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Abstract: Lipid phosphate phosphatases (LPPs) are a group of three enzymes (LPP1–3) that belong
to a phospholipid phosphatase (PLPP) family. The LPPs dephosphorylate a wide spectrum of
bioactive lipid phosphates, among which lysophosphatidate (LPA) and sphingosine 1-phosphate
(S1P) are two important extracellular signaling molecules. The LPPs are integral membrane proteins,
which are localized on plasma membranes and intracellular membranes, including the endoplasmic
reticulum and Golgi network. LPPs regulate signaling transduction in cancer cells and demonstrate
different effects in cancer progression through the breakdown of extracellular LPA and S1P and other
intracellular substrates. This review is intended to summarize an up-to-date understanding about the
functions of LPPs in cancers.
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1. Introduction

Lipid phosphate phosphatases (LPPs) consist of three enzymes (LPP1–3), which have been
classified as phospholipid phosphatases (PLPP). So far, the PLPP family has seven members, PLPP1–7,
in which PLPP1, PLPP2, and PLPP3 correspond to the former LPP1, LPP2, and LPP3, respectively.
Mammalian LPP1–3 are encoded by three separate genes, PLPP1, PLPP2, and PLPP3, and they
hydrolyze a wide spectrum of lipid phosphates including phosphatidate (PA), lysophosphatidate
(LPA), sphingosine 1-phosphate (S1P), ceramide 1-phosphate (C1P), and diacylglycerol pyrophosphate
(DGPP) in a Mg2+-independent and N-ethylmaleimide (NEM)-insensitive manner [1,2]. PLPP4 and
PLPP5 are the former diacylglycerol pyrophosphate phosphatase-like 2 (DPPL2) and 1 (DPPL1),
respectively. PLPP4–5 prefer DGPP as a substrate and also hydrolyze PA and LPA [3]. The activities of
PLPP4–5 are also Mg2+-independent, but they can be inhibited by NEM [3]. PLPP6 is formerly known
as polyisoprenyl diphosphate phosphatase 1 (PDP1) or candidate sphingomyelin synthase type 2β
(CSS2β), which hydrolyzes presqualene diphosphate (PSDP), farnesyl diphosphate (FDP), S1P, LPA,
and PA, but it has a preference for PSDP [4,5]. LPPs (PLPP1–3) and PLPP4–6 share highly conserved
catalytic domains but show different substrate preferences. LPPs are responsible for the breakdown of
extracellular LPA and S1P, which are two important signal molecules and therefore participate in many
physiological and pathological processes such as vascular development [6], cell cycle regulation [7],
cardiovascular disease [8], and cancer [9]. So far, there are very few reports about PLPP4–6, and their
physiological functions are not clear. PLPP7, formerly known as NET39 or CSS2α, is catalytically
inactive as a phosphatase due to the loss of critical amino acids in the catalytic domains [10,11].

The process of identifying LPPs dates back to the 1950s when a phosphatidate phosphatase
(PAP) activity that dephosphorylates PA to form diacylglycerol (DAG) was discovered in mammalian
tissue [12,13]. The PAP activity was intensively investigated as a critical regulator of lipid metabolism
because the transformation from PA to DAG represents an intermediate reaction in the Kennedy
pathway [14]. Early studies found that the cytosolic and membrane-bound PAPs exhibit quite different
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enzymological characteristics. For instance, the activity of the cytosolic PAP (PAP-1) that translocates
onto membranes of the endoplasmic reticulum (ER) depends on the presence of Mg2+ and is sensitive
to NEM [15–18]. Its activity is required for the synthesis of triacylglycerol, phosphatidylcholine,
and phosphatidylethanolamine [19,20]. It was not until 2006 that PAP-1 was identified in yeast and was
found to be the orthologue of a family of three mammalian proteins called lipins [21]. Then, all three of
the mammalian lipins were shown to have PAP activity, which is involved in glycerolipid synthesis [22].

A Mg2+-independent phosphatidate phosphatase activity (PAP-2) was also described, and this
activity was found mainly in the plasma membrane fraction [23]. This activity in mammals was
not inhibited by NEM, which further distinguished it from PAP-1 activity. This new class of
PAP activities was characterized in liver [23–26]. Unlike PAP-1, which is specific for PA, PAP-2
degrades a wide spectrum of phospholipids including PA, LPA, S1P, C1P, and lipid pyrophosphates
in vitro [1]. This observation led to the more accurate naming of the PAP-2 activity as a lipid phosphate
phosphatases [27]. The identification of PAP-2 at a molecular level was achieved by the revelation of
cDNA sequences of three PAP-2 isoforms (PAP-2a, PAP-2b, and PAP-2c) in human beings and other
animals [28–31]. These isoforms share amino acid sequence homology, and LPP orthologs were also
identified in fruit flies and yeast [32–34].

mRNA of LPP1–3 are universally expressed in different tissues of human beings including
adrenal, appendix, bone marrow, brain, colon, duodenum, endometrium, esophagus, fat, gall bladder,
heart, kidney, liver, lung, lymph node, ovary, pancreas, placenta, prostate, salivary gland, skin,
small intestine, spleen, stomach, testis, thyroid, and urinary bladder [35]. Protein expression data from
The Human Protein Atlas (http://www.proteinatlas.org) indicate that LPP1–3 are expressed in most
tissues, among which LPP1 is highly expressed in the prostate and kidney. LPP2 is expressed at a
higher level in the gastrointestinal tract, salivary gland, gallbladder, pancreas, kidney, urinary bladder,
and brain than in other tissue, while LPP3 is high in lung, salivary gland, oral mucosa, duodenum,
smooth muscle, and skin [36].

Bioactive phospholipids such as LPA and S1P in the extracellular environment signal through their
families of G protein-coupled receptors to induce a plethora of effects including cell survival, migration,
vascular formation, and inflammation, which play critical roles in cancer development. Functioning as
integral membrane phospholipid phosphatases, LPPs hydrolyze extracellular LPA/S1P and attenuate
their downstream signaling. LPPs are also present in the intracellular membranes such as the ER and
Golgi network [37]. This allows LPPs to hydrolyze intracellular lipid phosphates that have access to
the active sites of the LPPs, and thus, the LPPs affect intracellular signaling pathways. Considerable
evidence has been accumulated about the functions of LPPs (PLPP1–3) in many physio-pathological
processes, including cancer. This review is intended to summarize an up-to-date understanding of the
roles of LPPs in cancer development and offer insights for the future directions of cancer treatment.

2. Structure and Membrane Topology of LPP

The mammalian LPPs are localized on the plasma membrane and intracellular network of ER
and Golgi [7,37]. It has been reported that LPP1 and LPP3 are present in lipid rafts or caveolae [38,39].
There is also evidence that LPP1 can be directed to the apical surface membrane by a FDKTRL motif on
the N-terminus, whereas LPP3 is accumulated at the basolateral membrane [40]. The crystal structure
of the LPPs has not yet been solved. A putative topology for the LPPs was determined based on the
data obtained from hydrophobicity plots and transmembrane disposition analysis of the rat Dri42
protein [41], which later proved to be rat LPP3 [28]. It has six membrane-spanning regions connected by
five extramembrane loops (I–V). Both C- and N-terminal extensions and loop II and IV are located in the
cytosol. Loops I, III, and V are on the extracellular side of the membrane. (Figure 1). Three conserved
domains (C1, C2, and C3) that form the catalytic site are located on loops III and V outside the cells.
Residues that are indispensable for the phosphatase activity in C1–C3 (Figure 2) were identified by
amino acid substitution analysis [42]. LPPs inside the cells are localized in the ER [37,41] and Golgi [28].
There is an N-linked glycosylation site between C1 and C2 (Figure 1) [42], indicating that the catalytic
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site are on the luminal side of ER and Golgi where LPPs are glycosylated [42]. This topology enables
LPPs to hydrolyze substrates outside of the cells and in the lumen of ER and Golgi [9,43].
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Figure 1. The membrane topology of lipid phosphate phosphatases (LPPs). Six membrane-spanning
regions (1–6) are connected with five extramembrane loops (I–V). Three conserved catalytic domains,
C1, C2, and C3, are located on loops III and V. The N-linked glycosylation site on the loop III is shown
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Figure 2. Amino acid sequences of the conserved catalytic domains, C1, C2, and C3, in human LPPs
and other proteins with structure similarity. Residues critical for the catalytic activity are shown in red.

The catalytic mechanism of LPPs has been postulated and proposed through a combination of
computational modeling and the crystal structure of chloroperoxidase, which is a related enzyme that
also possesses the C1–3 domains [44,45]. The conserved histidine on C3 serves as the nucleophile
acting on the phosphate group to form a phospho-histidine intermediate. The C2 histidine is involved
in breaking the phosphate bond. The conserved lysine and arginine on C1 as well as the arginine on
C3 help coordinate the substrate in the active site [43–45]. Similar domains are also found in PLPP4–7.
Unlike PLPP1–3, PLPP6 only has four transmembrane helices, and C1–3 of PLPP6 are located at
the cytosolic side of the membrane. This allows PLPP6 to hydrolyze polyisoprenoid diphosphates
in the cytosol [46]. Sphingosine phosphate phosphatases (SPPs), sphingomyelin synthases (SMSs),
phospholipid phosphatase-related proteins (PLPPRs) [43,47], glucose 6-phosphatase (G6P), and E. coli
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phosphatidylglycerol-phosphate phosphatase B (PGPB), an orthologue of human G6P [33], also have
the conserved catalytic domains. It is notable that the putative structure of PGPB was established
through its crystal structure, which was determined later [47]. The structure of LPPs is thought to be
modeled accurately from that proposed for PGPB.

3. Ecto-Activity of LPPs

A major part of circulating LPA is generated from lysophosphatidylcholine (LPC) through
the lysophospholipase D activity of autotaxin (ATX) [48,49]. LPC is abundant in circulation with
a concentration (>200 µM in human beings) [50], which is much higher than the Km of ATX for
LPC (approximately 100 µM) [51]. As a secretary enzyme, ATX can readily access the LPC pool to
generate LPA.

S1P is a sphingolipid analogue of LPA. The precursor for S1P synthesis is sphingosine, which
is formed through the hydrolysis of ceramide by ceramidases. Sphingosine is phosphorylated by
sphingosine kinase-1 and -2 (SPHK1 and 2) inside cells to generate S1P. SPHK1 is cytosolic and it
interacts with the plasma membrane, whereas SPHK2 is present in the mitochondria [52] and nuclei [53].
S1P can be exported out the cells by the membrane transporters including ATP-binding cassette (ABC)
transporters (ABCC1, ABCG2, and ABCA1) [54–57], spinster homolog-2 (SPNS2) [58], and major
facilitator superfamily transporter 2b (Mfsd2b) [59]. This facilitates the “inside-out signaling” of
S1P [54].

Both LPA and S1P outside the cells induce a plethora of cellular responses such as proliferation,
migration, angiogenesis, and inflammation [51,60–62] through receptors on the cell surface. To date, six
LPA receptors (LPAR1–6) and five S1P receptors (S1PR1–5) have been identified and all of them are G
protein-coupled receptors (GPCRs). Plasma membrane-localized LPPs dephosphorylate extracellular
LPA and S1P and thereby attenuate LPA/S1P signaling.

The ecto-phosphatase activity was established in rat2 fibroblasts where the overexpression of LPP1
increased the dephosphorylation of extracellular LPA, PA, and C1P. This action attenuated LPA-induced
MAPK (mitogen-activated protein kinase) activation and inhibited cell migration [37,63,64]. Similarly,
LPP1 and LPP2 inhibited the activation of MAPK that was stimulated by LPA or S1P in HEK293
cells [65]. The dephosphorylation of LPA generates monoacylglycerol (MAG), which can be transported
into the cells and re-phosphorylated to form intracellular LPA [66]. This intracellular LPA can activate
LPA1 receptors on the nuclear membrane and stimulate the expression of cyclooxygenase-2 (COX-2)
and inducible nitric oxide synthase (iNOS) [67]. Intracellular LPA has also been reported to initiate
signaling through peroxisome proliferator-activated receptor γ (PPARγ) [68].

The ecto-activity of LPPs in vivo is more complex. Exogenous LPA injected into the circulation
is turned over rapidly with the half-life of approximately 1 min [69]. LPP1 knockout mice showed
increased levels and a decreased turnover rate of circulating LPA [70]. A similar phenotype was
observed in LPP1 hypomorph mice, which have a low expression of LPP1 in most organs except the
brain [71]. Interestingly, mice that transgenically overexpressed LPP1 did not show a decrease in
the circulating LPA concentrations [72], suggesting that other factors may affect the ecto-activity of
LPPs in vivo. For instance, the activity of LPPs is inhibited strongly by Ca2+, which is present in the
extracellular environment at approximately 2 mM [37]. In addition, the physiological concentration of
LPA in the plasma (0.1–1 µM) is much lower than the Km of LPP1 for LPA (approximately 36 µM) [37].
This indicates that the ecto-activity of LPPs is more important when the LPA levels are increased.
In cancers, extracellular LPA levels are elevated as high as 10 µM [73–75]. We do not know if LPA
concentrations in the vicinity of the LPPs are modified by other factors such as the levels of expression
of the LPA receptors.

S1P concentrations in the plasma range from 100 nM to 1 µM [54]. Exogenous S1P injected
into the circulation is cleared from the blood in 15–30 min [76]. S1P is dephosphorylated by SPPs
and LPPs, or irreversibly cleaved by S1P lyase (SPL). SPPs and SPL are localized on the ER [77,78].
Therefore, the plasma membrane-localized LPPs have an essential role in regulating the amount of
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extracellular S1P. The ecto-activity of LPP1 and LPP3 against S1P has been demonstrated in cells [69,79]
and animals [80,81]. LPP3 and LPP1a, a splice variant of LPP1, seem to be more efficient at hydrolyzing
S1P than LPP1 and LPP2. Phospho-FTY720, an analogue of S1P, can be converted to FTY720 by LPP3
and LPP1a [82], but not by LPP1 or LPP2 [83]. Similarly, expressing exogenous LPP1, LPP2, or LPP3
in HEK293 cells enhances the ecto-activity against LPA, but only LPP3 significantly increases the
degradation of extracellular S1P [69]. Sphingosine formed by the dephosphorylation of S1P can be
transported into the cells and re-phosphorylated into S1P [79]. Therefore, this process represents a
mechanism for the entry of S1P into cells.

4. Intracellular Activities of the LPPs

Not all of the effects of LPPs can be attributed to their ecto-activities. LPP1 is able to suppress
wls-31-induced cell migration and Ca2+ mobilization [64,84]. Wls-31 is an isosteric phosphonate analog
of LPA that activates LPAR1/2, but cannot be hydrolyzed by LPPs. LPP1 and LPP2 also inhibit MAPK
activation induced by thrombin, which activates protease-activated receptors (PARs) [65]. Similarly,
Ca2+ mobilization induced by a PAR1 peptide in MDA-MB-231 cells is inhibited by increased LPP1
expression [84]. Furthermore, LPP1 decreases the platelet derived growth factor (PDGF)-induced
migration of embryonic fibroblasts through inhibiting the PDGF/PKC (protein kinase C) /MAPK
pathway [63]. These effects of the LPPs are independent of their ecto-activities because these agonists
cannot be degraded by LPPs. However, the effect requires LPP activity and therefore probably depends
on the degradation of an intracellular lipid phosphate that is formed downstream of the activation of
LPA, PAR, or PDGF receptors.

LPPs are also present on the ER and Golgi network with the catalytic domains, which should
face the luminal side. As such, LPPs probably have specific access to substrates depending on the
subcellular compartment. One of these possible substrates inside the cells is PA, which activates
Sos (son of sevenless), Raf (rapidly accelerated fibrosarcoma), MAPK, mTOR (mammalian target
of rapamycin), AKT (Ak strain transforming), and SPHK1 [85–87]. The dephosphorylation of
PA generates DAG, which activates the classical and novel PKCs and Ras (rat sarcoma) guanyl
nucleotide-releasing protein [88]. Increasing LPP1, LPP2, or LPP3 does decrease intracellular PA/DAG
ratios [38,89]. LPP3 depletion decreases the levels of de novo synthesized DAG and the Golgi-associated
DAG [90]. LPP2 decreases intracellular PA, which promotes the apoptosis of HEK293 cells in
serum-deprived media [91]. However, LPP3 or LPP1 did not change intracellular DAG significantly in
other studies [65,72,92].

Since the catalytic domains of LPPs are on the luminal side of ER and Golgi or the outer surface
of the plasma membrane, the LPPs should not be able to dephosphorylate PA, which is formed at
the cytosolic side of the membranes, unless the PA can be transported across the membranes to the
catalytic sites of LPPs. However, this has yet to be shown. It should be noted that increasing LPP1
activity directly inhibits phospholipase D (PLD) activation [64], which forms a large proportion of
intracellular PA. This can provide an alternative explanation for the decreased accumulation of PA. It is
likely that the lipins, which are cytosolic phosphatidate phosphatases that translocate to membranes,
are responsible for the degradation of most of the PA on the cytosolic surface of membranes [93].

LPPs probably also degrade intracellular C1P and S1P, both of which are involved in inflammation.
C1P activates phospholipase A2 (PLA2) to produce arachidonate, which is converted to inflammatory
eicosanoids (prostaglandins and thromboxanes) by COX-1/2 [94]. S1P helps to coordinate the
metabolism of arachidonate by COX-2 to ensure the maximum production of prostaglandin E2
(PGE2) [94]. S1P also interacts with specific intracellular target proteins such as histone deacetylase
1/2, prohibitin 2, PPARγ, and tumor necrosis factor (TNF) receptor associated factor 2, to induce cell
responses [95]. The overexpression of LPP3, but not LPP2, decreases intracellular S1P in HEK293
cells [91]. The degradation of intracellular S1P can be performed by other enzymes such as S1P
phosphatases and S1P lyase, which are major regulators of intracellular S1P concentrations.
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5. Upregulation of LPA Signaling in Cancers

Functioning as a platelet activator, a chemoattractant, and a growth factor, LPA plays a critical role
in wound healing [96]. At sites of tissue damage, LPA stimulates the proliferation of fibroblasts and
endothelial cells [97], and it promotes collagen deposition [98] and angiogenesis [99,100]. Circulating
LPA concentrations are normally between 0.1 and 1 µM [51], and this is regulated mainly by the balance
of ATX activity versus that of the LPPs.

LPA signaling is magnified and hijacked by cancers (wounds that do not heal) [101]. Elevated
ATX levels have been observed in the blood and malignant tissues from patients with thyroid [102],
lung [103], breast [104], liver [105], pancreatic [106,107], kidney [108], bladder [108], and prostate
cancer [109]. As a consequence, LPA levels increase in those cancers [107,110–113], which has been
considered an indicator of poor prognosis [110,113]. Significantly, LPA concentrations have been
reported to reach as high as 10 µM in the ascites fluid of ovarian cancer patients [73–75]. Cancer cells
express high levels of LPAR1–3 [61], which are GPCRs. LPAR1–3 couple to G proteins: Gi/o, Gq/11,
and G12/13 [61], and activate PI3K (phosphoinositide 3-kinase) /AKT [114,115], PLC (phospholipase
C) [116], and Rho pathways [116]. LPAR1–3 are elevated in brain [117,118], pancreatic [119–121],
colon [122,123], and breast cancer [124], which is associated with enhanced tumor growth and metastasis.

Introducing exogenous LPAR1 converts non-transformed MCF-10A cells into an invasive
phenotype [125]. LPAR1 and/or LPAR3 activate Wnt/β-catenin and PI3K/AKT/mTOR pathways
to induce the epithelial-to-mesenchymal transition (EMT) [126,127], which is an essential step during
cancer cell stemness [128]. Cancer stem cell (CSC)-related genes such as ALDH1A1, OCT4, and SOX2
are upregulated by activating LPAR1 [129]. Blocking ATX or LPAR2 suppresses the growth of
breast cancer stem cells [62,130] in which LPP3 expression is downregulated [131]. Transgenic mice
overexpressing ATX or any of LPAR1–3 by MMTV-LTR (mouse mammary tumor virus long terminal
repeat) promoter in mammary epithelial cells show an increased development of spontaneous breast
tumors and subsequent metastases [132]. LPAR4–6 are closely related to purinergic receptors [61].
LPAR4 (P2Y9/GPR23) and LPAR5 (GPR92) in cancer cells demonstrate inhibitory effects on proliferation
and migration/invasion [133–136], which is in contrast to the effects of LPAR1–3. It is notable that LPAR5
suppresses the function of infiltrated CD8+ cytotoxic T cells as a mediator of immune suppression in the
tumor microenvironment (TME) [137]. The effects of LPAR6 (P2Y5) in cancers are uncertain [138,139]
and require further investigation.

LPA induces lymphocyte homing [140] and the transformation of monocytes to macrophages [141],
which provokes inflammation [102,142]. LPA is closely related to the inflammatory milieu in
conditions such as pulmonary fibrosis, rheumatoid arthritis, atherosclerosis, and inflammatory
bowel disease [143]. The TME is also characterized by chronic inflammation, which is one of the
hallmarks of cancers [144]. Increasing evidence reveals that there is crosstalk between LPA signaling
and cancer-related inflammation. TNFα increases ATX production by Huh7, HepG2, and Hep3B liver
cancer cells through activating nuclear factor κB (NFκB). The subsequent increase in LPA enhanced the
invasiveness of the cancer cells [145]. The secretion of IL-8 is increased by LPA in human bronchial
epithelial cells, which is mediated by protein kinase Cδ (PKCδ) and NFκB [146,147]. IL-8 and IL-6
expressions in ovarian cancer cells are also increased by LPAR2 or LPAR3 activation [148]. In a colon
cancer model, LPAR2 knockout mice formed smaller tumors after induction with azoxymethane
(AOM)/dextran sulfate sodium (DSS). This was accompanied by decreased levels of COX2 and CCL2
and reduced macrophage infiltration [149]. Zhao et al. showed that LPP1 inhibits LPA-induced NFκB
translocation, which blocks IL-8 secretion in human bronchial epithelial cells [150]. This suggests an
important role of LPP1 in inflammation [50,142].

We recently proposed a model of the ATX–LPA inflammatory cycle in breast cancer [151,152].
In this model, tumor-derived inflammatory cytokines such as TNFα and IL-1β increase ATX secretion
by the adjacent mammary adipose. As a consequence, LPA levels increase in the TME. The increased
LPA stimulates cancer cells to produce more cytokines, which can overcome the LPA-mediated feedback
inhibition of mRNA expression for ATX [153] to form a feed-forward inflammatory cycle. This ATX–LPA
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inflammatory cycle can be exacerbated by radiotherapy (RT), since irradiation increases COX-2 and
inflammatory cytokines in cultured adipose tissues as well as in the fat pads of mice [154,155]. ATX and
LPAR1/2 levels are also elevated by irradiation. Dexamethasone, an anti-inflammatory glucocorticoid,
attenuates the RT-induced upregulation of the expression ATX and LPA1R and LPA2R and increases
LPP1 expression [156], which together decrease LPA signaling. Pulmonary fibrosis caused by RT or
bleomycin is also blocked by dexamethasone [157–159].

It is well documented that LPA signaling promotes cell survival by inhibiting the intrinsic and
extrinsic apoptosis pathways [160]. LPA decreases the level of the Fas receptor and reduces the
expression of the Fas ligand [161,162], which makes cancer cells less responsive to the extrinsic
pro-apoptotic stimuli. LPA also attenuates the intrinsic apoptosis pathway by increasing Bcl-2 and
inhibiting Bad and Bax [163,164]. These effects of LPA depend on the activation of the PI3K–Akt
pathway. The decrease in the sensitivity of cancer cells to chemotherapy and RT is contributed,
at least partly, by the upregulation of LPA signaling. LPA decreases the effectiveness of Taxol [165],
tamoxifen [166], and doxorubicin [167] in killing breast cancer cells.

The critical role of LPAR2 in protecting cells from radiation-induced damage has been illustrated by
LPAR2 knockout mice, which exhibit increased irradiation-induced apoptosis in intestinal tissue [168].
By contrast, the knockout of LPAR1 or LPAR3 does not have this effect [168]. On the other hand, LPAR2
agonists show a therapeutic potential against irradiation-induced injury [168,169]. LPA contributes to
the resistance of 786-O renal cancer cells to Temsirolimus and Sunitinib by activating Arf6 GTPase
through LPAR2 [170]. Similarly, blocking LPAR1/3 with Ki16425 in resistant UMRC3 renal cancer cells
re-establishes the sensitivity to Sunitinib [171]. The long-term culture of PANC-1 pancreatic cancer
cells in the presence of cisplatin results in an upregulation of LPAR3 [172]. LPA through the activation
of LPA1R and PI3K stabilized the expression of nuclear factor erythroid 2-related factor 2 (Nrf2),
a transcription factor, which through the anti-oxidant response element increases the expression of the
multidrug-resistant transporters, anti-oxidant genes, and enzymes of DNA repair [166,167,173,174].
Thus, the ATX inhibitors, ONO-8430506 and GLPG1690, enhance the sensitivity of breast tumor to
doxorubicin and RT [167,175]. It should be noted that the later effect of GLPG1690 involved decreased
cell division in the cancer cells, and this is compatible with the major effect of RT in solid tumors being
to increase cell senescence rather than apoptosis [176–178]. Effects of the upregulation of LPA signaling
in cancer cells are summarized in Figure 3.
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6. Upregulation of S1P Signaling in Cancers

Elevated expression of SPHK, especially SPHK1, has been well documented in multiple cancers
where the consequent increase in S1P promotes cell survival, growth, and invasiveness [179–181].
The overexpression of wild-type SPHK1, but not the inactive mutant, transforms NIH3T3 cells
into fibrosarcoma [182]. The function of SPHK2 in cancer is unclear. Some studies indicated that
SPHK2 has an opposite role to SPHK1; for instance, SPHK2 induces cell cycle arrest and promotes
apoptosis [183–185]. The knockdown of SPHK2 enhances apoptosis and sensitivity to chemotherapy
in lung and colon cancer cells [186,187]. However, emerging evidence has revealed the anti-tumor
effect of SPHK2. Targeting SPHK2 demonstrates antitumorigenic effects in cancer cell lines and mouse
models [186,188–190]. Neubauer et al. recently reported that the effect of SPHK2 on cancer depends
on its expression level [191]. Moderate increases in SPHK2 promoted cell proliferation and survival,
and this can be suppressed by highly overexpressed SPHK2. Interestingly, this study indicated that
the highly overexpressed SPHK2 is accumulated in the nuclei, whereas at lower levels of expression,
SPHK2 is on the plasma membrane. This suggests the importance of localization for the effect of
SPHK2. Indeed, elevated SPHK2 has been shown in bladder, melanoma, esophageal, breast, lymphoma
cancers, and leukemia [191], and this is linked to a poor prognosis in non-small cell lung cancer [192].
S1P concentrations increase in mouse and human breast tumors and in the serum of stage III breast
cancer patients [193,194].

S1PRs are GPCRs. S1PR1 couples to Gi/o. It has an essential role in activating JAK2 (janus kinase
2), which causes a persistent STAT3 (signal transducer and activator of transcription 3) activation
in cancers. The activated STAT3 increases the expression of S1PR1 further to form a feed-forward
loop of S1PR1–JAK2–STAT3 [195]. This feed-forward loop drives tumorigenesis and metastasis [196]
and contributes to the formation of the chronic inflammation milieu in colon cancer [197]. Enhanced
S1PR1/STAT3 signaling has also been found in intestinal and lung cancers [197–199]. S1PR1 is required
for tumor angiogenesis [200]. S1PR2 and S1PR3 couple to Gi/o, Gq/11, and G12/13. Functioning
as a promoter of tumorigenesis and angiogenesis [201–203], S1PR3 is upregulated in lung cancer
cells [204], and it is the most highly expressed S1PR in breast cancer cells [205]. The function of S1PR2
in cancer is uncertain, because both positive and negative impacts of S1PR2 were reported by different
studies [206,207]. Compared with S1PR1–3, S1PR4 and S1PR5 have a restricted distribution and less
clear functions. Effects of the upregulation of S1P signaling in cancer cells are summarized in Figure 3.

7. Alterations of LPP Expression in Cancers

The downregulation of LPPs results in an exacerbation of the excessive LPA and S1P signaling
in cancers. LPP1 and LPP3 levels are significantly decreased in colon and breast tumors compared
with the normal tissue [208,209]. Microarray data also demonstrated the downregulation of LPP1
or LPP3 in many other cancers [210–212]. We compared mRNA levels of LPP1–3 in all the tumors
versus normal datasets of the Oncomine database, with the following threshold settings: p value,
0.05; fold change, 2; gene rank, top 10%. The results showed that LPP1 expression is significantly
downregulated in melanoma, sarcoma, leukemia, bladder, breast, colorectal, kidney, lung, and ovarian
cancers, and it is upregulated in lymphoma, brain and central nervous system, and prostate cancers.
LPP3 is downregulated in melanoma, myeloma, sarcoma, bladder, breast, cervical, colorectal, lung,
kidney, liver, and head and neck cancers, and it is upregulated in lymphoma.

In contrast, LPP2 is upregulated in 9 out of 20 categories of cancers including bladder, cervical,
colorectal, esophageal, head and neck, liver, and prostate cancers, and it is downregulated in brain and
central nervous system cancer, melanoma, and sarcoma (Figure 4).
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Figure 4. Alterations of mRNA levels of LPP1–3 in different tumors versus normal tissues. Values were
obtained from the Oncomine database. The searching thresholds were set as follows: p-value, 0.05;
fold change, 2; gene rank, top 10% (means 9% other genes have more significant p-values). The red or
blue color represents the up- or downregulation of genes respectively in tumors relative to the adjacent
normal tissue. The darkness of color corresponds to the gene rank; darker color means higher rank.
LPP1 (PLPP1) and LPP3 (PLPP3) are downregulated, whereas LPP2 (PLPP2) is upregulated in the
majority of cancers (p < 0.05). In some cases, such as PLPP2 in ovarian cancer and other cancers and
PLPP3 in leukemia, ovarian cancer, and prostate cancer, both upregulation and downregulation are
shown by different datasets. These cases are considered as neither upregulation nor downregulation.

Alterations (amplification, deletion, and mutation) of PLPP1–3 are not common in cancers. How
the expression of LPPs is regulated remains unclear so far. Several transcription factors that control the
expression of LPPs have been identified. LPP1 can be induced by DAF-16, an orthologue of FOXO
(class O forkhead box protein) transcription factors in Ancylostoma caninum [213]. The conditional
knockout of SP2 in the mouse cerebral cortex leads to a decrease in LPP1 expression [214]. Oxidized
low-density lipoprotein increases LPP3 expression in human macrophages through transcription factor
C/EBPβ (CCAAT-enhancer-binding protein β) [215]. LPP3 expression can also be activated by NFκB
through three response elements in the promoter region of PLPP3 [216]. DNA modification is another
mechanism changing the expression of LPPs. DNA methyltransferase Dnmt3a1 upregulates LPP3
transcription in mouse embryonic stem cells [217]. In addition, LPP3 expression can be elevated
by androgens, EGF (epidermal growth factor), FGF (fibroblast growth factor), and VEGF (vascular
endothelial growth factor) at the transcription level [28,218,219].

The ecto-activity of LPP in ovarian cancer cells can be increased by gonadotropin-releasing
hormone (GnRH) [220]. So far, little is known about how the discrepant expression between LPP1/3
and LPP2 in cancers happens. Dexamethasone, an anti-inflammatory glucocorticoid, increased LPP1
expression in RT-treated breast tumors and adjacent adipose [155,157] suggesting that LPP1 could
decrease in response to the inflammatory milieu created by the tumor. LPP3 expression can be decreased
by hypoxia in the TME, leading to an asymmetrical redistribution of ATX and LPP1 to the leading and
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trailing edge of cancer cells, respectively [221]. These results suggest that the intrinsic characteristics
of the TME such as inflammation and hypoxia may play an essential role in the downregulation of
LPP1/3.

8. Effects of LPPs in Cancers

Increasing the low level of LPP1 or LPP3 in cancer cells leads to an inhibition in tumor growth and
metastasis, which is partly caused by the ecto-activity. Ovarian cancer cells overexpressing LPP1 or
LPP3 show an increased hydrolysis of extracellular LPA, resulting in impaired colony-forming ability
and enhanced apoptosis [222,223]. GnRH increases the LPP ecto-activity in GnRH receptor-positive
ovarian cancer cells, and this is attenuated by GnRH antagonism [220]. This effect of GnRH is associated
with its antiproliferative actions on ovarian cancer cells.

We found that tetracyclines, a class of antibiotics, increase the degradation of extracellular LPA
by breast cancer cells and HEK293 cells [69]. This is thought to occur through increasing the stability
of LPP proteins, leading to an elevation in LPP ecto-activity. The clearance of [32P]LPA from the
circulation is increased from 61% to 79% at 30 s and from 75% to 85% at 60 s [69]. Doxycycline
treatment delays breast tumor growth in mice and decreases LPA levels in the plasma. Furthermore,
doxycycline decreases inflammation in the tumors as indicated by a decrease in 11 inflammatory
cytokines/chemokines and decreased NFκB levels in the nuclei of cancer cells [224].

Overexpressing LPP1 in MDA-MB-231 breast cancer cells decreases the Ca2+ mobilization that
is stimulated by LPA, wls-31, and a PAR1 peptide [84]. LPP1 expression decreases cell migration
and also suppresses tumor growth and metastasis in both syngeneic and xenograft mouse models.
The catalytically inactive mutant (R217K) of LPP1 does not have these effects. Increasing LPP1
expression in the cancer cells does not affect LPA levels in both tumors and the plasma, even though
the cells have enhanced ecto-activity in vitro [84]. These results emphasize the importance of the
intracellular activity of LPP1, because LPP1 does not degrade wls-31 and the PAR1 agonist. In addition,
the extent of hydrolysis of optimum (10 µM) extracellular LPA concentrations is not fast enough to
attenuate acute response, such as Ca2+ mobilization, which occur in 30 s [84].

In our recent report, increasing LPP1 in MDA-MB-231 breast cancer cells decreases the levels of
c-Jun and c-Fos in nuclei and suppresses the expression of AP-1 (activator protein 1) -regulated genes
including MMPs (matrix metalloproteinases) and CCND1/3 (cyclin D1/D3). This effect can be partially
reversed by siRNA against LPP1 [208]. In fact, human breast tumors have significantly higher protein
levels of MMP-1, -7, -8, -9, -12, -13, c-Jun, and c-Fos than normal breast tissue [208], which is probably
caused by the downregulation of LPP1. PLPP1 has been recognized as one of 12 genes linked with
relapse-free survival in breast cancer patients [225].

The effects of LPP1 and LPP3 in cancers are not always consistent. Nakayama et al. found
a biphasic growth pattern of ovarian cancer cells in LPP1 knockout mice [70]. The high level of
circulating LPA caused by the decrease in LPP1 facilitates cancer cell growth within the first 2 weeks
after inoculation, showing more invasive nodules on the omentum compared with the wild-type
mice. However, subsequent tumor growth after 3 weeks is slower in the LPP1 knockout mice than the
wild-type mice, leading to formation of smaller tumors [70].

Chatterjee et al. reported a pro-tumorigenic action of LPP3. In their study, the knockdown of
LPP3 in U87 and U118 glioblastoma cells inhibits tumor growth in mice, whereas overexpressing
LPP3 in SW480 colon cancer cells promotes tumor growth [226]. WM239A melanoma cells failed
to degrade extracellular LPA after the knockdown of LPP3, but not LPP1 or LPP2, leading to an
impaired chemotaxis toward LPA, which was related to the loss of a self-generated LPA gradient
outside cells [227].

LPP2 expression is elevated in transformed cells and a variety of cancer cell lines including MCF7,
SK-LMS1, MG63, and U2OS [228]. The upregulation of LPP2 is also shown in many cancers, which is
opposite to that for LPP1/3 (Figure 4). The knockdown of LPP2 impairs the anchorage-dependent
growth of cancer cell lines and decreases cell proliferation [7,228]. These in vitro data validate LPP2 as
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a putative cancer target. Our unpublished data indicated that the knockout of LPP2 in breast cancer
cells inhibits cell proliferation, but it does not affect migration. The cells with LPP2 knockdown form
smaller tumors in mice than the wild-type cells. Different functions of LPPs in cancers are summarized
in Figure 3.

The different effects of LPP1/3 and LPP2 on cancers may be reflected by their distinct non-redundant
functions. For instance, unlike LPP1 [70] and LPP2 [229] knockout mice, which are viable, LPP3
knockout mice die between E7.5 and 9.5 and fail to form a chorioallantoic placenta and yolk sac
vasculature [230]. Wunen and Wunen-2 are Drosophila homologues of human LPP [32]. The mutation
of Wunens causes the impaired migration and death of primordial germ cells. This can be rescued by
human or mouse LPP3, but not human LPP1 or mouse LPP2 [32,231]. The knockdown of LPP2 affects
the cell cycle by delaying S-phase entry and cyclin A expression. Conversely, the overexpression of
LPP2, but not a catalytically inactive mutant, causes premature S-phase entry, which is accompanied
by premature cyclin A accumulation [7]. This effect of LPP2 is not observed with LPP1 and LPP3,
where the overexpression of these two isoforms normally inhibits cell growth and migration [84,223].
Divergent subcellular distribution could be another reason. In polarized MDCK cells, LPP1 and
LPP3 are differentially located on the apical and basolateral subdomains of the plasma membrane,
respectively [40]. Sciorra and Morris found that LPP3, but not LPP1, increases DAG accumulation
from PLD-generated PA in HEK293 cells. The authors also showed that PLD and LPP3 co-exist in
caveolin-1-enriched detergent-resistant membrane microdomains where PLD and LPP3 act sequentially
to generate DAG [38]. This subtle difference in localization may allow LPPs to act on specific intracellular
pools of substrates and differentially regulate intracellular signaling. To understand more clearly the
effects of LPPs in cancers, investigations need to be expanded to more types of cancer. It is important
to understand how the LPP isoforms regulate intracellular signal transduction in addition to the
degradations of extracellular LPA and S1P. The intracellular lipid phosphate targets for different LPPs
need to be identified. LPP2 is a promising target because it is upregulated in many cancers. Developing
LPP2 inhibitors is feasible for cancer therapy.

9. Conclusions

Plasma membrane-bound LPPs are responsible for the dephosphorylation of extracellular LPA
and S1P through their ecto-activities, and this decreases the activation of the respective cell surface
receptors. Intracellular LPPs, which are localized on organelles such as the ER and Golgi, also attenuate
post-receptor signaling through various LPA receptors and other GPCRs such as PAR receptors.
LPP1–3 have distinct and non-redundant functions in physiological processes beside the common
phosphatase activities. In cancers, LPP1/3 are generally downregulated, whereas LPP2 is upregulated.
LPP1/3 demonstrate antitumorigenic effects in ovarian and breast cancer cells, but they have opposite
effects in melanoma and glioblastoma cells. Emerging evidence suggest that LPP2 may function as
a tumor promoter, which is different from LPP1/3. The reason for these differences in LPPs are not
completely understood, and they are probably caused by differences in substrate access, localization,
and accessibility to intracellular substrates [232], which warrant further investigation. LPPs are
promising targets for developing novel approaches to cancer therapy.
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