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Abstract: Decision trees are decision support data mining tools that create, as the name suggests, a
tree-like model. The classical C4.5 decision tree, based on the Shannon entropy, is a simple algorithm
to calculate the gain ratio and then split the attributes based on this entropy measure. Tsallis and
Renyi entropies (instead of Shannon) can be employed to generate a decision tree with better results.
In practice, the entropic index parameter of these entropies is tuned to outperform the classical
decision trees. However, this process is carried out by testing a range of values for a given database,
which is time-consuming and unfeasible for massive data. This paper introduces a decision tree
based on a two-parameter fractional Tsallis entropy. We propose a constructionist approach to the
representation of databases as complex networks that enable us an efficient computation of the
parameters of this entropy using the box-covering algorithm and renormalization of the complex
network. The experimental results support the conclusion that the two-parameter fractional Tsallis
entropy is a more sensitive measure than parametric Renyi, Tsallis, and Gini index precedents for a
decision tree classifier.

Keywords: decision trees; complex networks; two-parameter Tsallis entropy; Gini index

1. Introduction

Entropy is a measure of the unpredictability of the state in physical systems that would
be needed to specify the degree of disorder in full micro-structure of them. Claude Elwood
Shannon [1] defined a measure of entropy to measure the amount of information in a digital
system in the context of theory communication that has been applied in a variety of fields
such as information theory, complex networks, and data mining techniques.

The most widely used form of the Shannon entropy is given by

I = lim
t→−1

d
dt

N

∑
i=1

p−t
i = −

N

∑
i=1

pi ln pi, (1)

where N is the number of possibilities pi and ∑n
k=1 pk = 1.

Two celebrated generalizations of Shannon entropy are Renyi [2] and Tsallis en-
tropies [3]. Alfred Renyi proposed a universal formula to define a family of entropy
measures given by the expression [2]

IR
q =

1
1− q

N

∑
i=1

pq
i , (2)

where q denotes the order of moments.
Constantino Tsallis proposed the q-logarithm defined by

lnq(x) =
x1−q − 1

1− q
, (3)
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to introduce a physical entropy given by [3]

IT
q = −

N

∑
i=1

pilnq pi =
1

q− 1
(1−

N

∑
i=1

pq
i ). (4)

Tsallis entropy could be rewritten [4–6] as

IT
q = lim

t→−1
Dt

q

N

∑
i=1

p−t
i , (5)

where Dt
q of a function f given by Dt

q f (t) =
f (qt)− f (t)
(q− 1)t

, t 6= 0, stands for the Jackson [7]

q-derivative, to reflect that it is an extension of Shannon entropy.
Renyi and Tsallis entropy measures depend on the parameter q, which describes their

deviations from the standard Shannon entropy. Both entropies converge to Shannon entropy
in the limit q→ 1. For complex network applications [8] and data mining techniques [9–17],
the parameter q varies into a range of values. On the other hand, the computation of the
entropic index q of the Tsallis entropy was implemented for physics applications in [18–25].

Shannon and Tsallis entropies can be obtained by the action of standard derivative or
q-derivative, respectively, to the same generating function ∑N

i=1 p−t
i with respect to variable

t and then letting t→ −1. This approach can be used to reveal different entropy measures
based on the actions of appropriate fractional order differentiation operators [26–32].

The major goal of this work is to introduce a new decision tree based on a two-
parameter fractional Tsallis entropy. This new kind of tree is tested on twelve databases for
a classification task. The structure of the paper is as follows. Section 2 focuses attention
on the notion of two-parameter fractional Tsallis entropy. In Section 3, two-parameter
fractional Tsallis decision trees and a constructionist approach to the representation of
the databases as a complex network are introduced. The basic facts on the box-covering
algorithm of a complex network are reviewed. Finally, we compute an approximation
set of parameters q, β, and α of the two-parameter fractional Tsallis entropy. Section 4 is
concerned with the testing of two-parameter fractional Tsallis decision trees on twelve
databases. Next, the approximations of q values are tested on Renyi and Tsallis entropies.
Discussion of the findings of this study and concluding remarks are offered in Section 5.

2. Two-Parameter Fractional Tsallis Entropy

Based on the actions of fractional order differentiation operators, several entropy
measures of fractional order are introduced in [26–30,33–43]. Following this approach
in [22], the two-parameter fractional Tsallis entropy is introduced by merging two typical
examples of fractional entropies.

The first fractional entropy of order δ ∈ (0, 1] is introduced as

I1
δ = lim

t→−1

dδ

dt

N

∑
i=1

p−t
i = −

N

∑
i=1

pδ
i ln pi, (6)

and the second one by

I2
δ = lim

t→−1

d
dt
(−∞Dδ−1

t

N

∑
i=1

e−t ln pi ) =
N

∑
i=1

pi(− ln pi)
δ, where (7)

dδ f (t)
dt

= lim
h→0

f δ(t + h)− f δ(t)
(t + h)δ − hδ

(8)

and
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−∞Dδ−1
t f (t) =

1
Γ(1− δ)

∫ t

−∞

f (t′)
(t− t′)δ

dt′, (9)

where Γ denotes the gamma function.
Combining (6) with (7) yields a two-parameter fractional relative entropy as fol-

lows [31]:

Iα
β =

N

∑
i=1

pα
i (− ln pi)

β, (10)

for 0 < α, β. The entropy (10) reduces to (6) when β → 1 and reduces to (7) when α → 1,
yielding the Shannon entropy when both parameters approach 1.

Analogously, two extra-parameter-dependent Tsallis entropies are introduced [22]:

T1
δ,q = −

N

∑
i=1

pδ
i lnq pi. (11)

and

T2
δ,q =

N

∑
i=1

pi(− lnq pi)
δ. (12)

Combining theses entropies and motivated by (10), we obtain the following two-
parameter fractional Tsallis entropy [22]:

Tα,β
q =

N

∑
i=1

pα
i (− lnq pi)

β, (13)

for 0 < α, β.
Note that Tsallis entropy is recovered when limα,β→1 Tα,β

q . This implies that the non-

extensibility of Tq [44] forces Tα,β
q to be so.

3. Parametric Decision Trees

A decision tree is a supervised data mining technique that creates a tree-like structure,
where the non-leaf node tests a given attribute [45]. The outcome gives us the path to reach
a leaf node, where the classification label is found. For example, let (x = 3, y = 1) be a tuple
to be classified by the decision tree of Figure 1. If we test x = 1, we must follow the left
path to reach y = 1 and finally arrive at the leaf node with the classification label “a”.

In general, the cornerstone of the construction process of decision trees is the evaluation
of all attributes to find the best node and the best split condition on this node to classify the
tuple with the lower error rate. This evaluation is carried out by information gain on each
attribute a [45]:

Ga = I(D)− Ic(D), (14)

where I(D) is the entropy of the database after being partitioned by the condition c of
a given attribute a and Ic(D) is the entropy induced by c. The tree’s construction needs
to evaluate several partition conditions c on all attributes of the database, then chooses
the pair of attribute–condition with the highest value. Once a pair is chosen, the process
evaluates the partitioned database recursively using a different attribute–condition. The
reader is referred to [45] for details on decision tree construction and computation of (14).
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Figure 1. A decision tree to the classification task.

3.1. Renyi and Tsallis Decision Trees

In classical decision trees, I in (14) denotes Shannon entropy; however, other entropies
such as Renyi or Tsallis can replace it. Thus, (14) can be written using Renyi entropy (2) as

GR,a = IR
q (D)− IR

q,c(D), (15)

and using Tsllis entropy (4) as follows:

GT,a = IT
q (D)− IT

q,c(D). (16)

The parametric decision trees generated by (15) or (16) have been studied in [9–14].

3.2. Two-Parameter Fractional Tsallis Decision Tree

Following a similar fashion, a two-parameter fractional decision tree can be induced
by the information gain obtained by rewritten (14) using (13):

G
Tα,β

q ,a
= Tα,β

q (D)− Tα,β
q,c (D), (17)

An alternative informativeness measure for constructing decision trees is the Gini
index, or Gini coefficient, which is calculated by

Gini = 1−
N

∑
i=1

p2
i . (18)

The Gini index can be deduced from Tsallis entropy (4) using q = 2 [14]. On the
other hand, the two-parameter fractional Tsallis entropy with q = 2, α = 1, β = 1 reduces
to the Gini index. Hence, Gini decision trees are a particular case of both Tsallis and
two-parameter fractional Tsallis trees.

The main issue with Renyi and Tsallis decision trees is the estimation of q-value to
obtain a better classification than the one produced by the classical decision trees. Trial
and error is the accepted approach for this purpose. It consists of testing several values in
a given interval, usually [−10, 10], and comparing the classification rates. This approach
becomes unfeasible in two-parameter fractional Tsallis decision trees as it is needed to tune
q, α, and β. A representation of a database as a complex network is introduced to face this
issue. This representation lets us compute α and β following the approach in [22], which is
the basis for determining the fractional decision tree parameters.
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3.3. Network’s Construction

A network is a powerful tool to model the relationships among entities or parts of
a system. When those relationships are complex, i.e., properties that cannot be found
by examining single components, something emerges that is called a complex network.
Thus, networks as a skeleton of complex systems [46] have attracted considerable atten-
tion in different areas of science [47–51]. Following this approach, a representation of
the relationships among attributes (system entities) of a database (system) as a network
is obtained.

The attribute’s name will be concatenated before the value of a given row to distinguish
the same value that might appear on different attributes. Consider the first record of the
database shown on the top of Figure 2. The first node will be NAME.BruceDickinson,
the second node will be PHONE.54 − 76 − 90, and the third node will be ZIP.08510.
These nodes belong to the same record, so they must be connected; see dotted lines of
the network in the middle of Figure 2. We next consider the second record; the nodes
Name.MichaelKiske and PHONE.87− 34− 67 will be added to the network. Note that the
node ZIP.08510 was added in the previous step. We may now add the links between these
three nodes. This procedure is repeated for each record in the database.

Figure 2. Network construction from a database. The nodes in the same color belong to the same box
for l = 2.
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The outcome is a complex network that exhibits non-simple topological features [52],
which cannot be predicted by analyzing single nodes as occurs in random graphs or
lattices [53].

3.4. Computation of Two-Parameter Fractional Tsallis Decision Tree Parameters

By the technique introduced in [22], the parameters α and β—on the network repre-
sentation of the database—of the two-parameter fractional Tsallis decision tree are defined
to be

α1
l,i = 1 +

|Gi|innerdeg(Gi)

n ∑Nb
i=1 innerdeg(Gi)

, (19)

α2
l,i = 1− |Gi|innerdeg(Gi)

n ∑Nb
i=1 innerdeg(Gi)

, (20)

where |Gi| is the number of nodes in the box Gi obtained by the box-covering algorithm [54],
n is the number of nodes of the network, and innerdeg(Gi) is the average degree of the
nodes of the Gi box. Similarly, two values of β are computed as follows [22]:

β1
l,i = 1 +

outerdeg(Gi)l

∆ ∑Nb
i=1 outerdeg(Gi)

, (21)

β2
l,i = 1− outerdeg(Gi)l

∆ ∑Nb
i=1 outerdeg(Gi)

, (22)

where l > 2 is the diameter of the box Gi, ∆ is the diameter of the network, and outerdeg(Gi)
is the number of links among the boxes Gi. The computation of innerdeg and outerdeg will
be explained later.

Inspired by the right-hand term of (19) and (20) (named α′) with the fact that

δ =
lNb(l)

∆ ∑∆
l=2 Nb(l)

is a normalized measure of the number of boxes to cover the network [20],

an approximation of the q-value for the two-parameter fractional decision tree is introduced:

qα′ =
δ

α′
=

nlNb(l)∑Nb
i=1 innerdeg(Gi)

∆|Gi|innerdeg(Gi)∑∆
l=2 Nb(l)

. (23)

Similarly, from the right hand of (21) and (22) (named β′), a second approximation of the
q-value is given by

qβ′ =
δ

β′
=

Nb(l)∑Nb
i=1 outerdeg(Gi)

outerdeg(Gi)∑∆
l=2 Nb(l)

, (24)

where Nb(l) is the minimum number of boxes of diameter l to cover the network, n, ∆,
Nb(l), |Gi|.

The process to compute the minimum number of boxes Nb of diameter l to cover the
network G is shown in Figure 3. A dual network (G′) is created only with the nodes of the
original network, Figure 3b. Then, the links in G′ are added following the rule: two nodes i,
j, in the dual network, are connected if the distance between lij is greater than or equal to l.
In our example, l = 3, and node one is selected to start. Node one will be connected in G′

with nodes five and six since their distance is four and three. The procedure is repeated
with the remaining nodes to obtain the dual network shown in Figure 3b. Next, the nodes
will be colored as follows: two directly connected nodes in G′ must not have the same color.
Finally, the nodes colored in G′ are mapped to G; see Figure 3c. The minimum number
of boxes to cover the network given l equals the number of colors in G. In addition, the
nodes in the same color belong to the same box. In practice, l = [1, ∆]; thus, Nb(l) of the
example are shown in Table 1. For details of the box-covering algorithm, the reader is
referred to [54].
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Figure 3. Box covering of a network for l = 3. (a) Original network. (b) Dual network. (c) Colouring
process. (d) Mapping colours to the original network.

Table 1. The results of Nb(l) and δ from the network of Figure 3, and the “pseudo matrix” of α′.

l Nb (l) δ α′
l,1 α′

l,2 α′
l,3

1 6 - - - -

2 3 0.107 α′2,1 α′2,2 α′2,3

3 2 0.107 α′3,1 α′3,2 -

4 2 0.143 α′4,1 α′4,2 -

5 1 - - - -

Now, we are ready to compute innerdeg. Two boxes were found following the previous
example for for l = 3; see Figure 4a. The innerdeg(G1) = 2 is the average link per node
between the nodes of this box; for this reason, the link between nodes four and six is
omitted in this computation. Similarly, innerdeg(G2) = 1. The outerdeg is the degree of
each node of the renormalized network; see the network of Figure 4b.

In our example, outerdeg(G1) = outerdeg(G2) = 1. The renormalization converts each
box into a super node, preserving the connections between boxes. On the other hand, it
is known that Nb(1) = n, and Nb(∆ + 1) = 1; in the first case, each box contains a node,
and in the second one, there is one box to cover the network that contains all nodes. For
this reason, the innerdeg and outerdeg are not defined for l = 1 and l = ∆ + 1, respectively.
This force to l = [2, ∆] as was stated in (19)–(24). Additionally, note that the right hand
of (19) and (20) (α′), (21) and (22) (β′) are “pseudo matrices”, where each row has Nb(l)
values; see Table 1. Consequently, qα′ and qβ′ are also “pseudo matrices”.
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Figure 4. Renormalization of a network. (a) Grouping nodes into boxes. (b) Converting boxes
into supernodes.

The network represents the relationships between attribute-value (nodes) of each
record and the relationships between different database records. For example, the dotted
lines in Figure 2 show the relationships between the first record’s attribute value. Links
of the node ZIP.08510 are the relationships between the three records, and the links of
PHONE.54-76-90 are the relationships between the first and third one. The box-covering
algorithm groups these relationships into boxes (network records). The network in the
middle of Figure 2 shows that the three boxes (in orange, green, and blue) coincide with the
number of records in the database. However, the attribute value of each box does not coin-
cide entirely with records in the database since box-covering finds the minimum number
of boxes with the maximum number of attributes where the boxes are mutually exclusive.

The nodes in each box (network record) are enough to differentiate the records in the
database. For example, the first network record consists of name, phone, and zip values
(nodes in orange). The second record in the database can be differentiated from the first by
its name and phone (values of those attributes are the second network record in green). The
third one can be distinguished from the two others by its name (the third network record
in blue). The cost of differentiating the first network record (measured by innerdeg) is the
highest; meanwhile, the lowest is for the third. Thus, α′ measures the local differentiation
cost for the network records.

On the other hand, β′ measures the global differentiation cost (by outerdeg). For
example, the global cost for the first network record is two, and one for the second and
third; see the renormalized network (at the bottom of Figure 2). It means that the first
network record needs to be differentiated from two network records, and the second and
third only need to be distinguished from the first. Note that α′, β′ for a given l relies on the
topology network that captures the relationships of the records and their values. Finally,
qα′ is the ratio between network records (normalized number of boxes δ) and the local
differentiation cost; meanwhile, qβ′ is the ratio between network records and the global
differentiation cost.

4. Methodology

Twelve databases (biological, technological, and social disciplines) from the UCI
repository [55] were managed in the experiments; see Table 2. Their number of records,
attributes, and classes are representative. Once a network was obtained from the database,
q, α, and β parameters of the fractional Tsallis decision were approximated by the following
four sets: (< qα′ >, < α1 >, < β1 >), (< qα′ >, < α2 >, < β2 >), (< qβ′ >, < α1 >,
< β1 >), (< qβ′ >, < α2 >, < β2 >), where <> means the average value of the pseudo
matrices obtained by (19)–(24).

The network can be obtained from a raw database or after being discretized. Since the
classification—measured by the area under receiver operating characteristic curve (AU-
ROC) and Matthews correlation coefficient (MCC)—was better using the approximations
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computed on the networks from discretized databases, these approximations are only
reported. The attribute discretization of a database can be found in [56]. The discretization
technique is unsupervised and uses equal-frequency binning. The discretized databases
were only used to obtain the networks so that the classification task was carried out using
the original databases. The networks obtained from the discretized and non-discretized
databases turned out to be different; see Figure 5.

Table 2. Database and network features. N = nominal, U = numerical, M = mixed.

Database Records Attributes Type Classes Balanced Nodes Edges

Breast Cancer 699 9 N 2 No 737 1276

Car 1728 6 N 4 Yes 25 70

Cmc 1473 9 M 3 No 74 264

Glass 214 10 U 7 No 1159 1743

Haberman 306 3 U 2 No 94 395

Hayes 160 5 N 3 No 150 186

Image 2310 19 U 7 Yes 12,705 24,411

Letter 20,000 16 U 16 Yes 282 2700

Scale 625 4 N 3 No 23 90

Vehicle 946 18 U 4 Yes 1434 8064

Wine 178 13 U 3 No 1279 2239

Yeast 1484 9 M 10 No 1917 4907

Figure 5. The networks from (a) non-discretized and (b) discretized vehicle database.

The classification task was performed by classical, Renyi, Tsallis, Gini, and the two-
parameter fractional Tsallis decisions trees on each database. We used a 10-fold cross-
validation repeated ten times to calculate the AUROC and MCC. The best value of the
AUROC and MCC, produced by one of the four sets of parameters—used to approximate q,
α, and β—of fractional Tsallis decisions trees, was chosen and compared with the classical
and Gini decision trees. In the same way, qα′ or qβ′ was chosen for the q parameter of Renyi
and Tsallis trees. Then, their AUROCs and MCCs were compared with those of the classical
trees. It is known that decision trees could produce non-normal distributed AUROC and
MCC measures [57]. Hence, the normality was verified by the Kolmogorov–Smirnov test.
These measures were compared using a T or a U Mann–Whitney test, according to their
normality [10,57–59].

5. Applications

The approximations of q, α, and β parameters computed on discretized databases are
shown in Table 3. Table 4 shows the AUROC and MCC of classical and two-parameter
fractional Tsallis decisions trees and the result of the statistical compassion. In addition, the
values of the parameters of fractional Tsallis decisions trees are reported.
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The two-parameter fractional Tsallis decision tree outperforms the AUROC and MCC
of the classical trees for eight databases. The statistical result of both measures disagrees
with Car and Haberman. The AUROC of the two-parameter fractional Tsallis tree was
equal to the classical trees for Car, Image, Vehicle, and Yeast; meanwhile, for Haberman,
Image, Vehicle, and Yeast, the MCC of both trees showed no difference.

Table 3. The parameters of the fractional Tsallis decision tree were obtained using the networks from
discretized databases.

Database < qα′ > < qβ′ > < α1 > < β1 > < α2 > < β2 >

Breast Cancer 0.173 0.189 1.147 1.134 0.853 0.866

Car 0.303 0.347 1.137 1.120 0.863 0.880

Cmc 0.169 0.185 1.152 1.138 0.848 0.862

Glass 0.171 0.187 1.154 1.141 0.846 0.859

Haberman 0.344 0.420 1.333 1.273 0.667 0.727

Hayes 0.269 0.310 1.231 1.200 0.769 0.800

Image 0.117 0.123 1.056 1.054 0.944 0.946

Letter 0.155 0.165 1.05 1.047 0.950 0.953

Scale 0.352 0.421 1.217 1.182 0.783 0.818

Vehicle 0.092 0.096 1.106 1.101 0.894 0.899

Wine 0.119 0.127 1.147 1.138 0.853 0.862

Yeast 4.574 5.081 1.003 1.003 0.997 0.997

Tsallis entropy is a non-extensive measure [60] as well as a two-parameter fractional
Tsallis entropy [22]. On the contrary, Shannon entropy is extensive. The super-extensive
property is given by q < 1, and sub-extensive property by q > 1. Note that the approxima-
tions of the q parameter for all the databases, see Table 3, are < 1 except for Yeast. Thus,
they can be considered candidates for being named super-extensive databases. We say that
a database is super-extensive if q < 1 and its value produces a better classification (AUROC,
MCC, or another measure) than the classical trees (based on Shannon entropy). Similarly, a
database is sub-extensive if q > 1 and its value produces a better classification. Otherwise,
the database is extensive since, in this case, the Shannon entropy (the cornerstone of classi-
cal trees) is a less complex measure than the two-parameter fractional Tsallis entropy; hence
Shannon entropy must be preferred. The two-parameter fractional Tsallis trees produce
classifications equal to or better than the classical trees. Following those conditions, based
on MCC, Breast Cancer, Car, Cmc, Glass, Hayes, Letter, Scale, and Wine are super-extensive.
Meanwhile, Haberman, Image, Vehicle, and Yeast can be classified as extensive.

The AUROC and MCC of Renyi and Tsallis decision trees are compared with the
baseline of the classical ones. The qα′ and qβ′ were tested as the entropic index of both
parametric decision trees. The parameters of Renyi (qr) and Tsallis (qt) that produce the
better AUROCs and MCCs are reported in Table 5. The result shows that the AUROC
of Renyi trees was better for Breast Cancer, Glass, Letter, and Yeast and worse for Cmc
and Haberman than classical trees. The results are quite similar for MCC, where Car’s
classification outperforms the classical tree classification. On the contrary, the MCC of the
Vehicle database was statistically less than that of the classical tree. The Tsallis AUROCs
were better for Cmc, Glass, Haberman, Hayes, and Wine and worse for Yeast than those
of classical trees. Additionally, the MCCs of Car, Cmc, Glass, and Scale were higher, and
lower for Yeast, than the classical trees’ MCCs. Based on MCC, Car, Cmc, Glass, and
Scale are super-extensive, which is a subset of the classification obtained by two-parameter
fractional Tsallis.
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Table 4. The AUROC and MCC of classical (CT) and two-parameter fractional Tsallis decision trees
(TFTT) and their parameters q, α, β. + means that AUROC or MCC is statistically greater than AUROC
or MCC of CT.

Database CTAUROC TFTTAUROC CTMCC TFTTMCC q α β Param. Set

Breast Cancer 0.959 0.964 + 0.889 0.967 + 0.173 0.853 0.866 < qα′ >, < α2 >, < β2 >

Car 0.981 0.982 0.892 0.912 + 0.347 0.863 0.880 < qβ′ >, < α2 >, < β2 >

Cmc 0.691 0.714 + 0.315 0.349 + 0.169 1.152 1.138 < qα′ >, < α1 >, < β1 >

Glass 0.794 0.874 + 0.56 0.673 + 0.171 1.154 1.141 < qα′ >, < α1 >, < β1 >

Haberman 0.579 0.610 + 0.18 0.156 0.344 1.333 1.273 < qα′ >, < α1 >, < β1 >

Hayes 0.869 0.895 + 0.578 0.645 + 0.269 1.231 1.200 < qα′ >, < α1 >, < β1 >

Image 0.994 0.992 0.982 0.978 0.123 1.056 1.054 < qβ′ >, < α1 >, < β1 >

Letter 0.969 0.974 + 0.912 0.934 + 0.155 0.950 0.953 < qα′ >, < α2 >, < β2 >

Scale 0.845 0.861 + 0.678 0.703 + 0.421 1.217 1.182 < qβ′ >, < α1 >, < β1 >

Vehicle 0.762 0.755 0.395 0.387 0.092 0.894 0.899 < qα′ >, < α2 >, < β2 >

Wine 0.968 0.977 + 0.933 0.957 + 0.119 1.147 1.138 < qα′ >, < α1 >, < β1 >

Yeast 0.743 0.733 0.462 0.463 4.574 0.997 0.997 < qα′ >, < α2 >, < β2 >

Table 5. AUROC and MCC of classical (CT), Renyi (RT), and Tsallis (TT) decision trees. + means that
AUROC is statistically greater than AUROC or MCC of CT, and −means the opposite.

Database CTAUROC RTAUROC TTAUROC CTMCC RTMCC TTMCC qr qt

Breast Cancer 0.959 0.971 + 0.963 0.889 0.901 + 0.887 < qα′ > = 0.173 < qα′ > = 0.173

Car 0.981 0.983 0.982 0.892 0.906 + 0.912 + < qα′ > = 0.303 < qβ′ > = 0.347

Cmc 0.691 0.676 − 0.712 + 0.315 0.256 − 0.35 + < qβ′ > = 0.185 < qα′ > = 0.169

Glass 0.794 0.838 + 0.835 + 0.56 0.622 + 0.599 + < qβ′ > = 0.187 < qα′ > = 0.171

Haberman 0.579 0.500 − 0.610 + 0.18 0.024 − 0.152 < qα′ > = 0.344 < qα′ > = 0.334

Hayes 0.869 0.869 0.895 + 0.578 0.579 0.587 < qα′ > = 0.269 < qα′ > = 0.269

Image 0.994 0.997 0.995 0.982 0.984 0.978 < qα′ > = 0.117 < qβ′ > = 0.123

Letter 0.969 0.980 + 0.967 0.912 0.939 + 0.913 < qβ′ > = 0.165 < qα′ > = 0.155

Scale 0.845 0.839 0.857 0.678 0.651 0.706 + < qβ′ > = 0.421 < qβ′ > = 0.421

Vehicle 0.762 0.776 0.748 0.395 0.297 − 0.371 < qβ′ > = 0.096 < qα′ > = 0.092

Wine 0.968 0.963 0.976 + 0.933 0.923 0.924 < qα′ > = 0.119 < qα′ > = 0.119

Yeast 0.743 0.789 + 0.578 − 0.462 0.505 + 0.098 − < qβ′ > = 5.081 < qα′ > = 4.574

Finally, the Gini and the two-parameter fractional Tsallis decisions trees are compared
using AUROC and MCC. The results are shown in Table 6. These results indicate that two-
parameter fractional Tsallis trees outperform AUROC of Gini trees in six databases, and
MCC in ten. It underpins that Gini trees are a particular case of two-parameter fractional
Tsallis trees with q = 2. In summarizing, two-parameter fractional Tsallis trees have better
classifications than classical and Gini trees.
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Table 6. AUROC and MCC of Gini decision trees (GT) and two-parameter fractional Tsallis decision
trees (TFTT). + means that AUROC is statistically greater than AUROC or MCC of GT.

Database GTAUROC TFTTAUROC GTMCC TFTTMCC

Breast Cancer 0.963 0.964 0.888 0.967 +

Car 0.981 0.982 0.897 0.912 +

Cmc 0.58 0.714 + 0.357 0.349

Glass 0.712 0.874 + 0.437 0.673 +

Haberman 0.52 0.61 + 0.068 0.156 +

Hayes 0.871 0.895 + 0.655 0.645

Image 0.988 0.992 0.946 0.978 +

Letter 0.962 0.974 + 0.894 0.934 +

Scale 0.866 0.861 0.654 0.703 +

Vehicle 0.71 0.755 + 0.294 0.387 +

Wine 0.932 0.977 0.847 0.957 +

Yeast 0.728 0.733 0.414 0.463 +

6. Conclusions

This paper introduces two-parameter fractional Tsallis decision trees underpinned by
fractional-order entropies. The three parameters of this new decision tree need to be tuned
to produce better classifications than the classical ones. The trial and error approach is the
standard method to adjust the entropic index for Renyi and Tsallis decision trees. However,
it is unfeasible for two-parameter fractional Tsallis trees. From a database representation
as a complex network, it was possible to determine a set of values for parameters q, α,
and β based on this network. The experimental results on twelve databases show that the
proposed values yield better classifications (AUROC, MCC) for eight of them, and for the
four remaining, the classification was equal to that produced by classical trees.

Moreover, two values (qalpha′ , qbeta′ ) were tested in Renyi and Tsallis decision trees. The
results show that Renyi outperforms the classical trees in four (AUROC) and five (MCC) out
of twelve databases. Similarly, Tsallis decision trees produced better classification for five
(AUROC) and four (MCC) databases. The classification was worse in almost three and one
databases for Renyi and Tsallis, respectively. The overall results of both parametric decision
trees suggest that both outperform the classical trees in seven databases. All of the above is
less favorable than what happened in eight databases analyzed with the two-parameter
fractional Tsallis decision trees. In addition, the databases with a better classification using
Tsallis decision trees are a subset of those for which two-parameter fractional Tsallis trees
produced a better classification. It supports the conjecture that two-parameter fractional
Tsallis entropy is a finer measure than the parametric entropies such as Renyi and Tsallis.

The approximate technique for the tree parameters introduced here is a valuable
alternative for practitioners. Furthermore, the network classification based on the non-
extensive properties of Tsallis and two-parameter fractional Tsallis entropies reveals that
the relationships between the records and their attribute values (modeled by a network)
are complex. Such complex relationships are better measured by two-parameter fractional
Tsallis entropy, the cornerstone of the proposed decision tree.

The results pave the way for using the two-parameter Tsallis fractional entropy in
other data mining techniques such as K-means, generic MST, Kruskal MST, and algorithms
for dimension reduction in the future. Our research has the limitation that the databases
used in the experiments are not large enough to reveal the reduction in time compared
with the trial-and-error approach to set the tree parameters. However, we may conjecture
that our method works in large databases, which will be the scope of future research.



Entropy 2022, 24, 572 13 of 15

Author Contributions: Conceptualization, A.R.-A.; formal analysis, J.S.D.l.C.-G.; investigation,
J.S.D.l.C.-G. and J.B.-R.; methodology, J.S.D.l.C.-G.; supervision, A.R.-A.; writing—original draft,
J.S.D.l.C.-G.; writing—review and editing, J.B.-R. and A.R.-A. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Secretaria de Investigación de Posgrado grant number
SIP20220415.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: This work was partially supported by Secretaria de Investigación de Posgrado
under Grant No. SIP20220415.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open-access journals
TLA Three-letter acronym
LD Linear dichroism

References
1. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
2. Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and

Probability, Volume 1: Contributions to the Theory of Statistics; The Regents of the University of California, University of California
Press: Berkeley, CA, USA, 1961; pp. 547–561.

3. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [CrossRef]
4. Abe, S. A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics. Phys. Lett. A 1997,

224, 326–330. [CrossRef]
5. Johal, R.S. q calculus and entropy in nonextensive statistical physics. Phys. Rev. E 1998, 58, 4147. [CrossRef]
6. Lavagno, A.; Swamy, P.N. q-Deformed structures and nonextensive-statistics: A comparative study. Phys. A Stat. Mech. Appl.

2002, 305, 310–315. [CrossRef]
7. Jackson, D.O.; Fukuda, T.; Dunn, O.; Majors, E. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203.
8. Duan, S.; Wen, T.; Jiang, W. A new information dimension of complex network based on Rényi entropy. Phys. A Stat. Mech. Appl.

2019, 516, 529–542. [CrossRef]
9. Maszczyk, T.; Duch, W. Comparison of Shannon, Renyi and Tsallis Entropy Used in Decision Trees. In Artificial Intelligence and

Soft Computing—ICAISC 2008; Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 643–651.

10. Ramirez-Arellano, A.; Bory-Reyes, J.; Hernandez-Simon, L.M. Statistical Entropy Measures in C4.5 Trees. Int. J. Data Warehous.
Min. 2018, 14, 1–14. [CrossRef]

11. Gajowniczek, K.; Orlowski, A.; Zabkowski, T. Entropy Based Trees to Support Decision Making for Customer Churn Management.
Acta Phys. Pol. A 2016, 129, 971–979. [CrossRef]

12. Lima, C.F.L.; de Assis, F.M.; Cleonilson Protásio, C.P. Decision Tree Based on Shannon, Rényi and Tsallis Entropies for Intrusion
Tolerant Systems. In Proceedings of the 2010 Fifth International Conference on Internet Monitoring and Protection, Barcelona,
Spain, 9–15 May 2010; pp. 117–122. [CrossRef]

13. Wang, Y.; Song, C.; Xia, S.T. Improving decision trees by Tsallis Entropy Information Metric method. In Proceedings of the 2016
International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 4729–4734. [CrossRef]

14. Wang, Y.; Xia, S.T.; Wu, J. A less-greedy two-term Tsallis Entropy Information Metric approach for decision tree classification.
Knowl.-Based Syst. 2017, 120, 34–42. [CrossRef]

15. Sharma, S.; Bassi, I. Efficacy of Tsallis Entropy in Clustering Categorical Data. In Proceedings of the 2019 IEEE Bombay Section
Signature Conference (IBSSC), Mumbai, India, 26–28 July 2019; pp. 1–5. [CrossRef]

16. Zhang, L.; Cao, Q.; Lee, J. A novel ant-based clustering algorithm using Renyi entropy. Appl. Soft Comput. 2013, 13, 2643–2657.
[CrossRef]

17. Wang, Y.; Xia, S.T. Unifying attribute splitting criteria of decision trees by Tsallis entropy. In Proceedings of the 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017;
pp. 2507–2511. [CrossRef]

http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1016/S0375-9601(96)00832-8
http://dx.doi.org/10.1103/PhysRevE.58.4147
http://dx.doi.org/10.1016/S0378-4371(01)00680-X
http://dx.doi.org/10.1016/j.physa.2018.10.045
http://dx.doi.org/10.4018/IJDWM.2018010101
http://dx.doi.org/10.12693/APhysPolA.129.971
http://dx.doi.org/10.1109/ICIMP.2010.23
http://dx.doi.org/10.1109/IJCNN.2016.7727821
http://dx.doi.org/10.1016/j.knosys.2016.12.021
http://dx.doi.org/10.1109/IBSSC47189.2019.8973057
http://dx.doi.org/10.1016/j.asoc.2012.11.022
http://dx.doi.org/10.1109/ICASSP.2017.7952608


Entropy 2022, 24, 572 14 of 15

18. Tsallis, C.; Tirnakli, U. Non-additive entropy and nonextensive statistical mechanics – Some central concepts and recent
applications. J. Phys. Conf. Ser. 2010, 201, 012001. [CrossRef]

19. Tsallis, C. Introduction to Non-Extensive Statistical Mechanics: Approaching a Complex World; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2009.

20. Ramirez-Arellano, A.; Hernández-Simón, L.M.; Bory-Reyes, J. A box-covering Tsallis information dimension and non-extensive
property of complex networks. Chaos Solitons Fractals 2020, 132, 109590. [CrossRef]

21. Ramirez-Arellano, A.; Sigarreta-Almira, J.M.; Bory-Reyes, J. Fractional information dimensions of complex networks. Chaos
Interdiscip. J. Nonlinear Sci. 2020, 30, 093125. [CrossRef]

22. Ramirez-Arellano, A.; Hernández-Simón, L.M.; Bory-Reyes, J. Two-parameter fractional Tsallis information dimensions of
complex networks. Chaos Solitons Fractals 2021, 150, 111113. [CrossRef]

23. Ramírez-Reyes, A.; Hernández-Montoya, A.R.; Herrera-Corral, G.; Domínguez-Jiménez, I. Determining the Entropic Index q of
Tsallis Entropy in Images through Redundancy. Entropy 2016, 18, 299. [CrossRef]

24. Chen, X.; Zhou, J.; Liao, Z.; Liu, S.; Zhang, Y. A Novel Method to Rank Influential Nodes in Complex Networks Based on Tsallis
Entropy. Entropy 2020, 22, 848. [CrossRef]

25. Zhang, Q.; Li, M.; Deng, Y. A new structure entropy of complex networks based on non-extensive statistical mechanics. Int. J.
Mod. Phys. C 2016, 27, 1650118. [CrossRef]

26. Shafee, F. Lambert function and a new non-extensive form of entropy. IMA J. Appl. Math. 2007, 72, 785–800. [CrossRef]
27. Ubriaco, M.R. Entropies based on fractional calculus. Phys. Lett. A 2009, 373, 2516–2519. [CrossRef]
28. Ubriaco, M.R. A simple mathematical model for anomalous diffusion via Fisher’s information theory. Phys. Lett. A 2009,

373, 4017–4021. [CrossRef]
29. Karci, A. Fractional order entropy: New perspectives. Optik 2016, 127, 9172–9177. [CrossRef]
30. Karci, A. Notes on the published article “Fractional order entropy: New perspectives” by Ali KARCI, Optik-International Journal

for Light and Electron Optics, Volume 127, Issue 20, October 2016, Pages 9172–9177. Optik 2018, 171, 107–108. [CrossRef]
31. Radhakrishnan, C.; Chinnarasu, R.; Jambulingam, S. A Fractional Entropy in Fractal Phase Space: Properties and Characterization.

Int. J. Stat. Mech. 2014, 2014, 460364. [CrossRef]
32. Ferreira, R.A.C.; Tenreiro Machado, J. An Entropy Formulation Based on the Generalized Liouville Fractional Derivative. Entropy

2019, 21, 638. [CrossRef]
33. Machado, J.T. Entropy analysis of integer and fractional dynamical systems. Nonlinear Dyn. 2010, 62, 371–378.
34. Machado, J.T. Fractional order generalized information. Entropy 2014, 16, 2350–2361. [CrossRef]
35. Wang, Q.A. Extensive Generalization of Statistical Mechanics Based on Incomplete Information Theory. Entropy 2003, 5, 220–232.

[CrossRef]
36. Wang, Q.A. Incomplete statistics: Nonextensive generalizations of statistical mechanics. Chaos Solitons Fractals 2001, 12, 1431–1437.

[CrossRef]
37. Kaniadakis, G. Maximum entropy principle and power-law tailed distributions. Eur. Phys. J. B 2009, 70, 3–13. [CrossRef]
38. Tsallis, C. An introduction to nonadditive entropies and a thermostatistical approach to inanimate and living matter. Contemp.

Phys. 2014, 55, 179–197. [CrossRef]
39. Kapitaniak, T.; Mohammadi, S.A.; Mekhilef, S.; Alsaadi, F.E.; Hayat, T.; Pham, V.T. A New Chaotic System with Stable Equilibrium:

Entropy Analysis, Parameter Estimation, and Circuit Design. Entropy 2018, 20, 670. [CrossRef] [PubMed]
40. Jalab, H.A.; Subramaniam, T.; Ibrahim, R.W.; Kahtan, H.; Noor, N.F.M. New Texture Descriptor Based on Modified Fractional

Entropy for Digital Image Splicing Forgery Detection. Entropy 2019, 21, 371. [CrossRef] [PubMed]
41. Ibrahim, R.W.; Jalab, H.A.; Gani, A. Entropy solution of fractional dynamic cloud computing system associated with finite

boundary condition. Bound. Value Probl. 2016, 2016, 94. [CrossRef]
42. He, S.; Sun, K.; Wu, X. Fractional symbolic network entropy analysis for the fractional-order chaotic systems. Phys. Scr. 2020,

95, 035220. [CrossRef]
43. Machado, J.T.; Lopes, A.M. Fractional Rényi entropy. Eur. Phys. J. Plus 2019, 134, 217. [CrossRef]
44. Beck, C. Generalized information and entropy measures in physics. Contemp. Phys. 2009, 50, 495–510. [CrossRef]
45. Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.; Morgan Kaufmann Publishers Inc.: San Francisco, CA,

USA, 2011.
46. Hilpert, J.C.; Marchand, G.C. Complex Systems Research in Educational Psychology: Aligning Theory and Method. Educ.

Psychol. 2018, 53, 185–202. [CrossRef]
47. Karuza, E.A.; Thompson-Schill, S.L.; Bassett, D.S. Local Patterns to Global Architectures: Influences of Network Topology on

Human Learning. Trends Cogn. Sci. 2016, 20, 629–640. [CrossRef]
48. Ramirez-Arellano, A. Students learning pathways in higher blended education: An analysis of complex networks perspective.

Comput. Educ. 2019, 141, 103634. [CrossRef]
49. Zhao, X.; Wang, X.Y. An Approach to Compute Fractal Dimension of Color Images. Fractals 2017, 25, 1750007. [CrossRef]
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