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Abstract MicroRNA (miRNA) plays vital roles in biological processes like RNA splicing and reg-

ulation of gene expression. Studies have revealed that there might be possible links between onco-

genesis and expression profiles of some miRNAs, due to their differential expression between

normal and tumor tissues. However, the automatic classification of miRNAs into different cate-

gories by considering the similarity of their expression values has rarely been addressed. This article

proposes a solution framework for solving some real-life classification problems related to cancer,

miRNA, and mRNA expression datasets. In the first stage, a multiobjective optimization based

framework, non-dominated sorting genetic algorithm II, is proposed to automatically determine

the appropriate classifier type, along with its suitable parameter and feature combinations, pertinent

for classifying a given dataset. In the second page, a stack-based ensemble technique is employed to

get a single combinatorial solution from the set of solutions obtained in the first stage. The perfor-

mance of the proposed two-stage approach is evaluated on several cancer and RNA expression pro-

file datasets. Compared to several state-of-the-art approaches for classifying different datasets, our

method shows supremacy in the accuracy of classification.
Introduction

Cancer is one of the leading causes of death in the world [1,2],
making it imperative to detect cancer in the early stages for
proper diagnosis. MicroRNAs (miRNAs) have been report-
edly linked with various types of cancers and expressed differ-

entially in tumor versus normal tissues [3–5]. However, most of
miRNA studies [6–13] focus on biological aspects. miRNAs
can be categorized into normal and tumor types depending
on their expression levels. Therefore, automatic classification

of a miRNA sample into any of these two classes is a pressing
problem.

Many supervised machine learning algorithms have been

developed for data classification, which take labeled data as
input and produce inference for mapping the unknown data
[14,15]. These algorithms comprise of several parameters

whose values can be changed according to the problem at
hand, thus improving the classification performance. For
nces and
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instance, Gaspar-Cunha et al. [16] developed an algorithm
named Reduced Pareto Set Genetic Algorithm with elitism
(RPSGAe) by combining a multiobjective based optimization

framework [17] with support vector machine (SVM) [18] for
automatic classification of single proton emission computed
tomography (SPECT) data. Peng et al. [19] used SVM-based

recursive feature elimination technique (SVM-nRFE) to select
the appropriate set of mRNAs and miRNAs for cancer tissue
classification, whereas Mukhopadhyay et al. [20] used a multi-

objective evolutionary algorithm (MOGA) technique with
SVM as a wrapper to select appropriate miRNAs for classifi-
cation of normal and tumor tissues.

All these studies suffer from the same drawback, i.e., use of

only one single classifier like SVM [18], while no single classi-
fier is suitable for solving different classification problems.
Some classifiers perform well for some domains whereas others

perform well for some other domains. Therefore, it is pivotal
to automatically select the classifier from a set of classifiers
for a particular classification problem. Moreover, automatic

selection of feature and parameter combination corresponding
to the selected classifier is also necessary. However, none of the
existing approaches [16,19,20] provides a way to combine the

set of solutions obtained after the application of any multi-
objective optimization-based technique.

In the current study, we considered the problem of auto-
matic classifier selection and the corresponding feature and

parameter combination selection as a multi-objective optimiza-
tion problem [17]. We thus developed a multi-objective
optimization-based two-stage algorithm and evaluated its per-

formance using real SPECT dataset and miRNA and mRNA
expression datasets.

Method

Formulation of the proposed approach using multiobjective

optimization

An automatic approach was proposed for selecting a set of
classifiers from a group of classifiers, by optimizing precision,

recall, and number of selected features simultaneously using a
multiobjective optimization technique. The selected classifiers
are then applied to the datasets to obtain the final result using
stack-based ensemble technique. The proposed methodology

comprises two stage approaches, which are explained below.

First stage

We used the search capability of a popular multi-objective
optimization technique, non-dominated sorting genetic
algorithm-II (NSGA-II) [17] to determine the appropriate clas-
sifier type, parameter combination and feature combination

from a given classification problem. The basic steps of
NSGA-II are shown in Figure S1.

String representation

Individuals or strings are used as inputs to NSGA-II-based
approach. A string encodes a possible solution for the given
problem. As there are three subcomponents of the given prob-

lem, the string is represented in three parts, i.e., classifier type,
parameter, and feature combinations (Figure 1).

The first part represents the type of the classifier used. In

the current study, four classifiers were used, including random
forest (RF), random tree (RT), sequential minimal optimiza-
tion (SMO), and logistic regression (LR) [21]. Any one of these
four classifiers is present in a particular solution, with values 1,

2, 3, and 4 representing RF, RT, SMO, and LR, respectively.
The second part of the string/solution contains the param-

eters corresponding to a specific classifier. Parameters used in

RF include the number of trees (possible values: 10, 20, and
30) and the number of features (possible values: 0, 5, and 6).
Parameters used in RT include the minimum total weight of

instance in a leaf (possible values: 1.0, 1.05, and 1.25) and
the number of randomly-chosen features (possible values: 0,
3, and 7). Only a single parameter of SMO, complexity, was
considered in our algorithm (possible values: 1, 3, and 8).

No particular parameter values were determined for LR;
instead, the default values are used.

Finally the third component of the solution/string repre-

sents features in the form of binary string where ‘‘0” and ‘‘1”
indicate the absence and presence of a particular feature,
respectively.

Population initialization

Initialization of all strings is automatically performed. The first
part can randomly select values 1, 2, 3, or 4 to represent RF,

RT, SMO, and LR, respectively. The second part of the string
is initialized by selecting random values from the given set to
assign the parameter values corresponding to a particular clas-

sifier. For example, if the first part of the string contains the
value 3 (SMO), then a parameter value of 1, 3, or 8 can be ran-
domly selected from the set. Finally, the third part is initialized

with values ‘‘0” or ‘‘1”. If the dataset contains total N features,
then each feature position is initialized to 0 or 1. Thus a binary
string of size N is generated.

Objective function calculation

Let (S) denote a set of features whose values are ‘‘1” in the fea-
ture part of the string/solution (third part). The encoded clas-
sifier and its parameter and feature combinations (S) are

obtained. The selected classifier, along with selected parameter
and feature combinations, is executed on the available dataset
using leave-one-out cross-validation (LOOCV). Two classifica-

tion quality measures, average precision [22] and recall [22] val-
ues are calculated and used as the first two objective functions
whose values are to be maximized (higher values of precision

and recall correspond to good classification qualities). The
third one, i.e., the number of features (S), is to be minimized.
The objective of the current work is to select that particular

classifier which provides good performance (with respect to
recall and precision) with minimum number of features.

Genetic operators

Three mutation operators are defined to obtain more diversi-
fied solutions. Type 1 is for changes present in the whole string,
type 2 is for changes present in the parameter and feature com-

binations, while type 3 is for changes present only in the fea-
ture combination. Any of the above mentioned mutation
operations are applied to a particular string at a given genera-
tion. The other operations of NSGA-II are applied to explore

the search space judiciously. Another search operation, namely
crossover operation that is used to exchange information
between two given solutions is applied only on the feature part

of the string using normal single point crossover operator.



Figure 1 Two stages of the proposed NSGA-II-based approach

A. String/solution representation showing the first stage. There are three parts involved, including the type of classifier, parameters

corresponding to the selected classifier, and feature combination. B. Stack-based ensemble showing the second stage of the proposed

approach. S1, S2, . . ., Sn represent the samples present in the dataset; F1, F2, . . ., Fk represent the corresponding features; P1, P2, . . ., Pk

represent the predicted class labels corresponding to a particular classifier. The absence and presence of a particular feature are indicated

with ‘‘0” and ‘‘1”, respectively. NSGA-II, non-dominated sorting genetic algorithm-II.
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Termination criterion

The process of fitness computation, selection, crossover, and
mutation is executed for the fixed number of generations
(100 iterations by default). At the last iteration of NSGA-II,

a set of non-dominated solutions (containing type of classifier
with its selected parameters and features that is to be applied
on the datasets) is provided in the ranking order, with ‘‘rank

1” being the highest.

Second stage

Outputs of all the ‘‘rank 1” solutions obtained from the first

stage were combined in the second stage. Unique solutions
from the solution set were retrieved; each unique solution rep-
resents a particular classifier type with a set of features and

parameter combinations. This classifier is executed on the
training dataset to predict the class label of each data sample.
The class labels are converted to ‘‘0” and ‘‘1” for binary clas-

sification problem, with ‘‘1” representing the positive class
(normal type) and ‘‘0” representing the negative class (tumor
type).

For multiple-class problem one-vs.-rest strategy is used.

This strategy involves training a single classifier per class, with
the samples of that class as positive samples, ‘‘1” and all other
samples as negatives, ‘‘0”.

If N unique solutions are present in solution set from stage
1, totally N predictions would be available for each sample of
the training set. These N predictions are added as the feature

values of that particular sample of the training set. In this
way, we generate a new training dataset. Similarly a new test
dataset is also generated by adding the predictions of N classi-

fiers to the available feature combinations for all the samples.
Now a new classifier (selected classifier with the highest F-
measure value from the first-stage) is executed on the
newlygenerated training set to build the model, and the gener-
ated model is tested on the new test set. The accuracy of the

final test set is calculated and used as the final accuracy of
the combined solutions. The stack-based ensemble approach
and the complete procedure of our algorithm are shown in Fig-
ure 1 and Figure 2, respectively.

Datasets

We used five datasets, GCM miRNA, GCM mRNA, GCM

miRNA_217, SRBCT, and brain tumor (POM) to evaluate
the performance of the proposed method. The first three data-
sets are mammalian cancer datasets downloaded from

http://portals.broadinstitute.org/cgi-bin/cancer/datasets.cgi.
Total 11 datasets containing 89 samples of both normal and
tumor types were extracted from GCM mRNA dataset [23],

with each sample having 16,063 mRNAs (i.e., features). Sim-
ilarly, 11 datasets containing 89 samples of both normal and
tumor types were extracted from GCM miRNA dataset [23],
with each sample having 217 miRNAs (i.e., features). The

original dataset for GCM miRNA_217 expression profiles’
dataset [23] contains 218 samples of both normal and tissue
types. Each sample contains 217 miRNAs from different

tumor types. From this dataset, 6 datasets were extracted
containing samples from kidney, colon, prostate, lung,
breast, and uterus; thus giving a total of 75 samples of both

normal and tissue types. The datasets are divided into 60%
samples in the training set and 40% samples in the test set,
and the class distributions are kept uniform in both sets.

The SPECT dataset was obtained from https://archive.ics.

uci.edu/ml/datasets/spect+heart and the complete dataset is
divided into two sets. The training set and test set contained
80 and 187 samples of both benign and malign classes,

respectively, with each sample having 44 features. The brain
tumor dataset (POM dataset) was obtained from http://

http://portals.broadinstitute.org/cgi-bin/cancer/datasets.cgi
https://archive.ics.uci.edu/ml/datasets/spect+heart
https://archive.ics.uci.edu/ml/datasets/spect+heart
http://www.gems-system.org/


Figure 2 Steps of the proposed method
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www.gems-system.org/, which contains 90 samples with each
sample having 5921 features. The training set and test set of

POM dataset contained 42 and 48 samples, respectively.

Data preprocessing

SPECT dataset was directly used for analysis due to the limited
number of features. Data preprocessing was performed to
reduce the dimensionality of feature space for the GCM
miRNA, GCM mRNA, and POM datasets, since the number

of available features is 217, 16,063, and 5921, respectively. We
used ‘‘Chi squared attribute evaluation” as a feature selection
algorithm [24], which evaluates the features by calculating the

Χ2 values of all the features. The Χ2 values are sorted in the
descending order and features with top 100 highest Χ2 values
are used in our algorithm.

For GCM miRNA 217 dataset, different data preprocess-
ing steps are applied. Each sample is first normalized to have
variance = 1 and mean = 0. The signal-to-noise-ratio (SNR)

was used as the initial filtering method to reduce the miRNA
feature set. SNR is given by

SNR ¼ l1 � l2

r2 � r2

where m1 and m2 denote the means, and r1 and r2 denote the
standard deviations of normal and tumor classes for the corre-
sponding miRNA, respectively. SNR values of 217 miRNAs

were ranked in a decreasing order and miRNAs with SNR
value �the mean of all absolute SNR values were retained.
As a result, 99 out of 217 miRNAs (i.e., features) are used in

our proposed algorithm.
Results and discussion

We applied our proposed multiobjective optimization based

algorithm on the given datasets for fixed number of genera-
tions. The parameters for our proposed algorithm are as fol-
lows: initial population size = 52, number of generations =
50, mutation probability = 0.1, and crossover probability =

0.9. Three quality measures, namely precision, recall, and
number of features, are used for performance evaluation.
Good classification corresponds to high recall and precision

values and low number of features. Weka was adopted for
classification [21], since it is an easy and simple tool to use
and contains all the classifiers used in our proposed algorithm.

Default parameters are used for SVM-nRFE as described pre-
viously [19].

Performance analysis

The final obtained accuracies for all the datasets examined are
shown in Table 1. Accuracy for SPECT dataset was 95.87%,
whereas accuracies for the three GCM datasets were more

than 97%. The high accuracies for the latter datasets could
be due to fewer samples included in these datasets than those
in the SPECT dataset. However, compared to the SPECT

dataset, lower accuracy was found for POM dataset in spite
of having fewer instances, because there are more classes in
POM dataset (5 classes) than in SPECT dataset (2 classes).

Table 1 also shows the number of unique solutions
obtained from the best population (good convergence and less
diversity) in the first stage of the proposed approach for each

http://www.gems-system.org/


Table 1 Performance comparison between the proposed approach and SVM-nRFE

Dataset No. of

samples

No. of

features

Our proposed approach
Accuracy (%) of

SVM-nRFEPrecision Recall No. of

features used

No. of unique

solutions obtained

Accuracy (%)

SPECT 267 44 0.9489 1.0000 17 18 95.87 87.30

GCM miRNA 89 100 0.9350 0.9597 13 6 97.43 95.80

GCM mRNA 89 100 0.9670 0.9804 16 7 97.14 94.60

GCM miRNA 217 75 99 0.9460 0.9780 12 8 97.11 88.30

POM 90 100 0.8630 0.8400 23 20 84.00 76.00

Note: SVM-nRFE, support vector machine-based recursive feature elimination technique.
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dataset. The diversified unique solutions (good convergence
and good diversity) obtained in the first stage for GCM

miRNA 217 and GCM mRNA datasets are shown in
Table S1 and Table S2, respectively. As shown in Table S1,
there are 8 unique solutions with different classifiers and

parameter combinations for the GCM miRNA 217. These
solutions are obtained from the set of solutions whose ranks
were ‘‘1” in the final population obtained from the first stage.

Comparative study

To further demonstrate the effectiveness of our proposed algo-
rithm, we compared our algorithm with several algorithms like

MOGA [20], RPSGAe [16], SVM-nRFE [19], SCAD [25],
LASSO [26], and ranksum [27,28] for various available
datasets.

As shown in Table 1, higher accuracies were achieved using
our algorithm than using SVM-nRFE approach [19] for all the
datasets tested. For SPECT dataset, we also compared the per-

formance of our algorithm with RPSGAe approach using F-
measure. As a result, F-measure was 96.80% using our method
as compared to 95.10% using RPSGAe [16], indicating that

our algorithm in general performs better than RPSGAe [16].
Furthermore, we compared our algorithm with several avail-
able algorithms for GCM miRNA 217 dataset and found that
our proposed approach performed better than all the existing

methods examined in terms of accuracy (Table S3).
A set of solutions (Pareto-optimal set) containing different

classifier types and different parameter and feature combina-

tions were generated in the first stage of our algorithm. The
minimum and maximum numbers of features selected by the
Table 2 Number of mRNA targets and cancer types associated with t

No. miRNA No. of mRNA t

1 hsa-miR-18 682

2 hsa-miR-101 671

3 hsa-miR-126* 644

4 hsa-miR-30d 1603

5 hsa-miR-30a 1609

6 hsa-miR-152 559

7 hsa-miR-148 945

8 hsa-miR-185 1517

9 hsa-miR-199a* 621

10 mmu-miR-342 542

11 mmu-miR-340 538

Note: Data were generated based on the data obtained in [29], which is

nervous system.
solutions on the final Pareto optimal front are shown in
Table S4.

The number of features and the accuracy were used as the
criteria to select unique solutions. Given the trade-off between
the number of features and accuracy, we considered the feature

set with maximum accuracy but the minimum possible number
of features. We found that accuracies obtained for the three
GCM datasets were much higher than that for SPECT dataset

(>90% for GCM datasets vs. 75.40% for SPECT) (Table S5).
The accuracy could be further improved by combining solu-

tions obtained from both the first stage and the second stage.
For all the cases, performance was further improved in the sec-

ond stage over the first stage (comparing the accuracies in
Table S5 and Table 1), demonstrating the benefit of combining
the solutions obtained from the first stage using a stacked-

based ensemble approach.

Biological significance

Features reported in Table S5 are used to analyze the biological
significance of the selected miRNAs corresponding to GCM
miRNA and GCM miRNA 217 datasets. We first determined

the number of mRNAs targeted by the miRNAs obtained from
the first stage of our algorithm for these datasets, using miRDB
database (version 5.0; http://mirdb.org/) for target prediction.
Human cancer miRNA network [29] was also employed to find

cancer types associated with the corresponding miRNAs.
Table 2 and Table 3 report the number of mRNA targets and
cancer types associated with each selected miRNA correspond-

ing to GCM miRNA and GCM miRNA 217 datasets, respec-
tively. GCM_miRNA dataset is a mammalian dataset, hence
he selected miRNAs for the GCM miRNA dataset

argets Cancer type associated

HCC/liver, lung, follicular lymphoma

Breast, lung, ovary

Colon, CNS, lung, hematologic, HCC/liver

CNS

Lung

Colon, hematologic

Pancreas

Bladder, kidney

Colon, HCC/liver, hematologic

–

–

a mammalian dataset. HCC, hepatocellular carcinoma; CNS, central

http://mirdb.org/


Table 3 Number of mRNA targets and cancer types associated with the selected miRNAs for the GCM miRNA 217 dataset

No. miRNA No. of mRNA targets Cancer type associated

1 hsa-miR-99a 41 Colon, lung, uterus, hematologic

2 hsa-miR-197 436 CNS, thyroid, uterus

3 hsa-miR-220 – –

4 hsa-miR-195 1497 CLL, CNS, HCC/liver, lung, hematologic, uterus

5 hsa-miR-154 373 CNS

6 hsa-miR-184 45 Uterus

7 hsa-miR-133a 310 Bladder, breast

8 hsa-miR-32 880 Colon, pancreas, lung, prostate, uterus

9 mmu-miR-292 497 –

10 mmu-miR-293* 266 –

11 mmu-miR-339 256 –

Note: GCM miRNA217 dataset was generated based on the data obtained in [29], which is a mammalian dataset. HCC, hepatocellular carcinoma;

CNS, central nervous system; CLL, chronic lymphocytic leukemia.

Table 4 Top significant KEGG pathways identified for the GCM miRNA dataset

No. miRNA KEGG pathway P value

1 hsa-miR-18 Gap junction

Apoptosis

Endocytosis

Hedgehog signaling pathway

Vascular smooth muscle contraction

5.2E�3

1.8E�2

3.2E�2

4.4E�2

5.1E�2

2 hsa-miR-101 Ubiquitin mediated proteolysis

Lysosome

8.8E�3

5.4E�2

3 hsa-miR-126* Melanogenesis

Wnt signaling pathway

Long-term potentiation

Pathways in cancer

Colorectal cancer

1.5E�2

1.9E�2

2.0E�2

2.2E�2

2.9E�2

4 hsa-miR-30d Ubiquitin mediated proteolysis

Renal cell carcinoma

Prostate cancer

Long-term potentiation

Pathways in cancer

2.1E�3

3.0E�3

4.8E�3

6.3E�3

2.4E�2

5 hsa-miR-30a Ubiquitin mediated proteolysis

Renal cell carcinoma

Prostate cancer

Long-term potentiation

Pathways in cancer

1.8E�3

2.8E�3

4.4E�3

5.8E�2

2.1E�2

6 hsa-miR-152 Ubiquitin mediated proteolysis

Neurotrophin signaling pathway

MAPK signaling pathway

Axon guidance

Pathways in cancer

7.7E�4

2.5E�3

6.0E�3

8.7E�3

2.0E�2

7 hsa-miR-148 Ubiquitin mediated proteolysis

Wnt signaling pathway

B cell receptor signaling pathway

Prostate cancer

Pathways in cancer

2.8E�4

1.1E�2

1.2E�2

2.1E�2

4.1E�2

8 hsa-miR-185 Axon guidance

Ubiquitin mediated proteolysis

ErbB signaling pathway

Wnt signaling pathway

Long-term depression

4.5E�5

1.3E�4

3.5E�3

6.5E�3

6.6E�3

9 hsa-miR-199a* Axon guidance

Renal cell carcinoma

Ubiquitin mediated proteolysis

Pathways in cancer

ErbB signaling pathway

1.3E�4

3.2E�4

3.5E�4

9.9E�4

3.7E�3
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Table 5 Top significant KEGG pathways identified for the GCM miRNA_217 dataset

No. miRNA KEGG pathway P value

1 hsa-miR-99a MAPK signaling pathway

Type II diabetes mellitus

7.7E�2

8.0E�2

2 hsa-miR-197 MAPK signaling pathway

Vascular smooth muscle contraction

Pathways in cancer

Adherens junction

Regulation of actin cytoskeleton

4.4E�3

5.1E�3

1.8E�2

2.4E�2

3.4E�2

3 hsa-miR-195 Pathways in cancer

Focal adhesion

Neurotrophin signaling pathway

p53 signaling pathway

Cell cycle

1.1E�3

5.5E�3

1.3E�2

1.4E�2

1.4E�2

4 hsa-miR-154 Ubiquitin-mediated proteolysis

Wnt signaling pathway

TGF-beta signaling pathway

4.8E�3

5.8E�2

6.4E�2

5 has-miR-184 Neurodegenerative diseases

Long-term potentiation

Phosphatidylinositol signaling system

Melanogenesis

1.3E�3

3.0E�3

1.6E�2

5.1E�4

6 hsa-miR-133a Seleno amino acid metabolism

Long-term depression

Cysteine and methionine metabolism

3.3E�2

4.0E�2

5.3E�2

7 hsa-miR-32 RNA degradation

Biosynthesis of unsaturated fatty acids

Small cell lung cancer

Pantothenate and Cao biosynthesis

Wnt signaling pathway

1.1E�2

2.9E�2

3.7E�2

4.4E�2

6.5E�2
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mouse miRNAs initially got selected by the algorithm were not
further analyzed. As a result, only 9 out of 11 selected miRNAs

are considered for GCM miRNA dataset (Table 2). Similarly,
the three mouse miRNAs were not further analyzed for the
miRNA 217 dataset. In addition, no cancer type was listed for

miRNA hsa-miR-220 (Table 3), which is no longer considered
as a miRNA [30].

To identify the biological activities associated with the miR-

NAs selected using our approach, we performed KEGG path-
way enrichment analysis of the target genes using the database
for annotation, visualization and integrated discovery
(DAVID; http://david.abcc.ncifcrf.gov). The KEGG pathways

of the obtained miRNAs with cancer types associated (Table 2
and Table 3), along with their P values for GCM miRNA
dataset and GCM miRNA 217 dataset, are shown in Table 4

and Table 5, respectively. It was found that the term ‘‘path-
ways in cancer” was present most frequently in the selected
pathways. Moreover, specific cancer pathways also appeared

as the significant pathways for the individual miRNA markers.
For example, hsa-miR-126* is involved in colorectal cancer
pathway; hsa-miR-30d and hsa-miR-30a have target genes
involved in the pathway of renal cell carcinoma and prostate

cancer; similarly, hsa-miR-32 is involved in small-cell lung can-
cer pathway. These data indicate that the selected miRNAs are
associated with different cancer pathways and thus can be

potentially considered as miRNA markers for cancer.
Conclusions

In this article, we developed a two-stage approach to solve

some real-life classification problems. Four algorithms are
used for classification and three performance criteria are opti-
mized simultaneously to select the better solutions obtained

from the set of solutions. We tested our algorithm on five
real-life datasets to evaluate its performance. The obtained
results show the superior effectiveness of the proposed
approach to several existing methods examined.
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