries
an individual map of the environment.
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—> Hector SLAM
Mapping Algorithm

> G-mapping SLAM
Mapping Algorithm

Figure 18. (A) S-Shaped; (B) Square; (C) Circle; (D) Z-shape.

As can be observed, Figure 18A,B show more significant uncertainties in the path
tracked, while Figure 18C,D shows consistency with the desired shape formation. Due to
its inherent nature of position sensor, the Hector SLAM mapping shows unreliable results
for the sensor combination used in the Raptor system. G mapping’s approach of proposal
distribution is computed based on the robot’s recent observation, and robot movement
improves the localization and path tracking accuracy. Based on these experiments, the most
suitable SLAM approach for our sensor combination, G mapping, is selected and imple-
mented. Localization happens via the G mapping algorithm through the sensor inputs
from UWB beacons, the wheel encoders, and the IMU sensors.

Through the real-time drain field trails, the Raptor robot’s robustness and maneu-
verability were tested for operations in various drain structures. Furthermore, beacon
localization, lidar mapping, and WiFi communication ensure uninterrupted operation in
an unexplored drain environment.

5.4. Real-Time Defect Detection and Mapping

The final stage of the field trial is to evaluate the drain inspection framework using
Raptor-collected real-time drain environment video feed. The experiment was carried out
in the three drain environments (closed drain, semi-closed drain, and open-drain), two
lighting conditions (day and night), and two different climate days (after heavy rainfall
and summer days). The robot was operated in semi-autonomous mode and controlled by a
mobile APP connected via 4G internet communication through a remote server. The images
captured by the robot are remotely analyzed by a drain inspection algorithm running on a
high-powered GPU-enabled local server. Figure 19a—e shows the drain inspection algorithm
field test results, where drains have a small pothole, crack, or intrusion cracks such as from
plants or tree-root intrusion. The detection algorithm detected most of these defects from
the Raptor robot-captured images with a good confidence level. The defect-detected image
frame location coordinates are decoded from the header file and fused with the drain map.
Figure 20 shows the defect fused on the drain map, where the color codes indicate the class
of defects.
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Figure 19. Real-time defect detection. (a) Crack; (b) Plant in crack; (c) Tree root; (d) Plant in crack;
(e) Pothole.
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location
Map

SLAM — Defect Map

Figure 20. (A) SLAM Map; (B) Defect location Map; (C) SLAM-Defect Map.

As in offline tests, Faster RCNN Inception-ResNet-v2 and Faster RCNN ResNet101
detect better than Faster RCNN ResNet50. The model detection accuracy for Faster RCNN
ResNet50, Faster RCNN ResNet101, and Faster RCNN Inception-ResNet-v2 are 82%, 87%,
and 89%, respectively. However, compared with offline tests, the model detection accuracy
is relatively low due to the missed detection of defects.
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For real-time tests, Table 5 shows the comparison of detection accuracy across various
weather and lighting conditions. It was observed that the low light condition (night) in-
duces higher false-positive rates and reduces true positive rates slightly under the same
weather conditions. The same trend of higher false positives can also be observed in-
dependent of weather conditions. There is also a drop in true positive rates when com-
paring across the same light conditions but different weather conditions. In general,
the higher miss detection is caused by object occlusion, blurring due to jerks in robot
navigation when moving on an uneven surface, shadows, varying lighting conditions, and
weather conditions.

Table 5. Faster RCNN Inception-ResNet-v2 true positives and false positives.

Day Night Day Night
Weather Drain Type Classes TP FP TP FP Weather TP FP TP FP
Treeroot 86 3 83 7 82 5 79 7
Plant 85 4 80 6 82 4 79 7
Open Crack 86 3 83 6 83 4 81 8
p Pothole 87 4 84 5 83 5 81 5
Bughole 83 5 80 8 79 4 78 6
Deposit 84 5 80 8 79 4 78 5
Treeroot 85 4 81 6 83 5 80 7
Plant 84 5 81 8 82 5 80 7
Summer . Crack 87 3 83 6 After Rainfall 84 4 82 6
Semi-closed  poiole 82 6 80 8 80 5 79 6
Bughole 83 4 80 6 81 5 79 7
Deposit 83 4 81 5 81 4 80 7
Treeroot 84 5 80 8 80 4 79 6
Plant 83 6 80 7 81 6 80 7
Closed Crack 85 4 81 7 82 5 79 6
Pothole 84 5 81 6 81 4 79 6
Bughole 86 4 83 6 83 4 78 7
Deposit 82 5 80 7 80 5 78 8

Defect Mapping on SLAM Map

Figure 20 depicts the 2D SLAM defect map marked with various colors. Here, defects
are marked as tiny squared boxes with six different colors. Two maps are used to generate
the SLAM defect map, namely the SLAM grid map and the defect occupancy map, where
the SLAM map is generated by the G mapping algorithm and X,y coordinates of a 2D map
are used to create the defect location map.

Here, the grid-based SLAM map (Figure 20A) consists of three colored pixel regions,
namely green, white, and black, representing unknown, unoccupied, and occupied (with
obstacles) regions, respectively. The SLAM map is generated in the robot’s frame of
reference, and the values of each grid in the SLAM map are given as follows.

—1, unexplored,
m® = o, unoccupied, (11)

100  occupied

For generating the defect map, the distance calculated from lidar is equated to the iden-
tified defects and marked (Figure 20B) with respect to the corresponding angle/orientation
on the map. Furthermore, different defects (as listed in Table 3), suggested by the machine
learning algorithm, were labeled with the respective colors associated with them to facili-
tate easier identification and inspection. The defect map generated in the camera’s reference
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frame was translated to the robot’s reference frame using the adaptive transformation of the
concept discussed in Section 4.1.8 under the vision system with a pan-tilt mechanism. Both
maps were superimposed on one another using point-to-point coordinate correspondence
to create a more useful SLAM-defect map. The fusion of the SLAM-based grid map and
the defect occupancy map was performed using the overlay process discussed in [39].

5.5. Comparison with Existing Work

This section elaborates on the comparative analysis of the proposed algorithm with
the existing drain inspection framework reported in the literature based on inspection tools
and inspection algorithms. Table 6 states the accuracy of various inspection models and
algorithms based on some similar classes.

Table 6 [3-5,42] used the CCTV as an inspection tool and applied different DL frame-
works, namely Resnet-TL, four-layer custom CNN, five-layer custom CNN, and Modified
ZF to automate the drain inspection. Here, Resnet-TL [3], and four [42] and five-layer
CNN [5] are classifier frameworks that scored average precisions of 85%, 87.7%, and 78%
(accuracy) for drain inspection tasks, respectively. Modified ZF [4] is an object detector
framework and uses Faster RCNN as the detector head. The implementation scored an
average precision of 83% across four different classes: root, crack, infiltration, and deposit.

In contrast with our implementation, the above schemes’ classification and detection
scores are quite low; however, the implementations cannot be compared directly with
our work since their datasets, CNN topology, and training parameters are different. Fur-
thermore, the proposed framework utilizes JoRT-based remote real-time inspection in
comparison with the above schemes, which utilizes offline inspection. This difference is
reflected in the choice of the algorithm used.

Table 6. Comparison analysis with existing object detection frameworks.

Case Studies Inspection Type Algorithm Classes Precision
Tennakoon et al. [3] Offline CCTV Resnet-TL 5 85.00
Kumar et al. [42] Offline CCTV 4 Jayer CNN 3 87.7
Moradi et al. [5] Offline CCTV 5layer CNN 1 78.002
Cheng et al. [4] Offline CCTV Modified ZF 4 83.0
Proposed framework Real-time with Raptor Faster RCNN Inception-ResNet-v2 1 6 92.67

Table 7 shows a comparative analysis of the current robotic platform with existing
drain inspection platforms. Here, robots KURT, PIRAT, and MAKRO adopted a fixed
morphology and were designed only for sewer pipe inspection with a small diameter.
In contrast, Tarantula is a reconfigurable drain inspection robot. However, the robot has a
high cost, has a complex mechanical design, and is heavyweight due to its many actuators.
Moreover, its maneuverability is not stable in some drain segments [17]. On the other
hand, our in-house developed robot Raptor is lighter and has a simplistic design approach.
Additionally, its three modes of reconfiguration provide good maneuverability in varied
terrain conditions. This design consideration is the core contribution of the proposed
design with respect to the state-of-the-art.

Table 7. Comparison with existing drain inspection robots.

Weight (kg)
Dimension (m)

Tarantula [17] MAKRO [16] KURT [15] PIRAT [12] Raptor [43]
Morphology Reconfigurable  Fixed-Shape Fixed-Shape Fixed-Shape  Reconfigurable
20 30 - - 2.45
12 1.6 0.38 x 0.28 x 0.30 - 0.39 x 0.35 x 0.29
- 0.3 0.20 0.35 0.22

Speed (m/s)




Sensors 2021, 21, 7287 22 of 24

6. Conclusions

An Al-enabled remote drain inspection and defect mapping framework was proposed
using our in-house developed reconfigurable robot Raptor, the Faster RCNN object detec-
tion algorithm, and the IORT framework. The efficiency of the proposed system was tested
through a robot maneuverability test, drain defect detection, and defect mapping accuracy.
The reconfigurable robot was tested in three different drain environments in maneuver-
ability tests: s2, V type, and flat terrain drains. The experimental results proved that the
Raptor robot maneuverability was stable and that its defect mapping and localization are
more precise using G mapping in the complex drain. Furthermore, the defect detection was
tested using both offline collected defect images and real-time drain images collected by the
Raptor robot. The experimental results show that the Faster RCNN Inception-ResNet-v2
variant has a good trade-off between detection accuracy and computation time compared
with other variants. It obtained a 92.67% defect detection accuracy for offline defect de-
tection experiments and an 89% defect detection accuracy for real-time Raptor-collected
drain environment video streams. It took 119 ms to process one image on the local server.
The overall experimental results proved that the proposed system is more suitable for
automated defect detection task in drains and enhances the inspection service.
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