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Abstract

Background: Polyamines play important roles in cell growth and proliferation.

Polyamine metabolism genes are dysregulated in various tumors. Some polyamine

metabolism genes are regulated by transcription factors. However, the transcription

factors that regulate polyamine metabolism genes have not been completely

identified. Additionally, whether any of the transcriptional regulations depend on

tumor heterogeneity and the tumor microenvironment has not been investigated.

Methods: We used bulk RNA‐seq data to identify dysregulated polyamine

metabolism genes and their transcription factors across breast cancer subtypes.

Genes highly correlated with polyamine changes were obtained, and their

subtype‐specific expressions were checked in tumor microenvironment cells

using single‐cell RNA (scRNA)‐seq data. Gene Ontology enrichment analysis was

used to explore their molecular functions and biological processes, and survival

analysis was used to examine the impact of these genes on therapeutic outcome.

Results: We first analyzed the dysregulation of polyamine synthesis, catabolism,

and transport in four breast cancer subtypes. Genes such as AGMAT and CAV1

were dysregulated across all subtypes, while APRT, SAT1, and other genes were

dysregulated in the more lethal subtypes. Among the dysregulated genes of

polyamine metabolism, we focused on three genes (SRM, APRT, and SAT1) and

identified their transcription factors (SPI1 and IRF1 correspond to SAT1, and IRF3

corresponds to SRM and APRT). With scRNA‐seq data, we verified that these three

transcription factors also regulated these three polyamine metabolism genes in the

tumor microenvironment. Both bulk RNA‐seq and scRNA‐seq data indicated that

these genes were specifically upregulated in high‐risk breast cancer subtypes, such

as the basal‐like type. High expression of these genes corresponded to worse

outcomes in the basal‐like subtype under chemotherapy and radiation treatment.
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Conclusion: Our work identified three subtype‐specific transcription factors

that regulate three polyamine metabolism genes in high‐risk breast cancer

subtypes and the tumor microenvironment. Our results deepen the under-

standing of the role of polyamine metabolism in breast cancer and may help

the clinical therapy of advanced breast cancer subtypes.
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1 | INTRODUCTION

Polyamines, including putrescine (PUT), spermidine (SPD),
and spermine (SPM), are cationic metabolites that play
important roles in cell growth and proliferation [1, 2].
Abnormally elevated polyamine levels have been widely
detected in various cancers including breast cancer [3, 4].
Thus, targeting polyamine metabolism has become a
rational therapeutic strategy for cancer treatment [5–9].
Cellular polyamine content is directly regulated by various
enzymes and membrane‐transporting proteins. The genes
encoding these enzymes and transporters are subject to
transcriptional regulation [1, 10]. MYC is a well‐studied
proto‐oncogene and encodes myc, a transcription factor (TF)
that regulates several polyamine metabolism genes, such as
ODC1, the gene encoding the rate‐limiting enzyme ODC1 in
polyamine synthesis [11, 12]. JUN and FOS coencode AP‐1,
which regulates MAT2A, a gene encoding the MAT2A
enzyme that synthesizes S‐adenosylmethionine, a necessary
substrate for polyamine synthesis [13]. FLI1 and ETS1
regulate the expression of CAV1, which encodes CAV1,
involved in polyamine transport [14–16]. Additional studies
have identified a number of genes that encode transcrip-
tional regulators that show similar expression patterns with
polyamine metabolism genes [17–19]. Nonetheless, a
systematic study of the genes driving polyamine dysregula-
tion in cancer is lacking [1].

Breast cancer is the leading cancer in women and
shows high heterogeneity. In the clinic, breast cancer is
generally classified into four subtypes by the expression of
marker genes: luminal A (or LumA), luminal B (or LumB),
HER‐2 enriched, and basal‐like (which is generally triple‐
negative). These four subtypes have evolutionary connec-
tions regarding the differentiating states of tumor cells;
LumA is the least lethal type and basal‐like is the most
dangerous and most difficult to treat. These subtypes are
capable of interconverting under some conditions [20–22].
Better understanding of the genetic and metabolic differ-
ences between these subtypes is important for the effective
treatment of breast cancer patients.

In this work, we investigated if and how polyamine
metabolism genes and the genes encoding their regulators
are heterogeneous in breast cancer. We first identified
dysregulated polyamine metabolism genes in the four breast
cancer subtypes. We then confirmed that polyamine levels
were positively associated with dysregulated polyamine
metabolism genes. We further identified transcription factors
(TFs) that control the dysregulated polyamine metabolism
genes. We found that three TFs (interferon regulatory factor
3, IRF3; interferon regulatory factor 1, IRF1; and Spi‐1 proto‐
oncogene, SPI1) regulate three dysregulated polyamine
metabolism genes (adenine phosphoribosyltransferase, APRT;
spermidine synthase, SRM; and spermidine/spermine N1‐
acetyltransferase 1, SAT1, respectively), and these regulations
have distinct heterogeneity in the four breast cancer
subtypes. Furthermore, we found that these TFs and genes
are also dysregulated in the tumor microenvironment (TME)
cells with distinct heterogeneity. Finally, we showed that
these TFs and genes are important players in affecting the
treatment efficacy of breast cancer subtypes. Our work will
be of great value in elucidating the role of polyamine
metabolism and its regulation in tumor heterogeneity.

2 | METHODS

2.1 | Data collection and preprocessing

The gene expression profile containing data of 1102
breast cancer samples and 113 normal samples was
collected and downloaded from The Cancer Genome
Atlas‐Breast Invasive Carcinoma (TCGA‐BRCA) (https://
portal.gdc.cancer.gov/repository) [23]. The samples were
classified into four subtypes and normal‐like samples
with genefu using the PAM50 breast cancer classification
[24]. Misclassified samples were discarded. The final
group included 293 LumA, 471 LumB, 117 HER2, 205
basal‐like, and 91 normal samples.

To explore the relationship between gene expression
and polyamine levels, we used GSE37751 from Gene
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Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/), which contains the metabolic data of 61 breast
cancer samples and 47 normal samples [25]. The samples
were classified and filtered into 14 LumA, 10 LumB, 12
HER2, 17 basal‐like, and 33 normal samples by genefu.
Single‐cell RNA (ScRNA)‐seq data were acquired from
GEO (accession number GSE176078). The samples were
from 26 primary tumors, 19 of which were classified into
five LumA, three LumB, four HER2, and seven basal‐like
with the Allcells‐pseudobulk PAM50 method [26].

2.2 | Differential expression analysis of
the genes related to polyamine
metabolism

First, 29 genes related to polyamine metabolism were
collected from Gene Ontology (GO), Molecular Signature
Database (MSigDB), Kyoto Encyclopedia of Genes and
Genomes (KEGG), and related studies [1, 27–30]. Next,
the genes were classified into four categories on the basis
of their functions: 10 genes related to polyamine
synthesis, four genes related to polyamine catabolism,
13 genes related to polyamine transport, and two genes
related to eIF5A synthesis (Table 1). Dysregulations of
polyamine metabolism at pathway levels were estimated
with the pathway deregulation score (PDS) in pathifer for
the breast cancer subtypes [31].

DEGA was performed using the DESeq2 package for
TCGA‐BRCA samples of the four subtypes with normal
samples as control [32]. DEseq2 modified the way to detect
outlier, decreasing the rate of type‐I errors, and it's suitable
for various data scale with good stability and reproducibility.
In addition, compared to other tools, DEseq2 was used more
widely among relative researches, which is convenient for
further comparisons across most data sets. Genes with an
adjusted p value less than 0.05 and absolute value of
log2foldchange no less than 0.7 were classified as dysregu-
lated genes related to polyamine metabolism. DEGA was
performed for GSE37751, an expression profile by array,
using Limma in a similar process, and dysregulated genes
were identified by an adjusted p value less than 0.05. The
consistency between the results of TCGA‐BRCA and
GSE37751 was checked despite the difference cased by the
data type and analysis tools. [33].

2.3 | Correlation between gene
expression and polyamine levels

Levels of PUT, SPD, and SPM in the four breast cancer
subtypes in the metabolome data set GSE37751 were
compared. To explore the relationship between the

dysregulated gene expressions and polyamine levels, Spear-
man's correlation analysis was conducted with R 4.1.0
(http://www.R-project.org). Genes with p values of correla-
tion less than 0.05 were chosen for subsequent analyses.

TABLE 1 List of genes related to polyamine metabolism.

Gene Full name Categories

AGMAT Agmatinase Synthesis

AMD1 S‐adenosylmethionine
decarboxylase 1

Synthesis

APRT Adenine phosphoribosyltransferase Synthesis

ARG1 Arginase 1 Synthesis

MAT2A Methionine adenosyl transferase 2A Synthesis

MAT2B Methionine adenosyl transferase 2B Synthesis

MTAP Methylthioadenosine phosphorylase Synthesis

ODC1 Ornithine decarboxylase 1 Synthesis

SMS Spermine synthase Synthesis

SRM Spermidine synthase Synthesis

PAOX Peroxisomal acetylpolyamine
oxidase

Catabolism

SAT1 Spermidine/spermine
N1‐acetyltransferase 1

Catabolism

SAT2 Spermidine/spermine
N1‐acetyltransferase family
member 2

Catabolism

SMOX Spermine oxidase Catabolism

DHPS Deoxyhypusine synthase EIF5A
synthesis

DOHH Deoxyhypusine hydroxylase EIF5A
synthesis

ATP13A2 ATPase cation transporting 13A2 Transport

ATP13A3 ATPase cation transporting 13A3 Transport

AZIN1 Antizyme inhibitor 1 Transport

AZIN2 Antizyme inhibitor 2 Transport

CAV1 Caveolin‐1 Transport

GPC1 Glypican 1 Transport

OAZ1 Ornithine decarboxylase antizyme 1 Transport

OAZ2 Ornithine decarboxylase antizyme 2 Transport

OAZ3 Ornithine decarboxylase antizyme 3 Transport

SLC3A2 Solute carrier family 3 member A2 Transport

SLC18B1 Solute carrier family 18 member B1 Transport

SLC22A1 Solute carrier family 22 member A1 Transport

SLC22A16 Solute carrier family 22
member A16

Transport
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2.4 | Construction and analysis of gene
regulatory network (GRN)

A gene set containing 1667 human TFs was downloaded
from HumanTFDB (http://bioinfo.life.hust.edu.cn/
HumanTFDB#!/) [34]. GENIE3 was used to infer the
GRN from TCGA‐BRCA with the TF genes as regulatory
genes [35]. The output of GENIE3 contained weight values
between each TF and its target genes. For each target gene
related to polyamine metabolism dysregulation, the TFs
with top 15% weight were identified. For each TF, the target
genes with top 15% weight were identified. Correlations
between the TFs and their target genes were used to
determine positive (Spearman's correlation coefficient ≥0.3
and p value < 0.05) or negative (Spearman's correlation
coefficient ≤−0.3 and p value < 0.05) regulations.

The regulation between TFs and their target genes
was verified by Rcistarget, which was based on annotated
binding motifs of TFs. The regulons of TFs and the target
genes were obtained [36]. Regulons related to polyamine
metabolism dysregulated genes were extracted. The
network was visualized by Cytoscape v 3.0.1.

2.5 | Analysis of SRM, APRT, and
SAT1 genes and their TF genes using
scRNA‐seq data

Omicverse v1.4.17 was used for scRNA‐seq data
(GSE176078) preprocessing and analysis [37]. Filtering
was implemented with additional thresholds of cells with
gene number greater than 250 and a unique molecular
identifier (UMI) count greater than 500. A mitochondrial
percentage less than 5% was required. Data normaliza-
tion, dimensionality reduction, and clustering were
conducted using default parameters. Cell clusters were
annotated using PySCSA embedded in Omicverse, and
the annotations were manually corrected by marker
genes. The information of PAM50 subtypes (basal‐like,
HER2, LumA, and LumB) was extracted from Wu's study
on the basis of the pseudo‐bulk profiles from the scRNA‐
Seq. TF analysis of the scRNA‐seq data was performed by
pySCENIC with default parameters [36]. Regulon speci-
ficity scores were calculated to explore the activities
of IRF3, IRF1, and SPI1 as done in previous studies
[36, 38, 39].

2.6 | Survival analysis

Clinical information was collected from TCGA‐BRCA,
and cases without survival time data or survival status
were discarded. Of the 895 cases, 195 cases received
chemotherapy, 170 cases received radiotherapy, 373 cases

received both chemotherapy and radiotherapy, and 157
cases did not have available records (NA).

The survival analysis section used the Kaplan‐Meier
method and COXmodel to study the relationship of multiple
phenotypes and gene expressions with overall survivals. The
COX model was mainly used for analyzing the relationship
between multiple phenotypes and survival time, and
hence multivariate Cox regression analysis was performed
using R package survival v2.38 (http://CRAN.R-project.org/
package=survival/) for clinical features, including stage, age,
sex, subtype, and therapy type [40]. Furthermore, the KM
method is suitable for visualizing the effect of a single factor
on survival time. To evaluate the effects of expression of the
polyamine metabolism genes on the clinical outcomes
[41–43], Kaplan–Meier (KM) curves of overall survival
(OS) for IRF1, SPI1, SAT1, IRF3, APRT, and SRM were
plotted using R package survminer across the four breast
cancer subtypes [44]. The cutoffs separating high and low
expression groups were set as optimal for each gene in
survminer, which helps to determine the key cutoff points in
different gene expression patterns. Two‐sided log‐rank test
was applied to determine statistical significance.

3 | RESULTS

3.1 | Identification of dysregulated
polyamine metabolism genes in breast
cancer

To identify dysregulated polyamine metabolism genes in
breast cancer, we extracted the gene expression spectra from
TCGA‐BRCA data (Figure S1). PDS was calculated to
estimate the dysregulation of synthesis, catabolism, and
transport in polyamine metabolism. All pathways were
upregulated in breast cancer, although the extent in each
subtype varied (Figure 1a). Differential expressed gene
analysis further identified 19 dysregulated genes, including
seven for polyamine synthesis, two for polyamine catabolism,
nine for polyamine transport, and one for eIF5A activation
(Figure 1b). Among these dysregulated genes, AGMAT, SMS,
CAV1, OAZ3, and DOHH were upregulated or down-
regulated across all subtypes; the other genes showed
different expression patterns. The most notable pattern is
that ATP13A2, SLC3A2, SLC22A16, AMD1, APRT, ODC1,
SRM, SAT1, and SMOX tended to have higher expression
levels in more advanced and lethal subtypes (lethality: LumA
< LumB< HER2 < basal‐like). AZIN1, AZIN2, and ARG1
showed a reverse trend. This subtype‐dependent expression
of polyamine metabolism genes was confirmed with another
data set, GSE37751 (Figure S2). GSE37751 contains informa-
tion concerning polyamine levels, and our analysis showed
that the dysregulated polyamine metabolism genes led to
upregulated polyamine levels in breast cancer subtypes
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(c) (d)

(a) (b)

FIGURE 1 Identification of dysregulated polyamine metabolism genes in breast cancer. (a) Dysregulation of polyamine metabolism in
breast cancer. Transcriptional data were obtained from TCGA‐BRCA. Normal: normal breast samples; LumA: Luminal A; LumB: Luminal
B; HER2: HER2‐enriched. Wilcoxon rank‐sum test was used for statistical analysis. (b) Differentially expressed genes related to polyamine
metabolism across four breast cancer subtypes. Transcriptional data were obtained from TCGA‐BRCA. Genes with adjusted p values less
than 0.05 and log2 fold change higher than 0.7 were considered as significant. (c) PUT, SPM, and SPD levels across four breast cancer
subtypes. Wilcoxon rank‐sum test was used for statistical analysis. (d) Correlation between the expression of dysregulated genes and
polyamine levels. Spearman's correlation coefficient was used for correlation analysis. PUT, putrescine; SPD, spermidine; SPM, spermine;
TCGA‐BRCA, The Cancer Genome Atlas‐Breast Invasive Carcinoma.

CANCER INNOVATION | 5 of 14



(Figure 1c; Figures S3–S5). Correlation analysis results
showed that the expression levels of AGMAT, APRT, SRM,
and SMS positively correlated with PUT, the expression level
of CAV1 negatively correlated with PUT and SPD, and the
expression levels of SAT1 and ATP13A2 positively correlated
with PUT and SPD (Figure 1d). These results indicate that
the increased polyamine levels in breast cancer may be a
combinatory effect of changes in synthesis, catabolism, and
transport.

3.2 | Identification of subtype‐specific
TFs driving dysregulation of polyamine
metabolism genes in breast cancer

We next examined which TFs regulate AGMAT, APRT,
SMS, SRM, SAT1, CAV1, and ATP13A2 in breast cancer. A
GRN was inferred from TCGA data and verified with
Rcistarget on the basis of binding motifs [36]. Twenty‐one
reliable TFs were identified from the GRN, including one
for AGMAT, six for APRT, four for SMS, three for SRM,
three for SAT1, one for ATP13A2, and four for CAV1
(Figure 2a). The TFs positively correlated with their target
genes. The expressions of the polyamine metabolism genes
and their TF genes were examined across different breast
cancer subtypes (Figure 2b). AGMAT, SMS, and CAV1 and
their TFs were either upregulated or downregulated
simultaneously in all subtypes; APRT, SRM, SAT1, and
their TFs were only upregulated simultaneously in the
basal‐like and HER2 subtypes. To confirm if APRT, SRM,
and SAT1 are regulated by their TFs, binding motif analysis
was performed. The results revealed three IRF3‐binding
motifs in SRM, two IRF3‐binding motifs in APRT, and three
IRF1‐ and SPI1‐binding motifs in SAT1 (Figure 2c).

3.3 | Identification of subtype‐specific
TFs and dysregulated polyamine
metabolism genes in the breast cancer
microenvironment

The TME plays important roles in stimulating tumor
proliferation and drug resistance, and polyamine ex-
change between tumors and the TME is critical for tumor
evasion [45, 46]. Therefore, we speculated whether the
subtype‐specific TFs (SPI1, IRF1, and IRF3) and dysre-
gulated polyamine metabolism genes (SAT1, APRT, and
SRM) are also synchronized in the TME cells. To this end,
we performed scRNA‐seq data analysis. After dimension-
ality reduction and clustering, pySCSA and manual
correction were applied for cell type annotation
(Figure 3a), which was similar to the previous report
[26]. The expression of relevant marker genes (ESR1,
ESR2, PGR, ERBB2, and MKI67) confirmed the accuracy

of the breast cancer subtype classification (Figure 3b;
Figures S6 and S7).

In the scRNA‐seq results, SRM and IRF3 showed a
similar expression pattern, indicating that IRF3 might
positively regulate SRM (Figure 3c–e). Similarly, IRF1 and
SAT1 showed a similar expression pattern in most cell
types, indicating that IRF1 might positively regulate SAT1
(Figure 3d,e). The expression patterns of SPI1 and SAT1
were similar in macrophage and monocyte (Figure 3c–e).
These data indicate that the regulation of the subtype‐
specific TFs and dysregulated polyamine metabolism
genes identified above also exist in the TME cells. Tumor
subtype annotations of the TME cells revealed that SRM,
APRT, IRF3, and SPI1 have higher expression levels in
more advanced subtypes (HER2 and basal‐like)
(Figure 3b,c). Thus, the expression of the subtype‐
specific TFs and polyamine metabolism genes is also
subtype‐specific in TME cells.

We next investigated how TME cell types change in
different breast cancer subtypes. As shown in Figure 3f, the
TME cell types in the four breast cancer subtypes were
similar, but their percentages were different. In more lethal
subtypes (basal‐like/HER2), T cells, natural killer T cells,
macrophage cells, and B cells were markedly increased, while
perivascular‐like (PVL) cells and endothelial cells were
sharply decreased. The increase of immune cells indicates
higher immune responses in the tumor environment. PVL
cells and endothelial cells (a main source of cancer‐associated
fibroblasts, CAFs) play important roles in breast cancer
differentiation and immune evasion [47]. APRT, SRM, and
their TF gene IRF3 were highly expressed in T cells and
macrophages, with a tendency for upregulation from LumA,
LumB, and HER2 to basal‐like (Figures 3d,e; Figure S8).
SAT1 and its TF genes IRF1 and SPI1 were highly expressed
in macrophages with a similar tendency among breast cancer
subtypes (Figures 3d,e; Figure S8). SAT1 and IRF1 in
fibroblasts were highly expressed in the basal‐like and
HER2 (Figures 3d,e; Figure S8). SRM, APRT, and SAT1 in
epithelial and endothelial cells were highly expressed in the
HER2 subtype (Figure 3d; Figure S8). The pySCENIC study
further validated that SPI1 regulates SAT1 and that SPI1 and
IRF1 regulons in macrophages are more activated in the
basal‐like subtype (Table S1). This evidence indicated that the
subtype‐specific TFs might be involved in reprogramming the
TME of breast cancer subtypes by regulating polyamine
metabolism.

3.4 | The subtype‐specific TFs regulate
polyamine metabolism and cell immunity
in high‐risk breast cancer subtypes

Our analyses revealed that SPI1, IRF1, and IRF3 are critical
TFs in both breast cancer subtypes and their TME cells. We
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(b)

(c)

(a)

FIGURE 2 Identification of subtype‐specific TFs driving dysregulation of polyamine metabolism genes in breast cancer. (a) A GRN of
the polyamine metabolism genes and their TFs inferred from TCGA data. The circles represent TFs and the diamonds represent polyamine
metabolism genes. Red arrows represent positive correlations, and blue lines represent negative correlations. Red diamonds or circles
represent upregulated expression, while blue diamonds or circles represent downregulated expression, and the p values of their Spearman's
correlation analysis were marked on the lines. (b) Regulatory relationship between TFs and dysregulated polyamine metabolism genes
across breast cancer subtypes. (c) Potential binding motifs of TFs in SAT1, APRT, and SRM genes. The names of the motifs in the databases
are marked. GRN, gene regulatory network; TCGA, The Cancer Genome Atlas; TFs, transcription factors.
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therefore next examined the related cellular processes. Using
the target gene sets of the subtype‐specific TFs overexpressed
in HER2 and basal‐like subtypes, we analyzed the involved
biological processes, molecular function, and cell compo-
nents. SPI1 and IRF1 showed enrichment in the processes
related to cell immunity, such as “positive regulation of
cytokine production,” “regulation of T cell activation,” and
“mononuclear cell differentiation.” They were related to the
cell components of “external side of plasma membrane” and
“endocytic vesicle,” and the molecular functions of “cytokine
activity,” “cytokine receptor binding,” and “immune receptor
activity” (Figure 4a,b; Figure S9). Hence, SPI1 and IRF1 may
be involved in the activation of T cells through cytokine
activation and in mononuclear cell differentiation. IRF3 was
enriched in “ncRNA processing,” “rRNAmetabolic process,”
and “mitochondrial inner membrane” (Figure 4c; Figure S9).
These functions were previously reported as their major roles
[48–50]. Furthermore, the enrichment of SPI1 (p=3.37e− 3)
and IRF1 (p=5.35e− 4) was observed in “amine metabolic
process,” SPI1 (p=3.75e− 2) in “biogenic amine bio-
synthetic process,” and IRF3 (p=2.02e− 2) in “nucleoside
metabolic process” (Tables S2 and S3). These processes
also involve SAT1, APRT, and SRM, indicating that these
three subtype‐specific TFs might regulate polyamine

metabolism and cell immunity in HER2 and basal‐like
breast cancer cells.

3.5 | The subtype‐specific TFs and their
targeted polyamine metabolism genes
affect clinical therapeutic outcomes

Our analyses above indicate that the subtype‐specific TFs
(SPI1, IRF1, and IRF3) and their targeted polyamine
metabolism genes (SPI1 and IRF1 correspond to SAT1,
and IRF3 corresponds to SRM and APRT) have a significant
correlation with the progression or lethality of breast cancer.
Therefore, we speculated that their expression would affect
the therapeutic response of breast cancer patients. To
examine the clinical impact of the expression of these genes,
Cox model was used to assess the effects of stages, age,
subtypes, sex, and therapy types in TCGA‐BRCA (Figure 5a).
Tumor stage and subtype significantly affected the therapeu-
tic results. Later tumor stage and advanced subtypes (HER2
and basal‐like) had a negative impact. Previous studies
suggested that polyamine metabolism genes are related to
therapy resistance [41–43]. We thus assessed how these
genes affect therapeutic outcomes in the chemotherapy and

(a)

(d) (f)

(e)

(b) (c)

FIGURE 3 Identification of subtype‐specific TFs and dysregulated polyamine metabolism genes in the breast cancer microenvironment.
(a) Clustering of the TME cells using pySCSA with manual correction by marker genes. (b) Subtype annotations of the TME cells.
(c) Expression of SRM, APRT, and SAT1 in the TME cells across four breast cancer subtypes. (d) Log‐normalized expression of SRM, APRT,
and SAT1 in the TME cells. (e) Log‐normalized expression of IRF3, IRF1, and SPI1 in the TME cells. (f) The proportions of the TME cell
types among the four breast cancer subtypes. TFs, transcription factors; TME, tumor microenvironment.
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radiotherapy patient group. KM curves showed that cases
with lower expression of SPI1, IRF3, SAT1, APRT, and SRM
had significantly higher OS in the basal‐like subtype, but not
other subtypes (Figure 5b–e,g; Figures S10–S12).

4 | DISCUSSION

Polyamines are indispensable components of nearly all
cells, and cellular polyamine levels are strictly regulated by
the polyamine metabolic network. Abnormal polyamine
levels and dysregulated polyamine metabolism genes were
identified in various tumors [51, 52]. In the clinic, breast
cancer is classified into four distinct subtypes with different
lethality. Our studies [53, 54] and recent studies indicated
that the regulation of the polyamine metabolic network is
different across different breast cancer subtypes [5, 55].
Identifying the driving effectors that dysregulate polyamine
metabolism in different breast cancer subtypes would be of
great value to the treatment of breast cancer.

We found that polyamine metabolism genes, especially
APRT, SRM, and SAT1, tended to be dysregulated in the
more advanced and lethal subtypes. The expression levels

of these genes showed significant correlation with
polyamine levels. This indicates that the more advanced
subtypes may be affected more by the dysregulation of
polyamine metabolism. For example, APRT is an enzyme
crucial for polyamine biosynthesis, and its increased
expression may enhance polyamine biosynthesis [56, 57].
The increase of PUT could stimulate the expression of
SRM, which in turn generates more SPD. Notably, SAT1
expression was positively correlated with both PUT and
SPD levels in breast cancer, indicating SAT1 may be an
important drug target in the lethal subtypes.

Our GRN analysis revealed that ETS1 and FLI might
regulate the expression of CAV1, which was also indicated
in previous studies [14, 15]. SRM, APRT, and SAT1 and
their associated TFs (IRF1, IRF3, and SPI1) are upregu-
lated only in the basal‐like and HER2, and these genes
may be key dysregulated genes related to polyamine
metabolism in these subtypes. Previous studies demon-
strated roles of IRF1, IRF3, and SPI1 as immune response
activators [48–50]. In our study, IRF1, IRF3, and SPI1
were found to be related to SRM, APRT, and SAT1.
Further study indicates that the dysregulated expression of
TFs may affect multiple pathways related to polyamine

(a) (b)

(c)

FIGURE 4 Functional analysis of TFs in the basal‐like subtype driving dysregulated polyamine metabolism genes. GO enrichment
analysis of the target gene sets was performed for IRF1, IRF3, and SPI1. (a) Top GO enriched terms of SPI1. (b) Top GO‐enriched terms of
IRF1. (c) Top GO‐enriched terms of IRF3. BP, biological process; CC, cell component; GO, Gene Ontology; MF, molecular function;
TFs, transcription factors.
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(c)   (d)   

(e)   (f)  (g)  

(b)   

(a)     

FIGURE 5 Survival analysis of subtype‐specific TFs and associated dysregulated polyamine metabolism genes. (a) Cox model analysis
of TCGA breast cancer cases on stages, age, subtypes, sex, and therapy types. (b) The KM curves of IRF1 in the basal‐like subtype. (c) The
KM curves of OS for SPI1 in the basal‐like subtype. (d) The KM curves of OS for SAT1 in the basal‐like subtype. (e) The KM curves of OS for
IRF3 in the basal‐like subtype. (f) The KM curves of OS for SRM in the basal‐like subtype. (g) The KM curves of OS for APRT in the basal‐
like subtype. KM, Kaplan–Meier; OS, overall survival; TCGA, The Cancer Genome Atlas; TFs, transcription factors.
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metabolism; this has not been previously demonstrated
and is worth further exploration. Studies indicated that
IRF1 and SPI1 function in cell proliferation and apoptosis
[58–60], in agreement with the function of SAT1 [61, 62].

Several studies revealed that SPI1 and SAT1 were
both related to the pathological properties of macro-
phages [63–65], but their relationship was not reported.
Our study identified the regulation of SPI1 on SAT1, and
the regulon was activated in macrophages. A recent
study found that polyamine in macrophages is elevated
via transport in specific conditions [66]. In accordance
with polyamines' roles in cell proliferation and differen-
tiation, the increased percentage of macrophages in the
lethal subtypes is reasonable. Additionally, increased
SAT1 expression in macrophages may be a response to
the excessive accumulation of polyamine. Further studies
with paired qualified data (metabolome, pheotypes and
so on.) would help to determine the mechanisms of
polyamine metabolism's impact on the immune system,
which could also be a key to the development and
improvement of immunotherapy in high risk breast
cancer subtypes, such as triple‐negative breast cancer.

5 | CONCLUSION

Our study identified three dysregulated polyamine metab-
olism genes and their associated TFs in high‐risk breast
cancer subtypes. Low expression of these genes corre-
sponded to a good prognosis. Their expression in the TME
suggested a key role in immune cells. Our results may be
of high value to the study of the dysregulation mechanism
of the polyamine metabolic network and the targeted
therapy of high‐risk breast cancer subtypes.
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