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Abstract: Phosphorus is not only an import nutrient to aquatic habitats, but it also acts as a growth
inhibitor in aquatic ecosystems; however, it also aggravates environmental issues, such as eutrophica-
tion. There is a growing interest in rapid phosphorus detection to manage and protect water resources.
Due to the large molecular structure and high hydration energy of phosphate ions, ion-selective
electrodes (ISEs) remain in their infancy for real-time measurements in terms of practical application.
In this study, a newly developed ionophore based on a biomimetic nicotinamide functional group
was used to detect phosphate selectively, displaying efficient binding through charge interactions and
hydrogen bonds. The ISE membrane containing silicone rubber demonstrated an effective detection
performance over a long period of time. With a dynamic range between 10−6 and 10−2 M and a
limit of detection of 0.85 × 10−6 M (26 µg/L), the newly synthesized ISE membranes demonstrated
selectivity for phosphate ions over other ions, including acetate, sulfate, and chloride.

Keywords: ion-selective electrode; membrane; nicotinamide; phosphate sensor; environmental analysis

1. Introduction

Growth-limiting nutrients of aquatic habitats, such as carbon, nitrogen, and phospho-
rus, play important roles in aquatic ecosystems. An accurate assessment of growth-limiting
nutrients can provide a better understanding of aquatic ecosystems. It is crucial to ac-
curately measure phosphorus chemically and biochemically. Phosphorus often causes
eutrophication owing to its excessive loading into water bodies, which impairs the aquatic
environment [1,2]. Environmental agencies in many countries have established recom-
mended limits for total phosphorus or phosphate concentrations and standard protocols for
determining their concentrations to manage and protect water resources [3–5]. However,
these standard protocols mostly require sample collection, reaction with redox agents or
coloring agents under harsh conditions in the laboratory, and spectroscopic measurements
within a certain time period [6,7].Therefore, this method is not suitable for the effective
real-time monitoring of phosphate ion concentration changes because of its complex and
time-consuming steps. A number of electrochemical and spectrophotometric commercial
sensors offer the seamless monitoring of nutrients such as NH4

+, K+, Na+, Mg2+, Ca2+, Cl−,
NO3

−, CN−, and F− [8–14]. However, currently, no commercial phosphate sensors that
can handle real-time analysis exist in the field.

Phosphorus is mostly present in the form of phosphate ions, which are considered
to be relatively large ions similar to sulfate, acetate, and perchlorate ions. Phosphorous’s
large hydration energy renders it difficult to develop a sensor based on hydrogen bonding
between the sensing material and the analyte [15,16]. Despite these challenges, researchers
have been developing phosphate sensors based on spectrophotometric sensors using col-
orimetric or photoluminescent probes and electrochemical sensors, such as potentiometric
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or voltametric sensors [17–24]. Spectrophotometric sensors have a relatively low limit
of detection (LOD) but a narrow linear concentration range with respect to their sensor
performance. However, electrochemical sensors have a wide linear relationship between
phosphate concentrations and sensor output signals. Pioneering research on phosphate
sensors based on electrochemical principles has focused on ion-selective electrode (ISE)
sensors using urea or thiourea-functionalized calix[4]arene as an ionophore [6,25]. The
ionophore possesses well-organized interaction sites for spherical or tetragonally struc-
tured ions through hydrogen bonds [26]. The ISE sensor using calix[4]arene shows an ideal
Nernst behavior in the 10−5– 10−1 M concentration range and an LOD of 5 × 10−5 M for
its phosphate concentration [6]. However, its inferior sensitivity to phosphate, rather than
perchlorate, remains to be improved.

In this study, ionophores with nicotinamide functional groups were designed and
synthesized to develop an ISE sensor that detects phosphate effectively, and their phosphate
detection characteristics were also studied. As an important biomaterial, nicotinamide is a
water-soluble form of vitamin used as a precursor of the nicotinamide-adenine dinucleotide.
Specific hydrogen bonding between nicotinamide and the phosphates of lipids plays a criti-
cal role as nicotinamide effectively penetrates phospholipids in biological systems [27,28].
This study demonstrates an ISE sensor consisting of a nicotinamide-based ionophore that
detects phosphate selectively and sensitively by imitating the specific interaction in a bio-
logical system and examines its characteristics. Furthermore, the long-term performance
stability of the sensor was achieved by optimizing the ISE membrane constituents.

2. Materials and Methods

Poly-vinyl chloride (PVC), 2-nitrophenyl octyl ether (NPOE), tetradodecylammonium
bromide (TDAB), potassium chloride, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO),
acetonitrile (ACN), ethanol (EtOH), and potassium phosphate monobasic were purchased
from Sigma Aldrich (Merck Korea, Seoul, Korea). Silicone rubber RTV 3140 was obtained
from DOWSIL (Dow, MI, USA). Nicotinamide, 1,3-bis (bromomethyl) benzene and potas-
sium hexafluorophosphate (KPF6) obtained from Tokyo Chemical Industry CO., Ltd (SEJIN
CI Co., Ltd., Seoul, Korea). All aqueous solutions were prepared using deionized water
(resistivity of 18.2 M Ω cm). All chemicals were used without further purification.

2.1. Synthesis of Ionophores

1,3-Phenylenebis (methylene) [3-(N,N-diethyl)carbamoylpyridinium] bromide (bis-meta-NICO-Br)
was prepared via a method used in previous study [29]. Nicotinamide (2.00 g, 16.7 mmol)
was added to a solution of 1,3-bis (bromomethyl)benzene (2.00 g, 7.06 mmol) in a solvent
mixture of ACN (15 mL) and EtOH (35 mL) (Scheme 1). The reaction mixture was stirred
for 3 h at 82 ◦C and then cooled to room temperature. The white precipitates were filtered
and washed thrice with cold ethanol and then dried in an oven at 60 ◦C (1.90 g, yield: 49%).
1H nuclear magnetic resonance (NMR, 300 MHz, DMSO-d6): δ 9.64 (s, 2H, -NCH-), δ 9.32 (d,
2H, -CH-), δ 9.01 (d, 2H, -CH-), δ 8.62 (s, 2H, -NH2), δ 8.30 (t, 2H, -CH-), δ 8.20 (s, 2H -NH2),
δ 7.79 (s, 1H, Ar-H), δ 7.60 (d, 2H, Ar-H), δ 7.53 (t, 1H, Ar-H), and δ 5.96 (s, 4H, -CH2-).

Synthesis of bis-meta-NICO-PF6: The counter anions of bis-meta-NICO-Br, which is
a cation, were exchanged with hexafluorophosphate. This additional procedure was
conducted to improve the solubility of the ionophore in common organic solvents and
prepare a homogeneous ISE membrane (Scheme 1). An aqueous solution (20 mL) of
bis-meta-NICO-Br (0.500 g, 3.20 mmol) was added to an aqueous solution (30 mL) of KPF6
(2.55 g, 13.7 mmol). The reaction mixture was then stirred for 2 h at room temperature
(Scheme 1). The white precipitates were filtered, washed thrice, and dried in an oven at
60 ◦C (0.466 g, yield: 73%). 1H NMR (300 MHz, DMSO-d6): δ 9.55 (s, 2H, -NCH-), δ 9.22 (d,
2H, -CH-), δ 8.97 (d, 2H, -CH-), δ 8.57 (s, 2H, -NH2), δ 8.30 (t, 2H, -CH-), δ 8.20 (s, 2H -NH2),
δ 7.67 (s, 1H, Ar-H), δ 7.56 (d, 2H, Ar-H), δ 7.54 (t, 1H, Ar-H), and δ 5.92 (s, 4H, -CH2-).
MALDI-TOF mass (m/z) calculated—493.3642; observed—492.6193 [M+PF6

−] (Figure S1).



Polymers 2022, 14, 3392 3 of 12

Polymers 2022, 14, x FOR PEER REVIEW 3 of 12 
 

 

13.7 mmol). The reaction mixture was then stirred for 2 h at room temperature (Scheme 
1). The white precipitates were filtered, washed thrice, and dried in an oven at 60 °C (0.466 
g, yield: 73%). 1H NMR (300 MHz, DMSO-d6): δ 9.55 (s, 2H, -NCH-), δ 9.22 (d, 2H, -CH-), 
δ 8.97 (d, 2H, -CH-), δ 8.57 (s, 2H, -NH2), δ 8.30 (t, 2H, -CH-), δ 8.20 (s, 2H –NH2), δ 7.67 (s, 
1H, Ar-H), δ 7.56 (d, 2H, Ar-H), δ 7.54 (t, 1H, Ar-H), and δ 5.92 (s, 4H, -CH2-). MALDI-
TOF mass (m/z) calculated—493.3642; observed—492.6193 [M+PF6−] (Figure S1). 

Bis-para-NICO isomer was prepared by following the same procedure as that of bis-
meta-NICO using p-nicotinamide as a starting material (see Supporting Information). The 
synthesis of tris-meta-NICO-PF6 was performed by switching 1,3-bis (bromomethyl) ben-
zene with 1,3,5-tris (bromomethyl)benzene (Scheme 1). 

 
Scheme 1. Synthetic scheme of phosphate ionophores with nicotinamide functional groups. The 
symbol “eq” stands for equivalent weight. 

2.2. Membrane 
To fabricate the Type 1 ISE membrane, we first prepared a PVC solution by dissolv-

ing PVC (33 mg) in THF (400 μL) and then vortexing it for 2 h. Thereafter, 1 mg of bis-
meta-NICO-PF6 was dissolved in THF (100 μL) and DMSO (40 μL) to obtain bis-meta-
NICO-PF6 solution, which was further mixed with the PVC solution and stirred for 1 h. 
TDAB (1 mg), as an additive in THF (100 μL), was mixed with PVC/bis-meta-NICO-PF6 
solution and stirred for 1 h. Furthermore, NPOE (1.04 g/mL, 66 μL) was added to the 
PVC/bis-meta-NICO-PF6/additive solution and stirred for 2 h. The resulting solution 
(membrane solution) was dried at room temperature for 48 h using a glass ring of a pre-
determined size [30]. A further layer of silicone rubber (SR) solution was prepared for 
developing Type 2 membrane (Figure 1). The SR solution was prepared by mixing the 
membrane solution and RTV 3140 (50 mg/mL, dissolved in THF) at a 1:1 volume ratio [31]. 
To prepare the Type 2 ISE membrane, the membrane solution (360 μL) was dried at room 

Scheme 1. Synthetic scheme of phosphate ionophores with nicotinamide functional groups. The
symbol “eq” stands for equivalent weight.

Bis-para-NICO isomer was prepared by following the same procedure as that of
bis-meta-NICO using p-nicotinamide as a starting material (see Supporting Information).
The synthesis of tris-meta-NICO-PF6 was performed by switching 1,3-bis (bromomethyl)
benzene with 1,3,5-tris (bromomethyl)benzene (Scheme 1).

2.2. Membrane

To fabricate the Type 1 ISE membrane, we first prepared a PVC solution by dissolving
PVC (33 mg) in THF (400 µL) and then vortexing it for 2 h. Thereafter, 1 mg of bis-meta-
NICO-PF6 was dissolved in THF (100 µL) and DMSO (40 µL) to obtain bis-meta-NICO-PF6
solution, which was further mixed with the PVC solution and stirred for 1 h. TDAB
(1 mg), as an additive in THF (100 µL), was mixed with PVC/bis-meta-NICO-PF6 solution
and stirred for 1 h. Furthermore, NPOE (1.04 g/mL, 66 µL) was added to the PVC/bis-
meta-NICO-PF6/additive solution and stirred for 2 h. The resulting solution (membrane
solution) was dried at room temperature for 48 h using a glass ring of a predetermined
size [30]. A further layer of silicone rubber (SR) solution was prepared for developing Type
2 membrane (Figure 1). The SR solution was prepared by mixing the membrane solution
and RTV 3140 (50 mg/mL, dissolved in THF) at a 1:1 volume ratio [31]. To prepare the
Type 2 ISE membrane, the membrane solution (360 µL) was dried at room temperature for
24 h and then covered with the SR solution (240 µL), followed by drying for an additional
24 h. When the Type 2 ISE membrane was evaluated, the layer formed by drying the SR
solution was exposed to the analyte solution.
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2.3. Characterization

The NMR data—including 2D experiments and NMR titration studies for the com-
pounds bis-meta-NICO-PF6, tris-meta-NICO-PF6, and bis-para-NICO-PF6—were collected in
samples dissolved in DMSO-d6 with 1H referencing to the residual solvent peak at 2.50 ppm
on an NMR spectrometer (Fourier 300, Bruker, Billerica, MA, USA). The following abbrevi-
ations were used to indicate the multiplicity in the NMR spectra: s = singlet, d = doublet,
and t = triplet signal. The structure of the membrane and its binding behavior to the ions
were verified using Fourier transform infrared (FT-IR) spectroscopy (ALPHA-P, USA).

2.4. Electromotive Force (EMF) Measurement

The EMF was evaluated to quantify the strength and selectivity of the ion inter-
actions in a liquid membrane. A potentiometer (KST101A, Kosentech, Korea) with a
computer-based data-gathering system was used to examine the EMFs of each sample. The
measurement setup featured a double-junction Ag/AgCl electrode saturated with KCl as
a reference electrode from Thermo Fisher Scientific. The EMF of the stabilized ISEs was
measured after 5-min incubation in deionized water. The EMF or membrane potential (E)
was calculated for sample concentrations (C) ranging from 10−6 M to 10−2 M as follows:

E = E0 +
RT
zF

logC = E0 + S × logC (1)

where R is the gas constant (8.314 J/K). mol), T is the temperature (K), F is the Faraday
constant (96,500 C/mol), and z is the charge of the analyte ion. With the exception of the
membrane–sample solution interface, the potential differences of all other interfaces are
added together to obtain the constant term E0, which is unique to the analyte [32]. A plot
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of E versus logC demonstrates that the measured E is proportional to the logarithm of the
analyte concentration with a slope (S).

The ISE capacity to match the principal ions in a mixed solution is measured by
its selectivity coefficient (kpot

ij ) [33,34]. The selectivity coefficient was obtained using the

separation method at the same concentrations ranging between 10−6 and 10−2 M. E1 and
E2 are the measured membrane potentials for a solution containing the salt of the primary
ion i and interfering ion j, respectively; zi is the charge of the primary ion; S is the slope of
the linear part of the electrode calibration curve; and ∆E is the potential difference between
ions j and i.

log kpot
ij =

(E2 − E1)ziF
2.303RT

=
∆E
S

(2)

3. Results
3.1. Synthesis of Ionophore and Its Interaction with Phosphate

The phosphate receptors were designed to have cationic moieties, such as pyridinium
and imidazolium. In the preliminary phosphate titration tests, nicotinamide-type receptors
showed a high performance compared with the other ionophores owing to the additional
H-bonding sites. Significantly, the bis-nicotinamide-based ionophore (bis-meta-NICO-PF6,
Figure 2) exhibited stronger interactions with phosphate ions than tris-meta-NICO-PF6
(Figure S2). The different positions of the amide groups, the meta- and para-isomers, were
also compared through phosphate titration studies (Figure S3). Based on the findings
of a preliminary NMR titration investigation, bis-meta-NICO-PF6 was chosen as the best
molecular design among the ionophores in this study for the adhesion of an ionophore
to a phosphate ion. The optimized modeling structure of the bis-meta-NICO-PF6 was
obtained by repeating the energy minimization process five times on Chem3D software
(Figure S4). In a three-dimensional modeling structure, the two arms of the receptor can
be aligned to form a binding pocket, which is flexible and fits well with a phosphate
ion. The groove of the ionophore provides cationic charges for electrostatic attraction and
hydrogen bonding. The protons on the ionophore molecule were determined based on
the two-dimensional-NMR interpretation as shown in Figures S5 and S6. In phosphate
titration studies, 2-H, which is adjacent to the amide group and positively charged nitrogen,
was significantly affected by the phosphate ion, and large downfield shifts were observed
(Figure 2). Similarly, 5-H also was significantly shifted downfield. However, 3-H and 4-H
showed substantially smaller upfield shifts as they were separated from the amide group.
This tendency indicates that charge interactions and hydrogen bonding with amide groups
play an important role in facilitating the interaction between the ionophore and phosphate
ions. Significantly, two amide protons (1-H and 1-H’) split each other, and a 1-H proton
peak initially appeared at 8.6 ppm and gradually moved downfield and broadened to
9.1 ppm when a 0.75 equivalent of phosphate was added. The other amide proton, 1-H’,
moved in the opposite direction. A fast and dynamic exchange processes may be involved,
and the large chemical-shift indicates a strong interaction between amide groups and
phosphate anions. The 7-H showed the largest downfield shift, which strongly supports
the formation of a binding pocket around 2-H, 5-H, and 7-H by a phosphate anion.

Phosphate titration investigations with a variety of anions, including CH3COO−,
NO3

−, SO4
2−, Br−, and Cl−, were conducted (Figures S7–S11). The results of the NMR

titration experiments are summarized and listed as chemical shift changes (Figure S12).
The chemical shifts of all the protons in bis-meta-NICO-PF6 were investigated when 1 eq
of an anion was added. Large downfield shifts and their wide distribution were observed
for 2-H, 5-H, and 7-H in all cases, owing to the strong interaction between bis-meta-NICO-
PF6 and an anion. Figure S13 shows plots only for 7-H to compare and estimate the
relative binding affinity upon increasing the amount of guest anions. These results are very
useful for determining the selectivity order for anions in solution, which is determined as
H2PO4

− > Cl− > SO4
2− > CH3COO− > NO3

− > Br−.
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Figure 2. 1H-NMR spectra of bis-meta-NICO-PF6 during phosphate titration.

3.2. Membrane Characteristics

FT-IR spectroscopic analyses were performed to verify the interactions between bis-
meta-NICO-PF6 and phosphate ions in the Type 2 membrane. Figure 3 shows the FT-IR
spectra of the bis-meta-NICO-PF6 (S1), Type 2 membrane (S2), and Type 2 membrane reacted
with 0.5 M phosphate ions (S3). The peaks corresponding to nicotinamide were clearly
observed in S1 at 3400 (N–H), 1670 (C=O), 1506 (C=C), and 1394 cm−1 (C–N) [35]. The
spectra (S2, S3) of the Type 2 membranes in Figure 3 showed several vibration bands from
PVC and silicone rubber: 2924 (C-H stretching), 1278 (C–H rocking), 962 (C–H wagging),
855 (C–Cl), and ca. 1000 cm−1 (Si–O–Si) [36,37]. Additionally, it is known that bands
for P–O from phosphate ions can be seen at approximately 1070 and 982 cm−1 [38]. The
peaks in S3 at 1080 and 982 cm−1 can be attributed to the presence of phosphate in the
Type 2 membrane.



Polymers 2022, 14, 3392 7 of 12Polymers 2022, 14, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 3. FT-IR spectra of the bis-meta-NICO-PF6 (S1) and Type 2 membrane before (S2) and after 
incubation (S3) with phosphate. 

3.3. Evaluation of ISE Response 
The EMF responses were measured before and after the interaction between ISE and 

H2PO4 at various concentrations ranging between 10−6 and 10−2 M. The EMF values were 
obtained by measuring the differences between the internal and external potentials of the 
membrane during the interaction between H2PO4 and bis-meta-NICO-PF6. Figure 4a shows 
that the pH sensor barely changed in response to the phosphate concentration; however, 
the EMF values linearly decreased with an increasing H2PO4 concentration. The EMF was 
plotted against the logarithm of the H2PO4 concentration (Figures 4b and S14). Therefore, 
we can deduce that the change in the signal was caused by a change in the amount of 
phosphate rather than a change in the hydrogen ions. The linear dependence between the 
EMF and H2PO4 concentration led to a regression equation of y = −22.9 logx + 0.3 with a 
correlation coefficient of 0.96 for Type 1. With a correlation coefficient of 0.95, the regres-
sion equation y = −38.3 logx + 158.2 was obtained for Type 2. 

Figure 3. FT-IR spectra of the bis-meta-NICO-PF6 (S1) and Type 2 membrane before (S2) and after
incubation (S3) with phosphate.

3.3. Evaluation of ISE Response

The EMF responses were measured before and after the interaction between ISE and
H2PO4 at various concentrations ranging between 10−6 and 10−2 M. The EMF values were
obtained by measuring the differences between the internal and external potentials of
the membrane during the interaction between H2PO4 and bis-meta-NICO-PF6. Figure 4a
shows that the pH sensor barely changed in response to the phosphate concentration;
however, the EMF values linearly decreased with an increasing H2PO4 concentration.
The EMF was plotted against the logarithm of the H2PO4 concentration (Figure 4b and
Figure S14). Therefore, we can deduce that the change in the signal was caused by a
change in the amount of phosphate rather than a change in the hydrogen ions. The linear
dependence between the EMF and H2PO4 concentration led to a regression equation of
y = −22.9 logx + 0.3 with a correlation coefficient of 0.96 for Type 1. With a correlation
coefficient of 0.95, the regression equation y = −38.3 logx + 158.2 was obtained for Type 2.

The reproducibility, expressed in terms of the relative standard deviation, was approx-
imately 2.9% (n = 3) at a H2PO4 concentration of 5.0 µM. The LOD value of phosphate
for the Type 2 membrane was 0.85 × 10−6 M (26 µg/L) (Figure 4b(i)), using the formula
LOD = 3 σ/k, where σ is the standard deviation and k is the slope [39]. However, the
phosphate detection without an SR layer membrane (Type 1) demonstrated that the linear
range was between 10−6 and 10−2 M, and the LOD was approximately 1.54 × 10−6 M
(47 µg/L) (Figure 4b(ii)). The Type 2 membrane achieved an LOD three times lower than
that of the Type 1 membrane, demonstrating that the SR layer effectively prevented the
leakage of bis-meta-NICO-PF6 and maintained the potential difference.
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During a long period of measurements, the phosphate ion-sensing behaviors of the
Type 1 and Type 2 membranes were different. When the measurements were taken con-
tinuously over a period of five days, the Type 2 membrane exhibited a larger slope than
the Type 1 membrane because of its higher sensitivity to the changes in the phosphate
concentration. Figure S15 shows that the results from Type 1 and Type 2 had statistically
significant differences according to the p-value obtained under the equal variance condition
of the independent sample T test, which was 0.000761. The slope of Equation (1) was
evaluated over a period of more than 40 days to assess the long-term durability of the Type
1 and 2 membranes (Figure 5). The slopes exhibited a gradual increase for approximately 5
to 10 days, allowing the membrane matrix’s aging or component reorganization to occur.
The membrane matrix demonstrated a phenomenon of gradual sensitivity enhancement
based on the rising slope, as opposed to most ISE matrixes, which showed a performance
loss with aging [11]. After 30 days, the Type 1 slope was reduced by 70% (from −37.49 to
−11.07), but the Type 2 slope was only diminished by 5% (−56.21 to −53.16). According
to previous studies, the good sensitivity and durability of the Type 2 membrane can be
attributed to the ability of the SR layer to prevent bis-meta-NICO-PF6 leakage into the
matrix [31].

The selectivity coefficient was determined to verify the binding constants of various
anions. A separate solution method was used to calculate the coefficient [33,34]. The Type 1
membrane showed higher affinities for NO3

− and Cl− than H2PO4
−, but the selectivity coef-

ficient of phosphate to both NO3
− and Cl− had improved in Type 2. However, NO3

− acted
as an interfering ion for H2PO4

− detection in both Type 1 and Type 2 [40], which necessitates
a more scrutinized approach, such as molecular imprinting. The selectivity coefficient for
the Type 2 ISE changed in the following order: H2PO4

− ≥ NO3
− > Cl− > SO4

2− > CH3COO−.
Furthermore, NO3

− had the second-lowest affinity for NICO-PF6 in the solution-based
NMR titration experiments. However, NO3

− demonstrated a similar attraction to NICO-
PF6 in the Type 2 membrane. These results may be attributed to the differences between
the solution and liquid membrane states. Further investigations should be conducted on
the interactions between NO3

− and other components of the Type 2 membranes, such as
PVC, additives, plasticizers, and RTV 3140 as SR.
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Table 1 presents a comparison of the analytical properties of the Type 1 and Type 2 ISE
and other H2PO4−ISEs, demonstrating that they have equivalent linear ranges, slopes, and
selectivity values (log kpot

ij ) [40–43]. Furthermore, Type 2 outperformed the other sensors
in terms of stability and LOD. Therefore, the newly synthesized ionophores inspired by
the nicotinamide moiety owing to their multiple binding modes through hydrogen bonds
and charge interactions, as well as effective matrix components such as SR that prevent
ionophores from dissolving, are considered effective for their unique characteristics.

Table 1. Comparison of ISE characteristics of Type 1 and 2 with other research results.

Linear
Range(M)

Slope
(mV/decade) LOD (µM) Stability(Day)

Selectivity

CH3
COO− Cl− NO3− Br− SO42− HCO3−

ref [40] 10−6–
10−1 −59.0 1.6 4.8 - −2.9 −2.1 −2.5 −3.9 -

ref [41] 10−6–
10−1 −55.7 2.14 - - −2.37 - - −2.52 −2.31

ref [42] 10−5–
10−1 −37.2 10 20 - 1.82 −2.10 2.04 - −1.67

ref [43] 10−4–
10−1 −60.0 70 - - −1.5 −2.5 −1.4 −2.3 −0.3

Type 1 * 10−6–
10−2 −23.5 1.54 30 −6.09 0.02 1.71 - −0.68 -

Type 2 * 10−6–
10−2 −53.3 0.85 40 −16.3 −1.32 −0.06 - −2.23 -

* This study.
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4. Conclusions

The specific affinity between nicotinamide and phosphate through hydrogen bonding
and charge interactions was utilized to develop an effective ionophore that can be applied
in an ISE-based phosphate sensor. Several analogs of ionophores, including bis-, tris-,
meta-, and para-NICO, which include the nicotinamide functional group, were synthesized
and their affinities to phosphate in the solution phase were investigated using NMR
spectroscopic analyses. In this study, the most efficient ionophore was bis-meta-NICO-PF6,
which had a stronger affinity for phosphate than Cl−, SO4

2−, CH3COO−, NO3
−, and

Br− in the solution phase. Bis-meta-NICO-PF6 had to be embedded into the membrane
using carefully formulated membrane components, such as PVC, NPOE as a plasticizer,
and DTAB as an additive; its affinity for phosphate ions in the membrane was practically
comparable with that of the ionophore in the solution phase with the only exception being
NO3

-. Further studies should be conducted to understand the different affinity behaviors of
bis-meta-NICO-PF6 for NO3

− in solution and in the ISE membrane. In addition, an SR layer
was introduced to prevent the elution of bis-meta-NICO-PF6 from the developed membrane
and was found to maintain the sensor performance for a long time-period, namely, over
40 days. Therefore, we developed a Type 2 membrane based on ISE with an LOD value
of 0.85 × 10−6 M for phosphate, which is one of the best LOD values reported thus far
for phosphate sensors in the field of ISEs. With its selectivity, sensitivity, and durability
characteristics, the newly synthesized ionophore, bis-meta-NICO-PF6, can be used for the
seamless and real-time monitoring of phosphate concentration changes in the field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14163392/s1, Figure S1. (a) 1H-NMR spectrum of bis-meta-
NICO-PF6 ionophore. (b) MALDI-TOF spectrum of bis-meta-NICO-PF6 m/z=492.6193 [M+PF6

−].;
Figure S2. 1H-NMR spectra of tris-meta-NICO-PF6 under phosphate titration.; Figure S3. 1H-NMR
spectra of bis-para-NICO-PF6 under phosphate titration study.; Figure S4. Three-dimensional mod-
eling of bis-meta-NICO-PF6 binding phosphate.; Figure S5. 2-D NOESY NMR spectrum of bis-meta-
NICO-PF6.; Figure S6. 2-D NOESY NMR spectrum of bis-meta-NICO-PF6 with phosphate ion.;
Figure S7. Acetate titration to bis-meta-NICO-PF6 in DMSO-d6.; Figure S8. Nitrate titration to bis-meta-
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Bromide titration to bis-meta-NICO-PF6 in DMSO-d6.; Figure S11. Chloride titration to bis-meta-
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