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A B S T R A C T   

The use of non-conventional seed flour is of interest in obtaining healthy breakfast cereals. The research aimed to 
study the physico-functional, bioactive, microstructure, and thermal characteristics of breakfast cereals using 
scanning electron microscopy, X-ray diffractometry, and differential scanning calorimeter. The increase in feed 
moisture content (16 %) enhanced the bulk density (5.24 g/mL), water absorption index (7.76 g/g), total 
phenolic content (9.03 mg GAE/g), and antioxidant activity (30.36 %) having desirable expansion rate (2.84 
mm), water solubility index (48 %), and color attributes. The microstructure showed dense inner structures with 
closed air cells in extruded flours. Extrusion treatment rearranged the crystalline structure from A-type to V-type 
by disrupting the granular structure of starch, reducing its crystallinity, and promoting the formation of an 
amylose–lipid complex network. Increasing conditioning moisture enhanced the degree of gelatinization (%), 
peak gelatinization temperature (Tp), and starch crystallinity (%) and reduced the gelatinization enthalpy (ΔHG) 
and gelatinization temperature ranges. The results reported in this study will help industries to develop inno-
vative and novel food products containing functional ingredients.   

1. Introduction 

Generally, malnutrition is the prime cause of immunodeficiency 
across the globe, affecting infants, children, adults, and older people 
(Shaly et al., 2022). In children, under-nutrition is characterized by 
deficiencies in micronutrients and growth failure, and over-nutrition, 
overweight, and obesity are common issues nowadays because of the 
consumption of unhealthy diets like junk foods, a diet high in trans-fats, 
saturated fats, sugars, and low in fiber, etc. (Brglez et al., 2022). Ready- 
to-eat products contain high starch content or refined cereal-based flour, 
and most are comparatively high in fat, sugar, and salt; thus, they are 
known for being energy-dense products with a poor nutritional profile. 
In India, the ready-to-eat industry has gained a significant change with 

the increase in demand for the development of sustainable, eco-friendly, 
and healthy convenience food products (Grasso, 2020). 

Extrusion cooking, under high temperature, pressure, and short time, 
is used to develop a wide range of extruded products such as breakfast 
cereals, snacks, porridge, puffed snacks, and fiber-rich products. It has 
several benefits over traditional processes, such as retaining nutritional 
quality, improving functional attributes, high expansion, and low den-
sity with uniform microstructure and crunchy texture (Alam et al., 
2016). The quality of extrudates depends mainly on the process condi-
tions of the extrusion system. The positive or negative influence of feed 
moisture content on the expansion, density, porosity, rehydration ratio, 
etc., depends on the moisture content levels (Kesre, & Masatcioglu, 
2022). Whole grain flour is usually used to develop extrudates with low 
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density, high expansion, and crispy structure (Rolandelli et al., 2020). 
Furthermore, this process allows the addition of other flours, like whole 
wheat (Oliveira, Schmiele, & Steel, 2017), barley (Jabeen et al., 2022), 
oat (Brahma, Weier, & Rose, 2016), rice (Gulzar et al., 2021), amaranth 
(Espinosa-Ramirez et al., 2021), and corn (Zhao et al., 2021). 

Whole corn flour is an excellent source to produce ready-to-eat 
products with high textural characteristics but exhibits low fiber and 
protein content. Some other whole grains, such as entire barley flour and 
whole wheat flour, are industrially essential sources of healthy food 
ingredients because of their high protein, fiber, starch, vitamins, min-
erals, and antioxidant content (Allai et al., 2021). Besides whole grain 
flour, other ingredients such as non-conventional seed flour can be 
blended for the development of an ample range of extruded products 
(Beigh et al., 2019; Jabeen et al., 2021; Saklani, Kaushik, & Kumar, 
2021), with the concern of improving nutritional, and functional attri-
butes of the developed product, which make them suitable to comple-
ment whole grains. 

Indian horse chestnut (Aesculus indica) is known as one of the non- 
conventional and under-utilized nuts and a good source of fiber, resis-
tant starch, minerals, essential oils (oleic), vitamins, low glycemic 
power, and bioactive compounds such as quercetin, carotenoids, 
kaempferol, anthocyanins, phenolics, and flavonols (Allai et al., 2022), 
which are concentrated in the seed. The seeds contain anti-nutritional 
factors such as saponins and tannins, which are poisonous and bitter if 
consumed without processing (raw). So, the seeds must be pretreated 
and then ground to a fine flour to partially replace the wheat flour (Rafiq 
et al., 2021). IHCF has excellent therapeutic properties, including anti-
pyretic, anti-viral, anti-obesity, anti-inflammatory, etc. (Ahmad & Gani, 
2021). These characteristics make IHCF cost-effective, novel, and 
exciting ingredients for developing extruded breakfast cereals. Due to its 
excellent therapeutic and nutritional quality, IHCF may be considered a 
potential non-conventional alternative to conventional flours. 

Therefore, this research aimed to evaluate the effect of different 
levels of extrusion moisture (12–16 %) on the physical, functional, 
antioxidant, thermal, and microstructural characteristics of whole- 
grain-based breakfast cereal enriched with IHCF. 

2. Materials and methods 

2.1. Materials 

Barley (PL 807), white corn (DT-2), and wheat (SW-2) were procured 
from Kargil, India, and SKUAST-K, Shalimar, J&K, respectively. Milling 
was done to obtain whole barley flour (WBF), whole wheat flour (WWF), 
and whole corn flour (WCF). The flours were then packed and stored at 
− 21 ◦C until further use. Indian horse chestnut seeds (Aesculus indica) 
were collected manually from the local area of Shalimar, Jammu 
&Kashmir, India. 

2.2. Preparation of Indian horse chestnut flour (IHCF) 

The IHCF was prepared according to our previous work (Allai et al., 
2022). 

2.3. Extrusion process 

The breakfast cereals were developed with a constant blend of WWF, 
WBF, WCF, and IHCF in the ratio of 10:10:77.5:2.5 %. All the ingredients 
were mixed in a planetary mixer for 15 min. The flour was precondi-
tioned under different moisture content levels (12 % to 16 %) (Table 1). 
After preconditioning, the moist samples were allowed to equilibrate in 
a plastic bag and stored for 24 h at 4 ◦C before extrusion. 

Extrudates were prepared in a co-rotating twin-screw extruder (Basic 
Technology Pvt. Ltd., Kolkata, India) with a length-to-diameter ratio of 
8:1 and die diameter of 3.0 mm. Throughout the experimentation, the 
barrel temperature and screw speed were maintained at a constant rate 
of 130 ◦C and 380 rpm, respectively. After extrusion, the samples were 
cooled and packed in HDPE bags and stored at ambient temperature 
(22 ◦C) until further analysis. 

The extrudates were specified as E-12 (extrudates with conditioning 
moisture of 12 %), E-13 (extrudates with conditioning moisture of 13 
%), E-14 (extrudates with conditioning moisture of 14 %), E-15 
(extrudates with conditioning moisture of 15 %), and E-16 (extrudates 
with conditioning moisture of 16 %). 

2.4. Physical properties of extrudates 

2.4.1. Bulk density (BD, gmL− 1) 
The BD was measured as a ratio of the mass of extrudates to its 

volume (Eq. I) (Oliveira, Schmiele, & Steel, 2017) using the following 
formula. Fifteen measurements were performed for each sample, and the 
average was recorded. 

Bulk density
( g

mL

)
=

weight of the sample (g)
volume of the sample after tapping (ml)

(1)  

2.4.2. Sectional expansion (SE) 
The SE of extrudates was defined as the association between the 

extrudate diameter and the die diameter (mm). Ten measurements were 
taken using a digital vernier caliper (Mitutoyo absolute, Model No: CD-6 
CSX, Made in Japan), and the average was taken (Brennan et al., 2008). 

SE (mm) =
Averagediameterofextrudate

Diediameter
(2)  

2.5. Techno-functional attributes of extrudates 

2.5.1. Water absorption indices (WAI) and water solubility index (WSI) 
WAI and WSI of extrudates were measured according to Ek, Gu, & 

Ganjyal, (2021) method with slight modifications. Briefly,1.5 g of finely 
powdered sample was placed in a pre-weighed centrifuge tube and filled 

Table 1 
Physical, techno-functional and bioactive propertiesof extrudates produced with varying levels of conditioning moisture.  

Samples Conditioning Moisture (%) Physical characteristics Techno-functional properties Bioactive properties 

SE (mm) BD (g/mL) WAI (g/g) WSI (%) Total phenolic content (mg GAE/g) DPPH (%) 

E-12 12 2.84 ± 0.22a 4.95 ± 0.11e 6.73 ± 0.12e 48 ± 0.16a 5.87 ± 0.16e 18.33 ± 0.35e 

E-13 13 2.81 ± 0.17a 5.05 ± 0.33d 7.04 ± 0.24d 47.5 ± 0.11b 6.41 ± 0.22d 22.21 ± 0.38d 

E-14 14 2.77 ± 0.21b 5.11 ± 0.45c 7.35 ± 0.34c 47.1 ± 0.25c 7.33 ± 0.27c 25.44 ± 0.32c 

E-15 15 2.74 ± 0.09b 5.17 ± 0.32b 7.58 ± 0.08b 46.2 ± 0.22d 8.25 ± 0.17b 28.73 ± 0.24b 

E-16 16 2.7 ± 0.24bc 5.24 ± 0.04a 7.76 ± 0.02a 46 ± 0.13d 9.03 ± 0.19a 30.36 ± 0.18a 

SE = Sectional expansion rate; BD = bulk density; WAI = water absorption rate; WSI = water solubility index; E-12 (extrudates with conditioning moisture of 12 %), E- 
13 (extrudates with conditioning moisture of 13 %), E-14 (extrudates with conditioning moisture of 14 %), E-15 (extrudates with conditioning moisture of 15 %), and 
E-16 (extrudates with conditioning moisture of 16 %). Values are shown as mean ± S.D; Values with different superscripts within same column differ significantly (p <
0.05). 
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with 20 mL distilled water. After intermittent mixing for 5 min at room 
temperature (22 ◦C), the tubes containing samples were centrifuged for 
10 min at 3000g. The supernatants were carefully transferred to the pre- 
weighed aluminum cans and dried in an oven at 70 ◦C till constant 
weight was achieved. All the readings were taken in triplicates. The 
remaining gel was weighed and WAI and WSI were calculated as given in 
Eq III. and Eq. IV. 

WAI (g/g) =
Weightofsediment(wetbasis)(g)

weightofsample(g)
(3)  

WSI (%) =
weightofsolidsdissolvedinthesupernatants(drybasis)

weightofsample
× 100

(IV)  

2.6. Color analysis 

The extrudates were grounded in a fine powder using a Foss mill for 
60 sec. The color evaluation of ground samples was analyzed by 
measuring the CIELAB space parameters represented as L* (lightness/ 
darkness), a* (redness/greenness), and b* (blueness/yellowness) values 
by using a Hunter Lab colorimeter (CR 300, Konica Minolta, Japan). The 
procedure was repeated five times for each sample, and the average was 
reported. 

2.7. Total phenolic content 

The procedure of Cheng et al., (2020) was used to calculate the total 
phenolic content in extrudates. Methanol as a solvent was used for the 
extraction process. The method uses a Folin-Ciocalteu reagent, 7.5 % 
Na2CO3, and a spectrophotometer. A calibration curve was made with 
gallic acid, and the total phenolic content was expressed as mg GAE/100 
g of dry sample. 

2.8. Antioxidant activity 

The DPPH radical scavenging assay estimated the antioxidant ac-
tivity of the samples according to the method of Zhang et al., (2018). 
DPPH radical scavenging activity was calculated using equation Eq. V. 

% Inhibition =
Acontrol − Asample × 100

Asample
(5)  

where Acontrol and Asample are the absorbances of control and sample, 
respectively. 

2.9. Thermal properties 

The thermal properties of whole grain-based extrudates enriched 
with IHCF were assessed as per the method of Gulzar et al., (2021) using 
a differential scanning calorimeter (Mettler Toledo). 3 mg samples 
were placed in DSC pans. The samples were then wetted with distilled 
water in the ratio of 1:2 (flour: water). The samples were run from 20 ◦C 
to 150 ◦C at a heating rate of 10/min, and thermograms were analyzed 
using Origin Pro 12 software. 

Degreeofgelatinization(%) = [1 −

(
ΔH(extrudate)

ΔH(native)

)]

× 100  

2.10. Scanning electron microscopy (SEM) 

The microstructures of native flours, their blend, and extrudates 
were studied by using a scanning electron microscope (JSM-6510LV, 
JEOL, Japan) as per the method given by Pandey et al., (2021). The 
sample was dehydrated, grounded, placed on an aluminum stub, 
adhered to double-sided stick tape, and coated with a thin layer of gold. 
Micrographs were taken at an accelerated voltage of 15 kV and 500 and 

1000 magnification levels for morphological characterization. 

2.11. X-ray diffraction (XRD) 

The samples were grounded with a Foss mill to obtain a fine powder 
and analyzed using an X-ray diffractometer (D8 Advance, Bruker, 
Germany). The sample was first sieved through a 45 µm mesh size to get 
a good signal-to-noise ratio. Diffractograms were taken at an ampere and 
voltage of 30 mA and 40 kV, respectively, at an ambient temperature. A 
scanning range between 0◦ and 40◦ was used to analyze the data at a 
scan rate of 1.2◦/min. The percentage of crystallinity data of the XRD 
was processed using the Origin Pro 12 software package by using the 
following equation: 

Crystallinity (%) =
Area under the peak

Total area under the diffractogram
× 100 (6)  

2.12. Statistical analysis 

The experiment results were analyzed in triplicates, and the data 
were recorded as mean ± standard deviation. Tukey’s t-test (p < 0.05) 
was used to compare the results through analysis of variance (ANOVA). 

3. Results and discussion 

3.1. Physical properties 

3.1.1. Sectional expansion (SE) 
SE represents the degree of puffing of snacks. The puffing of snacks 

indicates more lightness and crispiness of extrudates. Additionally, 
gelatinization of starch is a key parameter in determining the expansion 
of extrudates. The higher the gelatinization rate, the greater the degree 
of expansion. The data showed that the SE of extrudates ranged from 2.7 
to 2.84 mm (Table 1). E-12 had the highest SE value among tested 
samples, followed by E-13, E-14, E-15, and E-16. Relatively higher 
moisture levels soften the molecular structure of amylopectin and 
reduce the dough elasticity during extrusion, reducing the expansion 
rate (Ding, Ainsworth, Tucker, & Marson, 2005). Previous literature 
reported that flours with high fiber and feed moisture content reduced 
the expansion ratio in cereal-based extrudates (Liu, Hsieh, Heymann, & 
Huff, 2000; Van der Sman and Broeze, 2013; Oliveira, Schmiele, & Steel, 
2017; Seal et al., 2021; Kaur et al., 2022). In concurrence with these 
authors, reduction in feed moisture content induces drag forces that 
enhance die pressure, resulting in more expansion of extrudates. The SE 
directly relates to the screw speed, as increased pressure in the chamber 
causes superheating that results in quick evaporation of moisture at the 
exit of the die due to sudden pressure drop and thus increases expansion. 
Moreover, fibercontent both soluble (corn starch and β-glucan in barley) 
and insoluble fractions (wheat bran and cellulose, hemicelluloses, and 
lignin in corn) exhibited higher water-binding properties that tend to 
absorb more water, thus decreasing its accessibility for expansion. Also, 
the increased viscosity of mass restricts the expansion, which allows the 
starch to undergo glass transition during extrusion, leading to disinte-
gration of the mixture and decreasing the expansion by inhibiting 
bubble formation and consequently reducing cell extensibility by 
puncturing the cell wall. 

3.1.2. Bulk density (BD) 
The bulk density of flour is an essential parameter in the post- 

production of extrudates. It provides information for handling, pro-
cessing, storing, and packaging extruded products (Chisenga et al., 
2019). Significant differences were observed in the BD values of samples 
ranging from 4.95 to 5.24 g/mL (Table 1). Nevertheless, increased BD 
values could be observed for E-16, followed by E-15, E-14, E-13, and E- 
12, which could be due to their higher moisture. Feed moisture content 
is the major parameter affecting the density of extrudates (Oliveira, 
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Schmiele, & Steel, 2017). Higher moisture content exhibited an elevated 
density of extruded products as water acts as a lubricant of the amor-
phous regions of starch molecules, thereby reducing the rheological 
characteristics of the melt and contributing directly to the gelatinization 
of starch. High water content also decreases the frictional force between 
the screw and the blended mixture, which increases the bulk density 
with reduced expansion (Bisharat et al., 2013). From the previous 
research, using ingredients containing high fiber content with starch- 
based extrudates enhanced the density irrespective of the source and 
fiber content (Arivalagan et al., 2018). The presence of fiber content in 
whole grain flours and IHCF increases the density of extrudates, sug-
gesting their suitability for the maximum dispersibility of flours and 
preparation of food products. Fiber typically causes the cell walls to 
rupture before the formation of bubbles, limiting the total expansion of 
the extruded product and developing a product with a higher density 
and less porous structure (Dos Santos et al., 2019). 

3.2. Techno-functional characteristics 

3.2.1. Water absorption index (WAI) 
WAI indicates the ability to bind and hold water. It determines the 

acceptability of extrudates in terms of mouthfeel, juiciness, and texture. 
For breakfast cereals, high WAI is usually desirable. At the varied 
moisture content level from 12 % to 16 %, the WAI of the extrudates 
ranged from 6.73 to 7.76 g/g (Table 1). Increased WAI of extrudates may 
be related to the higher gelling capacity and increased number of 
available hydroxyl sites that bind with water molecules for better 
moisture penetration into the porous structure of extrudates (Machado 
Pereira et al., 2021). Also, the interaction between barrel temperature 
and higher feed moisture content revealed higher WAI values that 
enhance starch gelatinization, where the starch molecules are disrupted, 
and more water remains bound to the starch granule, leading to the 
improved WAI. A similar tendency was reported with replacing maize 
grit, gram flour, and rice grit with yam flour (KC et al., 2021). 

3.2.2. Water solubility index (WSI) 
WSI indicates the disruption of molecular components (Pardhi et al., 

2019). The water solubility index measures the amount of poly-
saccharides released from the starch molecules in excess water after 
extrusion (Prabhakar et al., 2017). Reduced WSI values result in a low 
rate of starch degradation and less soluble molecules in the extrudates. 
The high water solubility index is an in vitro indicator of the digestibility 
of starch and the extent of its dextrinization and gelatinization (Guha 
et al., 1997). The highest WSI values were obtained for E-12, followed by 
E-13, E-14, E-15, and E-16 samples (Table 1), indicating more damage to 
starch granules. The main reason for higher WSI is the extrusion con-
ditions, i.e., minimum feed moisture (12 %) and maximum barrel tem-
perature (130 ◦C). An increase in feed moisture content in the 
formulation significantly decreased WSI, which is similar to previous 
literature on rice-based extrudates (Ding, Ainsworth, Tucker, &Marson, 
2005) or maize-based extrudates (Kaur et al., 2022). A lower feed 
moisture content enhances the die’s drag force and increases starch 
granules’ shear disintegration, which can strengthen WSI (Sarawong 
et al., 2014). 

3.3. Color analysis 

Color is one of the key parameters for the quality index of extrudates 
that influences consumers’ perception of the food product (Arivalagan 
et al., 2018). The color values of different extrudates are presented in 
Fig. 1. There was significant variation (p ≤ 0.05) among CIELAB color 
coordinates of different samples treated with different feed moisture 
content. L*values varied from 68.36 to 69.7; the value reduced(indi-
cating darkening) as the conditioning moisture increased from 12 % to 
16 %, whereas a*(related to redness) and b*(related to yellowness) 
values increased from 4.53 to 5.78 and 23 to 25, respectively with higher 

conditioning feed moisture. The decrease in lightness may be attributed 
to the increased moisture content, resulting in the formation of breakfast 
cereals with tightly packed air cells, which can increase light absorption 
and reduce luminosity (Promsakhaet et al., 2018). The pigment loss, i.e., 
Maillard reaction and caramelization, occurs during the extrusion pro-
cess that changes the color of the ingredients (Zhang et al., 2020), 
leading to a reduction in L* value and subsequent increase in a* and b* 
values (Jabeen et al., 2022). 

3.4. Total phenolics and antioxidant activity 

DPPH radical scavenging activity was used to evaluate the antioxi-
dant activity of extruded products. The total phenolic content and DPPH 
radical scavenging activity of samples with varying conditioning mois-
ture content are presented in Table 1. E-16 had the highest total phenolic 
and DPPH content among the tested samples, with a total phenolic and 
DPPH of 9.03 mg GAE/g and 30.36 %, respectively. The bioactive 
compounds are heat sensitive; thus, when barrel temperature (130 ◦C) 
and screw speed (380 rpm) were kept constant, total phenolic content 
and antioxidant activity were observed for all the extruded samples as 
the conditioning moisture content increased. The phenolic compounds 
might increase in the extrudates due to the hydrothermal process that 
disrupts the cell walls, releasing the bioactive compounds such as ferulic 
acid from the cell wall matrix and thus increasing total phenolic and 
antioxidant activity (Cheng et al., 2020). A similar increase in phenolic 
content and antioxidants was reported after extrusion cooking of raw 
banana flour enriched with defatted soy (Pandey et al., 2021) and 
buckwheat flour (Sun et al., 2018). However, a reverse trend was 
observed elsewhere as the phenolic acids probably undergo decarbox-
ylation due to higher temperatures, and high feed moisture content also 
promotes polymerization, resulting in decreased efficiency of extract-
ability of antioxidants and polyphenols (Ortiz-Cruz et al., 2020). As 
shown in Table 1, antioxidant activity showed a similar trend with total 
phenolic content. However, a higher retention rate of antioxidant ac-
tivity was observed. Some previous research reported that melanoidin 
(Maillard products) produced during extrusion cooking can retain 
higher antioxidant content (Sharma et al., 2015), which could also 
support this study. 

3.5. Microstructure: Scanning electron microscopy 

The scanning electron micrographs for whole-grain flours (WWF, 

Fig. 1. L*, a* and b* CIELAB color parameters of different extrudates. E-12 
(extrudates with conditioning moisture of 12%), E-13 (extrudates with condi-
tioning moisture of 13%), E-14 (extrudates with conditioning moisture of 14%), 
E-15 (extrudates with conditioning moisture of 15%), and E-16 (extrudates with 
conditioning moisture of 16%). Error bars represent standard deviation. 
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WCF, WBF, and IHCF), their blend, and the extrudates at varying 
moisture levels are presented in Figs. 2 and 3. The SEMs for all the flours 
showed small and large starch granules and proteins cemented with the 
starch granules. The starch granules were round, polygonal, and irreg-
ular in shape; however, in WCF, the starch granules adhered less to the 
fibrous structures, which might be due to the less protein content. The 
granule sizes in WWF, WBF, WCF, and IHCF were 1.4–35 μm, with IHCF 
showing the smallest size of granules. In WWF, the starch granules were 
almost fully embedded in the protein matrix. The morphology of the 
granules depends on the biochemistry and physiology of the plant or-
ganelles, and the differences in shape and size are attributed to different 
plant origins (Svegmark and Hermansson, 1993). 

The micrographs of the extrudates (Fig. 2) as a function of moisture 
were taken at 500 and 100 magnification levels. The extrudates showed 
dense inner structures with closed-air cells. Extrudates with higher 
moisture content showed fewer air cells formed during the expansion 
stage and, thus, higher hardness values. At lower feed moisture content, 
the formation of starch-lipid complexes is very high, which results in 
plasticization and more dense structures. This was evident from high 
enthalpies for extrudates with lower moisture content. 

3.6. Differential scanning calorimetry 

The thermal properties of processed flour, their blends, and modified 
flours are presented in Table 2. Raw flours and blends displayed one 
endothermic peak corresponding to starch gelatinization. Two endo-
thermic peaks were recorded in the extruded flours: one for the starch 
gelatinization or protein denaturation and another peak called an 
amylose–lipid complex that indicates the “V” structure. 

In extruded flours, at a constant temperature, screw speed, and 
increasing feed moisture content, the degree of gelatinization (G%) 
increased while gelatinization enthalpy (ΔH) and gelatinization 

temperaturerange (Tc-To) reduced (Table 2). The gelatinization enthalpy 
indicates the loss of crystallinity. Thus, increasing feed moisture content 
reduced the crystalline order of whole-grain starches (Ji et al., 2004). 
The sample with the higher feed moisture content (E-16) indicates more 
starch gelatinization. Also, moisture content and high-temperature re-
sidual starch granules were more stable under increasing feed after 
extrusion. 

The peak gelatinization temperature (Tp) represents the double helix 
length in crystalline quality (Hoover and Hadziyev, 1981). Increasing 
feed moisture content from 12 to 16 %, at constant barrel temperature 
and screw speed (130 ◦C and 380 rpm, respectively) significantly 
increased the Tp values. It decreased the gelatinization temperature 
range of extruded samples from 76.46 to 85.02 ◦C and 12.19 to 10.39 ◦C, 
respectively (Table 2). Endothermic transition with Tp at about 76.46 ◦C 
was observed for the E-12 sample having low moisture content. This 
peak would represent the retrograded starch molecule and the formation 
of the amylose–lipid complex after extrusion. At low moisture content 
with high temperatures, starch treatments showed greater homogeneity 
in the hydration, swelling, and fusion of starch crystals (Hormdok and 
Noomhorm, 2007). Furthermore, the endothermic peaks of starch 
crystallites disappeared after extrusion, indicating the complete disso-
ciation of starch crystallites during extrusion. 

The onset gelatinization temperature (To) indicates the starch crystal 
perfection. Higher To represents more perfection of starch crystals. Thus, 
the starch crystallites to perfection, decreasing the onset of gelatiniza-
tion temperature (Jafari et al., 2017). 

Enthalpy of gelatinization measures the aggregation of the amylo-
se–lipid complex. When the temperature is between melting and glass 
transition temperature, crystalline amylose–lipid complexes are formed. 
Increasing feed moisture content from 12 to 16 % decreased the gela-
tinization enthalpy. Water acts as a plasticizer during extrusion, and 
reducing feed moisture content enhances the melting and glass 

Fig. 2. Scanning electron micrographs of a) native whole wheat flour (WWF), b) whole corn flour (WCF), c) whole barley flour (WBF), d) Indian horse chestnut flour 
(IHCF) and e) their blend (10 % WWF, 10 %WBF, 2.5 % IHCF, 77.5 % WCF). 
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Fig. 3. Scanning electron micrographs of extruded flour at varying level of conditioning moisture content of a) 12, b) 13, c) 14, d) 15 and e) 16%. Capital letters 
represent micrographs of the same sample as that of the small letter but at a magnification of 1000X. 
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transition temperature (De pilli et al., 2008). Also, fiber plays a vital role 
as it restricts water availability and subsequently restricts starch gela-
tinization, reducing enthalpy. Generally, during extrusion, molecular 
structure distortion, and maximum starch gelatinization must have 
occurred that could release the amylose and bind with lipids to form 
more stable amylose–lipid complexes. 

3.7. XRD analysis 

X-ray diffraction has been extensively used to study the starch shape, 
type, degree of melting, gelatinization, and retrogradation (Ghoshal, 
Shivhare, & Banerjee, 2016). Different sources show different peak in-
tensities and their precise diffractogram. The native whole grain flours i. 
e., WWF, WBF, and WCF, and their blend (10 %WWF, 10 % WBF, 2.5 % 
IHCF, and 77.5 % WCF) showed intensity peaks at 15.1◦, 17.9◦ and 23◦, 
indicating A-type crystalline nature (Kim et al., 2018) as shown in 
Fig. 4.. In contrast, native IHCF showed C-type crystalline behavior with 
intensity peaks at 5◦, 15.1◦, 17.9◦, and 27◦ (Rafiq, Singh, & Saxena, 
2016). Compared to native flours, flour extruded at constant tempera-
ture (130 ◦C) and screw speed (380 rpm) but at varying moisture content 
(12 % to 16 %) exhibited diffraction peaks at 8◦, 13.7◦, 18.2◦, and 20◦

indicating the V-type polymorph (Zhang et al., 2018; Cueto et al., 2018); 
peak at 20◦ being the main peak in all formulations. Oliveira et al. 
(2017) reported that the crystalline structure of unprocessed flour was 
altered and disrupted by the extrusion cooking process. During extru-
sion, loss of crystallinity occurs due to the disintegration of molecular 
bonds by intense mechanical shear force inside the extruder, leading to 
diffused amorphous materials (Shaikh, Ali, Mustafa, & Hasnain, 2020). 
Thus, low conditioning moisture content results in a higher expansion 
rate, less gelatinization, and simultaneous fragmentation (Lai, & Kokini, 
1991). The V-type structure begins from amylose-lipid complexes, 

which are hardly found in native starch and are mainly formed after 
starch gelatinization during extrusion cooking (Cueto et al., 2018). 

The relative crystallinity determined for native flours, their blend, 
and extruded products were also shown in Fig. 4. All the extruded flours 
showed a higher amorphous structure than native flours as the crystal-
linity reduced, representing starch disintegration during extrusion 
(Llopart et al., 2014). The degree of crystallinity of unprocessed flours 
and their blend was 32 %, 30 %, 16 %, 29 %, and 27.4 %, respectively 
(Fig. 4, a), and the crystallinity of extruded products varied from 27 % to 
25.8 % (Fig. 4,b). Reducing the conditioning moisture content at high 
die temperatures negatively affects the crystallinity of extruded prod-
ucts (Fig. 4, b). The crystallinity of extruded flours reduced non- 
significantly as the conditioning moisture content decreased at con-
stant temperature and screw speed. This might be due to the reduced 
flow rate of material, leading to enhanced shear force and residence time 
that would promote the degree of gelatinization of starch granules, as 
supported by the previous literature (Cheng et al., 2020). 

Table 2 
Thermal and starch gelatinization characteristics of native and extrudates pro-
duced with varying levels of conditioning moisture.  

Samples To (◦C) Tp (◦C) Tc (◦C) ΔT (◦C) ΔH G% 

Native Flours 
WCF 68.52 ±

0.08f 
75.13 ±
0.13f 

80.25 ±
0.22 h 

11.73 ±
0.03 g 

9.23 ±
0.11b 

– 

WWF 59.67 ±
0.11 h 

65.30 ±
0.43 h 

72.50 ±
0.15 i 

12.83 ±
0.09c 

8.04 ±
0.04 d 

– 

WBF 64.20 ±
0.22 g 

69.50 ±
0.04 g 

82.60 ±
0.11f 

18.40 ±
0.22 a 

7.90 ±
0.06 e 

– 

IHCF 55.50 ±
0.04i 

60.18 ±
0.07 i 

65.72 ±
0.18 j 

10.22 ±
0.14 j 

9.76 ±
0.13 a 

– 

Blend 68.72 ±
0.09f 

75.98 ±
0.13f 

82.31 ±
0.11 g 

13.59 ±
0.1b 

8.46 ±
0.11c 

– 

Extrudates 
E-12 72.31 ±

0.17e 
76.46 ±
0.05e 

84.50 ±
0.02e 

12.19 ±
0.23 d 

3.60 ±
0.16f 

57.44 ±
0.15 e 

E-13 73.22 ±
0.1d 

77.97 ±
0.11d 

85.23 ±
0.11 d 

12.01 ±
0.06 e 

3.0 ±
0.04 g 

64.50 ±
0.09 d 

E-14 75.18 ±
0.05c 

79.38 ±
0.04c 

87.0 ±
0.17c 

11.82 ±
0.12f 

2.85 ±
0.22 h 

66.30 ±
0.23c 

E-15 77.96 ±
0.03b 

80.94 ±
0.23b 

89.30 ±
0.1b 

11.34 ±
0.2 h 

2.32 ±
0.08 i 

72.57 ±
0.08b 

E-16 80.33 ±
0.21a 

85.02 ±
0.22a 

90.72 ±
0.13 a 

10.39 ±
0.04 i 

1.87 ±
0.13 j 

77.89 ±
0.22 a 

WCF = whole corn flour; WWF = whole wheat flour; WBF = whole barley flour; 
IHCF = Indian horse chestnut flour; Blend: 10 % WWF, 10 % WBF, 2.5 % IHCF, 
77.5 % WCF; E-12 (extrudates with conditioning moisture of 12 %), E-13 
(extrudates with conditioning moisture of 13 %), E-14 (extrudates with condi-
tioning moisture of 14 %), E-15 (extrudates with conditioning moisture of 15 %), 
and E-16 (extrudates with conditioning moisture of 16 %).To = onset temper-
ature; Tp = peak temperature; Tc = conclusion temperature; ΔT = gelatinization 
temperature range; ΔH = enthalpy of gelatinization; 
G (%) = degree of gelatinization. 
Reported values correspond to the mean ± standard deviation. Different letters 
in the same column indicate significant differences (P < 0.05). 

Fig. 4. X-ray diffractograms of a) native whole wheat flour (WWF), whole corn 
flour (WCF), whole barley flour (WBF), Indian horse chestnut flour (IHCF) and 
their blend (10 % WWF, 10 %WBF, 2.5 % IHCF, 77.5 % WCF) b) extruded flour 
at varying level of conditioning moisture content of 12, 13, 14, 15 and 16 %. 
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4. Conclusion 

This research reports the development of fiber-rich breakfast cereal 
from the blend of whole grain flour and non-conventional seed flour that 
has not been reported before. As the conditioning moisture content, 
mechanical shearing, and barrel temperature are high, starch is gelati-
nized more thoroughly to enhance the physico-functional and bioactive 
properties of extrudates. The SEM images showed that the gelatinization 
degree disrupts the crystalline nature of starch and produces a highly 
amorphous structure. The puffing of extruded products is the most 
desirable characteristic that significantly improves bulk density, 
sectional expansion, and water absorption capacity. bulk whole- 
grainThe degree of gelatinization (%), peak gelatinization temperature 
(Tp), and starch crystallinity (%) showed a positive correlation with the 
feed moisture content. The extrusion cooking process alters the A-type 
structure of unprocessed starch to V-type pattern with main intensity 
peak at 20◦. Reducing feed moisture content negatively affects the starch 
crystallinity. Thus, the blend of whole grain flours with non- 
conventional seed flour and the selection of suitable process condi-
tions could potentially be utilized at an industrial level for the devel-
opment of breakfast cereals from fiber-rich ingredients. 
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