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Abstract

Background: The correct protein coding region identification is an important and latent problem in the molecular
biology field. This problem becomes a challenge due to the lack of deep knowledge about the biological systems and
unfamiliarity of conservative characteristics in the messenger RNA (mRNA). Therefore, it is fundamental to research for
computational methods aiming to help the patterns discovery for identification of the Translation Initiation Sites (TIS).
In the field of Bioinformatics, machine learning methods have been widely applied based on the inductive inference,
as Inductive Support Vector Machine (ISVM). On the other hand, not so much attention has been given to
transductive inference-based machine learning methods such as Transductive Support Vector Machine (TSVYM). The
transductive inference performs well for problems in which the amount of unlabeled sequences is considerably
greater than the labeled ones. Similarly, the problem of predicting the TIS may take advantage of transductive
methods due to the fact that the amount of new sequences grows rapidly with the progress of Genome Project that
allows the study of new organisms. Consequently, this work aims to investigate the transductive learning towards TIS
identification and compare the results with those obtained in inductive method.

Results: The transductive inference presents better results both in F-measure and in sensitivity in comparison with the
inductive method for predicting the TIS. Additionally, it presents the least failure rate for identifying the TIS, presenting
a smaller number of False Negatives (FN) than the ISVM. The ISYM and TSVM methods were validated with the
molecules from the most representative organisms contained in the RefSeq database: Rattus norvegicus, Mus musculus,
Homo sapiens, Drosophila melanogaster and Arabidopsis thaliana. The transductive method presented F-measure and
sensitivity higher than 90% and also higher than the results obtained with ISVM. The ISVM and TSVM approaches were
implemented in the TransduTIS tool, TransduTIS-I and TransduTIS-T respectively, available in a web interface. These
approaches were compared with the TISHunter, TIS Miner, NetStart tools, presenting satisfactory results.

Conclusions: In relation to precision, the results are similar for the ISYM and TSVM classifiers. However, the results
show that the application of TSVYM approach ensured an improvement, specially for F-measure and sensitivity.
Moreover, it was possible to identify a potential for the application of TSVM, which is for organisms in the initial study
phase with few identified sequences in the databases.
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Background

Translation and transcription processes are used by the
cells in order to interpret and express their genetic infor-
mation [1]. Only a portion from the whole transcript mes-
senger RNA (mRNA) gets translated into protein, which
is called Coding Sequence (CDS). The correct protein
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coding region identification is one of the main problems
in the molecular biology, since it motivates the search for
conservative features in the mRNA sequence that enables
the detection of a CDS region.

In eukaryotes, the CDS region is delimited by indi-
cators denominated start codon and stop codon. The
start codon, preferably identified by AUG triplet, also
known as Translation Initiation Site (TIS), determines
the start of the process of protein synthesis, which is
one of the most important processes in the regulation of
gene expression [2]. The translation process often begins
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in the first occurrence of an AUG codon [3], but can
also begins in different codons as indicated in [4]. Sim-
ilarly, the stop codon, identified by the occurrence of
triplets UAA, UAG or UGA, determines the end of protein
translation process.

The translation initiation site directly influences the
produced protein, it may alter its structure and function in
the cellular environment. The lack knowledge of conser-
vative characteristics to identify the translation initiation
site turns the TIS prediction into a complex problem.

The scanning model in eukaryotes [5] assumes that the
link between the ribosome and the mRNA sequence ini-
tially occurs at the 5" and goes toward the 3’ region. In
[3], the authors establish the following concepts: upstream
and downstream regions and the reading phase of the
mRNA sequence by the ribosome during protein produc-
tion process. This process can be seen in Fig. 1.

The identification of the TIS is a non-trivial task due
to the fact that the mRNA molecules possess, depending
on the organism, thousands of nucleotides and that the
translation process is motivated by an intracellular con-
text of difficult simulation. Additionally, the identification
process corresponds to a combinatorial computational
problem in the order of 4”, where n is the number of
nucleotides considered in the analysis.

The task of predicting the TIS can be modeled as a
binary classification problem, i.e., positive sequence when
a TIS is identified and negative sequence otherwise. How-
ever, the TIS prediction context induces a natural unbal-
ance in the databases, once in each mRNA sequence
there is only one AUG codon identified as start codon
(TIS), while all other AUG codons are identified as non-
TIS (nTIS). For instance, the unbalance for the organisms
Mus musculus and Rattus norvegicus are 1:23 and 1:131,
respectively [6]. Such unbalance can be solved by two
approaches: oversampling and undersampling. Oversam-
pling artificially generates samples of the minority class in
order to balance the database. For instance, the SMOTE
algorithm [7] makes usage of this approach, applied
in order to generate positive sequences (TIS) of the
minority class.
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Furthermore, undersampling selects samples within
the majority class in order to obtain approximately the
amount of samples contained in the minority class. In [6],
the authors introduced an undersampling method called
M-Clus, which performs clustering of the samples con-
tained in the majority class and selects the centroid or
most significant elements from each cluster to integrate
the database used to build the classifier. Thus, the number
of clusters to be considered corresponds to the number of
samples available in the minority class.

Both oversampling and wundersampling approaches
present problems due to the biological context modifica-
tion. The first method generates artificial samples from
the minority class, enabling the creation of samples pos-
sibly inconsistent with the class. Similarly, the second
approach fails to consider samples from the majority class
that may be relevant for classification. In order to deal
with the loss of relevant information caused by under-
sampling, [6] propose a method of knowledge inclusion
called inAKnow. This method classifies sequences from
the downstream region using a previous model generated
from sequences belonging to the upstream region. These
new sequences are included in the final model building.

The approach used in this study avoids the unbalance
problem, inherent in the TIS prediction, by not consid-
ering all the occurrences of the AUG triplet, that are not
TIS, as nTIS (negative class). From the biological point of
view, AUG triplets found in the same reading phase of a
TIS present more similarity with this class than with the
nTIS class. Such similarity was verified in [8] by studying
the translation mechanism of HIV into mRNA molecules
and the identification of the restarting of the translation
process, occasioned by the presence of a AUG triplet near
by a stop codon triplet. Under this assumption, we will
use as nT1S only upstream AUG codon and out of reading
phase with the TIS.

On the other hand, due to the good performance of
the inductive SVM classifier for classification problems
in different domains with high dimensionality [9], this
classifier has often been used in the TIS prediction. In
the experiments carried out by [10] and [11], the use of
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inductive SVM aiming the TIS prediction presented an
accuracy gain with the use of kernel functions such as
locality-improved kernel and Salzberg kernel, reaching an
accuracy of 88.6% for the database used in [12]. The TIS
Hunter! program [13] proposes the usage of Edit Ker-
nels function and a methodology for redundancy control
in the genetic code that consists in converting the set of
nucleotides from a downstream region into a amino acids
sequence prior to the SVM training. This methodology
reached 99.9% accuracy for the same database proposed
in [12] and 96.7% accuracy for human mRNA from NCBI
Reference Sequence (RefSeq) database [14]. Although
the TISHunter predictor has presented very satisfactory
results, it needs a specific kernel function. The proposed
approach in this work uses the RBF function, which is a
standard function in classification problems.

In addition, this tool is a TIS predictor and does not
work as a classifier. In the other words, for each mRNA
molecule, there is only one indication of TIS, without clas-
sification of the other AUGs of the molecule. In mistake
situations, there is no indication of other possible AUGs
that could be TIS. This information will be important
for anyone who wants to promptly identify the beginning
of translation. Besides that, in [15] the authors mention
that the success of TISHunter depends on the existence of
related proteins or cDNA sequences in the database. They
also highlight that the Kernel function, once determined
for the training set, can not be easily adapted. Therefore,
there is a need for new approaches to TIS identification.

With the progress of the Genome Project [16], a greater
number of molecules are sequenced and made available in
the RefSeq database daily [14]. However, a small number
of molecules, such as the Nasonia vitripennis organism,
which has only 35 REVIEWED molecules available, on
2274 April/2014, is a challenges for classification prob-
lems. In such case, the inductive inference does not posses
enough information for training the model. To overcome
this problem, the transductive inference, introduced by
[17], represents an alternative way. The core idea behind
the transductive inference is to build a classifier using two
data sets: 1) the original training set, which contains the
already classified data, and 2) the prediction set, in which
the elements are not labeled yet. Thus, the transductive
inference have more available information for training
than through inductive inference, and can be considered
as an alternative for solving the problem TIS prediction,
in a single process step.

The transductive inference can be classified as semi-
supervised learning [18]. This kind of learning corre-
spond to the union from the categories of supervised
and unsupervised learning methods. In machine learning,
these two techniques are fundamentally different. Unsu-
pervised learning aims to seek inherent patterns in the
unlabeled data set. The unsupervised learning techniques
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are directly related to density estimation problem in statis-
tics, which aims to estimate the density function for a set
of observed data.

Supervised learning aims to discover a x to y mapping
given a training set containing pairs (x;,y;), where y; € Y
is called the label or x; sample objective, and ¥ = (yl')iTe[ ]
represents the vector of labels in training data. Similar
to the unsupervised learning, a requirement is that pairs
(xi,y;) need to be collected independent and identically
distributed [11].

The semi-supervised learning techniques make use of
unlabeled data during training process. Generally, this
learning could be used in contexts where there is a small
amount of labeled data and a large amount of unlabeled
data, such as the TIS prediction problem, in which the
unlabeled data are the new molecules whose TIS has not
been identified yet. Notice that, the TIS identification pro-
cess usually requires the participation of a human expert
or bio-chemical experiments, which makes the labeling
process more expensive and complex. This reinforces the
need for a technique that automates the identification of
the TIS, as is the case of Transductive SVM (TSVM).

According with [17], the term “transductive” corre-
sponds to a pattern recognition problem. It means that
given the classifications y;,i = 1,...,/, of [ labeled sam-
ples x;, ..., x; from the training set, the goal is to discover
the classification of the k unlabeled samples x;, 1, ..., %1
from the prediction set, contrary to the inductive infer-
ence, in which the goal is to find a function that can
describe the problem and then classify the prediction set.

During the transductive learning training process the
algorithm has access to the [ training vectors Xy, its
labels Y4i, (Eq. 1), and the u unlabeled prediction sam-
ples Xzest (Eq. 2)

Yirain = Yty (1)
»Xpy, - (2)

The sets Xiyain, Yirain, and Xppeq are used by the trans-
ductive learning in order to predict the labels of the
prediction samples (Eq. 3).

Vo 3

The goal is to minimize the ratio of incorrect predictions
(Eq. 4) for the prediction .
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where 8% (Y}, Y) is 0if Y* = Y; or 1 otherwise.

As previously mentioned, inductive methods are often
used in the TIS prediction, differently from the transduc-
tive methods application that has not been discussed in
the context. Note that the main purpose of the TIS pre-
diction is to correctly identify positive AUG triplets (TIS)
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and not necessarily to identify an inductive function that
represents the problem. It is important to enhance that,
the use of inductive methods for new molecules may fail,
since the new sequences may have different characteris-
tics concerning the TIS prediction in comparison to the
sequences used during the training process to obtain the
model. On the other hand, transductive methods readjust
the model for each new sequence to be predicted. Thus,
it is relevant to consider and analyze the application of
transductive inference to the T1IS prediction problem.

Consequently, this work compares the behavior of the
Transductive SVM (TSVM) and Inductive SVM (ISVM)
applied to the TIS identification problem. For this, we con-
sider two scenarios in relation to the training set. The first
considers 90% of dataset for training and 10% for valida-
tion; and in the second scenario it was considered 10%
for training and 90% for validation. The results show that
the proposed approach based on transductive inference
provides better results for organisms with smaller number
of molecules (Rattus norvegicus and Mus musculus) in F-
measure and sensitivity in comparison with the inductive
method for predicting the TIS. The methods were tested
with the molecules from the most representative organ-
isms contained in the RefSeq database: Rattus norvegicus,
Mus musculus, Homo sapiens, Drosophila melanogaster
and Arabidopsis thaliana. The transductive method pre-
sented F-measure and seusitivity higher than 90% and also
higher than the results obtained with ISVM.

This paper is organized as follows: Firstly, “Methods”
section describes the databases considered in this study
and the procedures used in the data preparation. The
criterium for definition of the windows size for extrac-
tion of positive and negative sequences are analyzed
and discussed. In this section the definition of the SVM
parameters and the adopted validation process is pre-
sented. The “Results and discussion” section presents
the results obtained by the comparative process between
the ISVM and TSVM classifiers and a comparative
study with the Netstart, TISHunter and TIS Miner pro-
grams. Finally, the “Conclusions” section presents the final
considerations.

Methods
This section presents the procedures carried out to eval-
uate the inductive and transductive inferences for TIS
identification. For this, we describe the used databases to
perform the tests, the window size definition, extraction
process of positive and negative sequences, the definition
of the SVM parameters and the evaluation metrics.
Figure 2 schematically shows the methodology used in
this work, illustrating all activities performed to investi-
gate the TSVM behavior for the TIS prediction problem
and to compare the ISVM and TSVM methods. This
methodology will be described in the next sections.
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Materials

The used databases in our experiments (see Fig. 2) were
extracted from the public repository RefSeq [14] from
the NCBI (National Center for Biotechnology Informa-
tion)? on 22nd April 2014 referent to the following organ-
isms: Rattus norvegicus (1383 molecules), Mus musculus
(1097 molecules), Homo sapiens (21,528 molecules),
Drosophila melanogaster (27,764 molecules), Caenorhab-
ditis elegans (26,066 molecules) and Arabidopsis thaliana
(35,173 molecules), which represents 96.07% of the
molecules available in this repository. The remaining
3.93% molecules available in the RefSeq database (dis-
tributed among 14 organisms) were not considered in our
study because it doesn’t generate a sufficient sequence
for training the classifiers. For example, considering our
methodology was possible to extract only 23 positive
sequences and 18 negative sequences for the Nasonia
vitripennis organism. Notice that this sequences num-
ber, in general, is not sufficient for a training process of
classifiers.

Although the organism Caenorhabditis elegans have a
large number of molecules, it could not be analyzed due
to the fact that its molecules contain only the CDS region.
In other words, this organism does not have a upstream
region sufficient for our methodology.

Each molecule was identified according to the inspec-
tion level and classified as: Model, Inferred, Predicted, Pro-
visional, Reviewed, Validated and WGS3. In this work we
have considered only mRNA molecules with inspection
level Reviewed since those records undergo a thorough
review process.

Window size definition

In this section the criteria to define the size of the analysis
window will be discussed, which corresponds to the data
preparation stage comprised by methodology proposed in
this work (see Fig. 2).

According to the experiments carried out by [6, 11],
the size of the nucleotide sequences extraction window
directly influences the quality of the prediction model.
A preliminary study, [6] indicates that asymmetric sized
windows provide higher accuracy to the prediction model.
Consequently, our work adopts asymmetric windows and
the upstream region with the fewer amount nucleotides.
This will be discussed bellow.

In order to define the amount of nucleotides in the
upstream region, we have considered the ribosome scan-
ning model and the Kozak consensus [3], which identifies
a conservative pattern in the -6, -5, -4, -3, -2, -1, +1, +2,
+3 and +4 positions (GCC[A or G]CCAUGIG]), where
there is a predominance of nucleotides [A or G] and [G],
respectively, in the positions -3 and +4. A higher num-
ber of nucleotides in the upstream region was used by
[1], in which -7 was identified as a conservative position.



Pinto et al. BMC Bioinformatics (2017) 18:81

Page 5 of 15

Data preparation

R ——

Training Set Classifiers

Scenario 1

\
| |
| |
| |
: Preprocessing Inductive :
: data | | SVM |
| 1 | ! |
I ! I
! ’T T I : : Determination I

—L elocuol I parameter !
[ WHREEE | : Scenario 2 : (Grid Search) |
| | |

Data Base | : | ! ) ! |
I I u ! I I
1 Determination of 1 ) ! | 1
I Window Size I ! Y 1 SVM I
I I ! L I I
I I ! . I I
I I ! i I I
I I ! ! I I
\ ] J : | |
N oy o g o - 7 N e v e s e / N o e e e - - 7
[] validation
[l Training

Fig. 2 ISYM and TSVM evaluation methodology towards the solution for the TIS prediction problem schematically represented

For the experiments carried out in our work, we use win-
dows with 9 nucleotides in the upstream region, since the
scanning model of the mRNA chain is made at each 3
nucleotides and guarantees that our analyses includes the
previously identified conservative positions. In addition,
our methodology avoids the unnecessary elimination of
sequences when considering a small upstream region.

To define the amount of nucleotides in the downstream
region, we have taken into account the results obtained by
[1] and [13] where the authors suggest the existence of a
pattern to define the TIS present in the CDS region of a
molecule. In [13], the authors consider windows with size
of 150 nucleotides in downstream region for the tests into
database used by [12] and 270 nucleotides in downstream
region for the validation in Human mRNAs. However,
these sizes were empirically defined for the used databases

and do not take into account the possibility of protein
pattern in the downstream region.

Aiming to evaluate the existence of such pattern for the
TIS in the downstream region, we have varied the amount
of nucleotides in this region to be considered through
an analysis of the CDS sizes from the studied organisms.
Figure 3 depicts a box plot of the CDS sizes found in each
organism. For the sake of readability, we have eliminated
typical outliers from this type of graphic. CDS sizes in the
range of values limited by the box represent 75% of all CDS
sizes found in each organism. Therefore, the choice for
the amount of nucleotides in the downstream region close
to the CDS size may impact in classifier’s performance
because most of the information from this region would
be considered. Figure 3 shows that most of the evaluated
molecules present CDS region with sizes ranging from

Fig. 3 Box plot for the CDS region size per organism
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800 to 2000 nucleotides, limits shown as a dashed line.
The Drosophila melanogaster organism has CDS region
bigger than 2000, however windows with more than 2000
nucleotides prevent the study of organisms with fewer
molecules, such as Arabidopsis thaliana.

To define a common amount of nucleotides in the
downstream region to be applied for all studied organ-
isms, we have identified in the Fig. 3 that the CDS region
from the organism Mus musculus is mostly distributed
from 800 to 2000 nucleotides. Defining the amount of
nucleotides in the downstream region inside this interval
enables to consider much of the information contained in
the CDS region from the remaining organisms.

In order to identify the amount of nucleotides in the
downstream region, we have analyzed the frequency his-
togram of Mus musculus organism (see Fig. 4), which the
intervals smaller than 2000 can be seen in the Table 1. The
frequency histogram has been generated using package
fdth* from R version 2.12.2.

We have defined the amount of nucleotides in the down-
stream region as the median from the interval of each
class based on the frequency histogram of the size of the
CDS region for Mus musculus (Table 1). We have elimi-
nated the class with median 1930 because our preliminary
experiments with this window size did not generate a rep-
resentative size of training set for the organism Rattus
norvegicus. Although the first two intervals are outside
the range from 800 to 2000, these were considered in the
analysis. Doing so, we evaluate the interference in the per-
formance of the classifier when there is more information
available regarding the CDS region. Therefore, 235, 518,
800, 1081, 1365 and 1650 are amount of nucleotides in the
downstream region for the extraction window.

Extraction of positive and negative sequences
For each window size previously established in the pre-
vious Section, the sequences were extracted using the

200
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Fig. 4 Frequency histogram of the intervals in the size of the CDS
region from Mus musculus
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developed program Transdutis®. A negative sequence
(nTIS) can be differentiated according to its location,
upstream or downstream, and with regards to the ribo-
some reading phase [3]. In this work we only consider
windows in which the AUG is at most until the end of the
CDS region. Therefore, we guarantee that all sequences
used to generate the classification model have at least a
portion of the CDS region, which supposedly contains a
pattern to predict the TIS [13].

The nTIS sequences locate in the upstream region in
the reading phase of TIS [5] are classified as upstream in
phase (UPIP) and those out of the reading phase of TIS are
called upstream out of phase (UPOP). On the other hand,
sequences locate in the CDS region in the reading phase of
TIS are classified as CDS in phase (CDSIP) and those out
of the reading phase of TIS are called CDS out of phase
(CDSOP), as shown in Fig. 5.

Preliminary experiments using negative sequences
(nT1S) UPIP, CDSOP, CDSIP as input to the SVM resulted
in relatively low F-measure results, around 70% for the
organism Mus musculus. Additionally, results from [13]
indicate that UPIP sequences possess a very similar bio-
logical context to the TIS. These sequences may even start
the protein translation process and be interrupted early on
by the presence of a stop codon [8]. Thus, the sequences
used as input for the inductive SVM (ISVM) and transduc-
tive SVM (TSVM) were only negative UPOP and positive
TIS, as previously identified in Fig. 5.

During the sequence extraction process, we have pre-
processed the database (see Fig. 2) in order to eliminate
the duplicated sequences prioritizing the sequences from
the (minority) positive class (TIS). The process of remov-
ing duplicated sequences consists in eliminating repeated
occurrences of a sequence, thus the remaining sequences
are named unique and the removed are name duplicated.
Table 2 presents the amount of sequences extracted by
window size, by organism and the number of duplicated
sequences disregarded for training the classifier. Notice
that, in general, the number of duplicated sequences
found is greater for small window size and confirm the
necessity of eliminating duplication.

Still regarding Table 2, CDS region contains higher
number of duplicate sequences, which reinforces the pos-
sibility of existence of conservative information in this
mRNA sequence region. Additionally, it is important to
note a higher amount of nTIS sequences of type UPOP
in comparison with UPIP sequences, indicating that these
sequences are more representative, which justifies the
choice made in this work.

In addition to equal sequences classified to the same
class, there were also equal sequences differently clas-
sified, i.e., classified as TIS and nTIS in different
molecules. This rarely occurs, mostly found in the organ-
ism Drosophila melanogaster in a proportion of about
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Table 1 Frequency histogram of the intervals in the size of the CDS region from Mus musculus

Interval [94,376) [376,659) [659,941) [941,1220) [1220,1510) [1510,1790) [1790,2070)
Relative frequency (%) 7.59 18.21 15.46 10.98 10.34 7.59 5.76

Median 235 518 800 1081 1365 1650 1930

1:5000 that corresponds to the total amount of extracted
sequences. In this work, we disregarded those sequences
differently classified.

TIS prediction problem is essentially unbalanced
because for each analyzed molecule there exist only one
TIS, with rare exceptions, of several AUG codons, whose
do not start the protein translation. However, as pre-
sented in Table 3 (column TIS/nTIS), this problem has
been alleviated by eliminating duplicates and using only
out of phase negative upstream sequences (UPOP). Still,
it is important to note that the amount of available TIS
sequences is higher than the amount of nTIS sequences for
windows of size 235, 518 and 800 nucleotides in the down-
stream region for the organism Arabidopsis thaliana.

Besides the duplicated sequences, we have eliminated
sequences containing windows longer than amount of
nucleotides existent in the molecule for both upstream
and downstream.

Similar to [4, 19], the sequences were codified as binary
chain, i.e., 4 bits to represent each nucleotide A, C, G and
U as 1000, 0100, 0010 and 0001, respectively.

SVM parameter definition

Another stage of the proposed methodology is to define
the parameters of the SVM algorithms to be used in the
ISVM and TSVM classifiers. This activity is directly linked
to the training process, as can be seen in Fig. 2.

For the non-linearly separable problems, as in the TIS
prediction, it is necessary to use variables that smoothen
the optimization problem restrictions, allowing the occur-
rence of some misclassification and the use of a kernel
function in order to map the training data to specific
space. Parameter C, known as penalty parameter, deter-
mines the weight attributed to each incorrect classifi-
cation provided by the classifier, so that the higher the
value the more specific classifier and more intolerant to
incorrect classification.

The efficiency of those two classifiers depends on the
proper selection of the parameters of the kernel function

...CC‘ AUG‘ GAU‘GCG‘ AUG‘ GCA‘ UGC‘ AUG‘GG...

UPIP  UPOP TIS CDSOP CDSIP
¢ *)

Fig. 5 A sequence of an mRNA with the identification of the regions

and the optimal hyperplane separation margin’s smooth-
ing parameter, represented by C. Our work uses the Gaus-
sian RBF (Radial Basis Function) kernel function (Eq. 5)
and its parameters defined as o, that corresponds to the
variation of Gaussian function. However, our work uses
the parameter y as commonly found in implementations
of SVM classifiers, which is defined as y = — =%

202"
K (xi,%)) = exp? =1 5)

The parameters were defined using the Grid search
method [20] implemented in the libsvm®. This method
defines a optimal set of parameters by an exhaustive
search within a predefined range of values for each param-
eter. Preliminary experiments with this method using all
the 1454 sequences from Mus musculus for a window size
of 235 (see Table 3). It was required about 5 hours of pro-
cessing in order to find the best pair of parameters (C, y).
The experiment was executed in a high-performance SGI
Altix server in the National Supercomputing Center at
Federal University of Rio Grande do Sul’.

Due to the high amount of available molecules (around
20 thousand) for the remaining analyzed organisms and
the Grid Search’s high runtime (given by the SVM’s execu-
tion time and the amount of records in the training set),
we use 10% of the available sequences. Those sequences
were chosen using the Mersenne Twister method [21],
but keeping the ratio of positive (TIS) and negative
(nTIS) classes. Grid Search was executed for each of the
organisms and window size defined in Table 3. See the
Additional file 1 for the values for the parameters (C,y)
found by the Grid Search using RBF kernel function,
which were used for the training of ISVM and TSVM.

The assessment of the results was performed using
Precision = 100 x #PF'P', sensi'tliv'ity = 100 x TPiiI;N’
F — measure = 2 X %ﬁg% metrics (where TP
= True Positive, TN = True Negative, FP = False Positive
and FN = False Negative) and ROC (Receiver Operating
Characteristic Curve) [22].

Validation process
We have applied the 10-fold cross-validation method,
which guarantees the statistical validation of the model.
It consists of subdividing the available data set in 10 folds
of the same size from which 9 are used for training the
remaining one for validation.

However, this validation process induces a favorable
context to the inductive learning techniques because 90%
(9 folds) of the available data goes for training and the
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Table 3 Amount of sequences after the elimination of duplicated sequences

Downstream  Rattus norvegicus Mus musculus Homo sapiens Drosophila melanogaster Arabidopsis thaliana

Window TIS  nTIS TIS/NTIS  TIS  nTIS  TIS/NTIS  TIS nTIS TIS/nTIS  TIS nTIS TIS/nTIS TIS nTIS TIS/nTIS

235 113 123 09187 678 776 08737 13564 17729 0.7651 15225 26777 0.5686 20867 15869 1.3150

518 100 120 0.8334 581 810 0.7173 13124 18760 0.6996 13723 27548 04981 18440 15663 1.1773

800 81 114 0.7105 466 726 06419 11579 17917 0.6462 11942 26905 0.4438 14948 14112 1.0592

1081 66 101 0.6535 398 632 0.6297 10122 25725 03935 10122 25725 0.3935 11082 11644 09517

1365 48 86 0.5581 319 568 05616 8344 23695 0.3521 8344 23695 0.3521 7683 8453 0.9089

1650 42 69 0.6087 277 495 04586 5877 10918 0.5383 6657 21482 0.3099 4967 5952 0.8345

Table 4 Validation precision results using ISYM and TSVYM methods for the Scenarios 1 and 2

Downstream Scenario 1 Scenario 2

Window ISVM (inductive) TSVM(transdutivo) ISVM (inductive) TSVM (transdutivo)
Rattus norvegicus

235 7922 £ 271 81.13 £5.08 69.81 £ 445 7200 £ 2.72

518 89.00 £5.51 89.33 £3.03 8233 £3.05 7952 +£272

800 90.69 £ 4.23 89.07 £3.65 9437 £3.01 84.71£243

1081 89.40 £ 8.60 89.66 £+ 5.26 97.66 £+ 4.33 7948 £ 3.99

1365 96.00 £ 4.95 85.00 & 7.59 88.00 £ 3.71 77.58 £ 345

1650 100.00 + 0.0 93.57 £6.32 100.00 + 0.0 7731 +£342
Mus musculus

235 8851 £ 236 8729 £093 8332+ 1.04 84.32 £0.55

518 9341 +£145 9337+ 146 93.17+£1.10 9245 £ 0.66

800 98.23 £ 0.80 97.38 £ 0.80 97.86 £ 048 93.68 £ 047

1081 99.20 £ 0.75 9794 +£1.18 98.68 £ 042 9545 £ 0.55

1365 9935+ 1.19 98.70 £ 0.97 99.57 £0.20 96.16 £ 1.20

1650 99.62 £+ 0.68 99.25 £ 091 99.69 £ 0.19 96.84 + 1.55
Homo sapiens

235 9199+ 043 90.48 £ 0.16 90.50 £ 0.30 8741 £0.11

518 96.15+£0.24 9498 £0.11 95.72 £ 0,09 9497 £ 0.54

800 97.83+£0.17 97.69 £ 0.06 9755+£0.24 96.57 £ 0.05

1081 98.03 £0.33 97.69 £0.11 97.85+£0.23 97.42 £ 0.04

1365 98.81 £0.23 9843 £ 0.10 98.52 £0.21 98.08 £ 0.06

1650 99.04 £ 0.31 98.76 £0.13 98.63 £ 0.22 98.39 £+ 0.06
Drosophila melanogaster

235 9338+ 0.38 93.46 £+ 0.20 9197 £0.35 90.32 £ 0.07

518 9574 £ 0.34 9575+ 0.13 9537 £0.17 94.47 £ 0.06

800 96.73 £ 0.28 96.92 £ 0.06 96.57 £ 0.30 95.53 £ 0.06

1081 96.86 £+ 0.26 96.74 £+ 0.07 96.76 £ 0.25 96.20 £ 0.08

1365 9723 £041 97.07 £0.14 9733+£0.17 96.65 £ 0.08

1650 9771 £0.27 9793 £0.12 97.64 £ 027 96.57 £0.16
Arabidopsis thaliana

235 93.10£0.22 93.73 £0.26 9139+ 0.16 92.77 £ 0.06

518 97.05 £ 0.28 9750+ 0.13 96.30£0.10 97.26 £ 0.04

800 98.16 £ 0.20 9858 £ 0.13 97.84 £ 0.05 98.46 + 0.04

1081 98.76 £ 0.20 98.96 + 0.09 98.50 £ 0.04 99.06 £ 0.02

1365 99.03 £0.17 99.31£0.14 98.85 £ 0.09 99.32 £0.02

1650 99.22 £ 0.02 99.54 £0.14 99.18 £ 0.05 99.35 £ 0.07
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remaining one (10%) for the validation. Thus, in order to
compare the performance of ISVM and TSVM in a more
balanced context, we have proposed experiments in two
different scenarios.

From now on the traditional cross-validation will be
referenced as Scenario 1. The usage of the Scenario 1
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is valid in order to evaluate the transductive classifier
in an unfavorable context. However, it is important to
evaluate which the best context is to apply each of the
inferences. Consequently, we propose a variation of the
cross-validation method to simulate a context in which
the available data for training are scarce. It aims to invert

Table 5 Validation sensitivity results using ISYM and TSVM methods for the Scenarios 1 and 2

Downstream Scenario 1 Scenario 2
Window ISVM (inductive) TSVM(transdutivo) ISVM (inductive) TSVM (transdutivo)
Rattus norvegicus
235 81.30+£8.20 7877 £ 4.36 61.63 £ 4.69 72004273
518 88.00 £ 867 91.00 £ 3.33 59.89 £ 6.90 79.67 £ 273
800 88.89+4.16 8889+ 4.16 34.66 £+ 10.69 84.63 +£238
1081 8250+ 13.15 85.83 £6.55 18.01 £ 14.06 7842 +4.01
1365 7917 £ 13.71 825+7.10 1141 £1373 7503 £3.37
1650 81.66 + 1027 9500+ 6.19 793 +£263 7744 +3.77
Mus musculus
235 83.88+3.94 87.16 £ 0.84 7693 £ 1.51 84.21 £045
518 90.97 £ 1.58 92.77 £1.50 81.75£ 145 9236 £0.39
800 9528 £243 96.97 £ 0.66 78.16 £ 2.35 93.72 £ 049
1081 9570 £ 1.74 9794 +£1.18 7954 + 147 9553 £0.59
1365 96.58 £ 1.58 9794 £ 149 67.05+£ 367 96.16 £ 0.78
1650 97.40 £ 2.06 9835+ 1.78 65.25 £394 96.74 £ 0.65
Homo sapiens
235 8872 £ 044 82.83+033 90.52 £0.28 8742+ 0.11
518 95.26 £ 0.25 9192 +0.26 95.71 £ 0.08 94.69 £ 0.17
800 97.17 +£0.20 94.124+0.18 97.53+0.26 96.57 +0.08
1081 97.74 £0.27 95.89 £ 0.19 97.84 £0.23 97.44 £ 0.04
1365 9831 £0.30 96.47 £0.13 98.52 £0.21 98.09 £ 0.04
1650 9833 £0.35 96.61 £ 0.22 98.60 £ 0.24 9841 £ 0.07
Drosophila melanogaster
235 90.28 £ 046 85.98 £ 0.30 91.96 £ 0.34 90.33 £ 0.07
518 9498 £0.23 91.98 £ 0.25 9538 +£0.17 94.48 £ 0.06
800 9638 £0.16 93.01£0.17 96.57 £0.30 95.54 £ 0.06
1081 96.80 £+ 0.38 94.82 +0.21 96.76 £ 0.25 96.21 £ 0.08
1365 97.36 + 045 95384023 97.31+0.18 96.66 + 0.07
1650 9732 +£0.39 94.42 £0.28 97.70 £0.30 96.57 £0.16
Arabidopsis thaliana
235 94.74 £ 0.37 93.75£0.27 9410+£0.14 92.76 £ 0.05
518 98.13 £0.17 97.50+£0.13 97.73 £0.09 97.26 £ 0.04
800 99.25£0.10 9857 £0.12 99.01 £ 0.05 9846 £ 0.04
1081 99.38 £0.10 9894 +£0.10 99.24 £ 0.06 99.06 £ 0.02
1365 9948 £0.13 9930+ 0.14 99.44 £ 0.08 99.32 £ 0.03
1650 99.68 +0.18 99.48 +0.21 9944 +0.11 99.35 4+ 0.08
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the cross-validation model, e.g., 10% (1 fold) of the data
are available for the training and the remaining 90% for
the model validation. From now one this scenario is called
Scenario 2. Data from both Scenario 1 and 2 are used for
training the ISVM and TSVM (refer to Fig. 2).
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Results and discussion

This experiments aims to analyze the behavior of ISVM
and TSVM for the TIS prediction problem. As previously
described this analysis was performed using 6 window
sizes for sequence extraction in two different scenarios, in

Table 6 Validation F-measure results using ISVM and TSVM methods for the Scenarios 1 and 2

Downstream Scenario 1 Scenario 2
Window ISVM (inductive) TSVM(transdutivo) ISVM (inductive) TSVM (transdutivo)
Rattus norvegicus
235 79.88 £ 5.07 79.89 £ 4.58 65.04 £ 3.19 7199 £2.72
518 88.00 £ 6.42 90.09 £ 2.77 69.00 £ 4.78 79.53 £2.33
800 89.44 £ 2.39 88.92 £3.71 46.96 & 12.52 84.64 £ 2.16
1081 84.58 £ 10.31 8751 £546 2505£12.10 84.64 £ 287
1365 84.06 £9.84 8357 £6.94 14.84 4+ 13.31 76.00 + 1.91
1650 8895+ 6.52 9423 £6.12 1443 £ 436 7715+ 257
Mus musculus
235 86.04 £ 2.80 8723 £0388 79.96 + 0.81 84.26 + 0.50
518 92.13 £0.84 93.06 £ 1.42 87.05 £+ 0.69 9240 £ 0.38
800 96.68 £ 1.26 97.17 £0.69 86.85 & 1.40 93.70 £ 041
1081 97.40 £1.09 9794 £1.18 88.06 £ 0.90 9549 £ 0.57
1365 9793 £1.17 9830 £ 1.05 79.99 + 2.56 96.14 £ 0.52
1650 9847 £1.17 98.78 £ 1.16 78.70 £ 2.81 96.76 £ 0.68
Homo sapiens
235 9032 £0.29 86.49 £0.13 90.51 £0.29 8742+ 0.1
518 9571 £0.11 9343 £0.13 95.72 £0.08 94.83 £0.32
800 9750 £0.15 95.87 £ 0.08 9754 £0.25 96.57 £ 0.06
1081 97.89 £ 0.20 96.78 £ 0.09 97.85 £ 0.23 9743 £ 0.04
1365 98.56 £ 0.18 97.44 £0.07 98.52 £ 0.21 98.09 £ 0.05
1650 98.69 £ 0.23 97.68 £0.11 98.62 £0.23 98.40 £ 0.06
Drosophila melanogaster
235 91.81£0.38 89.56 £ 0.09 9197 £034 90.33 £ 0.07
518 95.36 £ 0.21 93.82 £0.07 95,38+ 0.17 94.48 £ 0.06
800 96.56 £0.17 94.93 £ 0.07 96.57 £0.30 95.54 £ 0.06
1081 96.83 £0.24 95.77 £0.08 96.76 £ 0.25 96.21 £0.08
1365 9730+ 0.31 96.22 + 0.09 9732+0.17 96.66 + 0.07
1650 9752 £0.16 96.14 £0.13 97.67 £ 0.28 96.57 £0.14
Arabidopsis thaliana
235 9391 +£0.18 9373 £0.27 92.73 £0.04 92.76 £ 0,05
518 9759+£0.16 9750+ 0.13 97.01 £0.05 97.25 £ 0.04
800 9870+£0, 11 9857 £0.13 98.42 £0.02 98.45 £ 0.04
1081 99.06 £0.14 98.95 + 0.09 98.86 £ 0.03 99.05 £ 0.02
1365 99.25£0.10 99.30 £0.14 99.14 £ 0.04 99.31 £0.02
1650 9944 £0.16 99.50+0.17 99.30 £ 0.05 9935+ 0.04
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which the amount of available sequences is different.

Table 4 presents the precision obtained for both meth-
ods, ISVM and TSVM. It is possible to observe that the
precision of the ISVM and TSVM is similar for both sce-
narios, with few exceptions. The largest differences are
found in the Rattus norvegicus and Mus musculus organ-
isms, which have few training sequences (see Table 3).

For the Scenario 2, in which only 10% of the sequences
are available, the precision of both classifiers is smaller, as
expected. It is important to observe that the greater the
number of training sequences for an organism the greater
the precision obtained with ISVM and TSVM classifiers.
However, for the Scenario 2, the sensitivity shown in the
Table 5 indicates that the ISVM classifier falls by identi-
fying the TIS. This occurs for Rattus norvegicus and Mus
musculus organisms, which have few molecules.

With the evaluation of precision and sensitivity sepa-
rately, we just have a partial idea of which classifier is bet-
ter for the prediction of TIS problem. So, the F-measure
metric (the harmonic mean of senusitivity and precision)
was used to compare the performance of the classifiers
(ISVM and TSVM) taking into account both precision and
sensitivity. Table 6 presents the F-measure results that
point the TSVM is better than ISVM for the organisms
that have fewer molecules, in this case the organism Rat-
tus norvegicus and Mus musculus. This results reinforce
that TSVM is more indicated for organisms that have
fewer molecules or are under studied.

We further evaluated the performance of ISVM and
TSVM classifiers by ROC curves. Figure 6a and b illus-
trate the ROC curves for Rattus novergicus and Mus
musculus organisms, respectively. As already discussed,
in Scenario 2, the TSVM classifier is better than the
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ISVM classifier (Fig. 6a). Although the area under the
ROC curve, in Scenario 2, is slightly smaller for the trans-
ductive classifier (AUC = 0.837 in the transductive and
0.917 in the inductive for Rattus norvegicus organism),
the best classification model, the one that is closest to
the point (0,100%), that is, with a higher true positive
rate and lower false positive rate, is obtained by TSVM
classifier.

On the other hand, when considering the inductive
scenario (Scenario 1), with a higher number of training
sequences, the inductive classifier presented better results
than the transductive one. This conclusion is based on the
area under an ROC curve, AUC = 0.973 in the inductive
and 0.917 in the transductive for Rattus norvegicus organ-
ism. The same behavior was observed for Mus musculus
organism (Fig. 6b).

Another important results refers to the size of the ana-
lyzed extraction windows. By analyzing the F-measure
results (see Table 6) it is possible to notice that the greater
the number of nucleotides in the downstream region of
the extraction window the better the performance of the
classifiers. Nevertheless, there is a similar performance for
windows with 1081, 1365 or 1650 nucleotides in the down-
stream region. On the other hand, there is a considerable
reduction in amount of available sequences for training
(see Table 3). Therefore, for the evaluated organisms, it is
appropriate to use as window size the smallest among the
largest. In this work, we consider 1081 nucleotides in the
downstream region, regardless the organism.

By analyzing these results it is possible to observe that
the usage of the TSVM method better suits organisms
with few labeled sequences, e.g., Rattus norvegicus and
Mus musculus organisms. When using ISVM comes a
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question, for how long the inductive classifier is valid?
To handle with this situation, it is necessary retrain-
ing the classifier constantly in order to ensure its accu-
racy and representativeness, since the frequency in which
new sequences (intrinsically different from the sequences
considered in the original training set) are included in the
database may compromise the classifier’s performance.

Although the TSVM classifier, by the transductive prin-
ciple itself, needs to be readjusted for each new sequence,
there is an increase in the reliability of the classifica-
tion process. This readjust is justified when the organisms
have few sequenced molecules. The retraining implies
an increase in the computational cost in comparison to
inductive methods. However, this cost can be reduced
if each readjustment process considers the SVs of the
previous readjustment in addition the new sequences.

Table 7 presents the amount of SV used in the TSVM
approach and the elapsed time for the classification of one
molecule from each organism.

Comparative study
In order to compare our approach in a real scenario of TIS
identification, the next stage of this work is to perform a
comparative analysis among some of the main programs
for TIS prediction.

For comparative study, a test sets, which was not
included in the training of the ISVM and TSVM clas-
sifiers, were utilized. This new database comprises data
from RefSeq extracted between 22 April and 22 Septem-
ber, 2014.

The test sets have the following number of molecules
for each considered organism: Rattus norvegicus (125
molecules), Mus musculus (36 molecules), Homo sapi-
ens (113 molecules), Drosophila melanogaster (106
molecules) and Arabidopsis thaliana (15 molecules).

The considered programs in this evaluation are the fol-
lowing: TISHunter [13], TIS Miner [11], NetStart [12]
and TransduTIS, developed for this work, which imple-
ments the inductive (TransduTIS-I) and transductive
(TransduTIS-T) approaches.

We developed a python script® to automate the tests
with TisHunter, TIS Miner and NetStart. To evaluate
TISHunter, we have used the URL? to submit each mRNA

Table 7 TSVM's retraining computational cost

Organism Amount of SV Time (s)
Rattus norvegicus 165 2

Mus musculus 544 6
Homo sapiens 4275 759
Drosophila melanogaster 4537 1175
Arabdopsis thaliana 3188 219
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for testing with the default settings. The TIS Miner pro-
gram was evaluated using the URL!? with default param-
eters, with the number of predictions set to maximum
value. We used a classification threshold of 0.6 for this
program, such that for each AUG with score greater then
0.6 we consider a positive prediction; otherwise, if score is
fewer then 0.6 we consider a negative prediction. Finally,
to evaluate the NetStart we used the URL!! and setting its
parameters to vertebrate. All the tests are available at 8.

Both ISVM and TSVM were tested with extraction win-
dows of 1090 nucleotides (1081 in the downstream region
and 9 in the upstream region). Molecules that did not
meet these conditions were not considered in the tests.

Table 8 presents the results of the tests for each stud-
ied organism. We also present the amount of hit and not
hit for each tool analyzed. Hit corresponds to AUG that is
TIS and was classified as TIS, and not hit corresponds to
AUG that is TIS but was classified as nTIS. It is important
highlight that TISHunter is essentially predictor, so it was
not possible to infer information about the classification
process to build a confusion matrix. For calculation of the
hit and not hit, only occurrences of AUG in the upstream
region were considered.

By analyzing the results, we have observed that the
TransduTIS-T has the best hit and not hit among the
evaluated tools. It means that the herein proposed model
was able to better characterize the context of TIS pre-
diction, which is important aiming to identify the higher
possible amount of AUG codons that are truly TIS.
Thus, researchers in TIS identification may more safely
analyze proteins generated from this identification. The
TISHunter program [13], which uses Edit Kernel func-
tions, obtained significant results as well, reinforcing the
hypothesis of conservative features in the CDS region to
the T1IS prediction.

Conclusions

In this paper we compare the Inductive (ISVM) and
Transductive (TSVM) classification methods for TIS
identification. We describe the sequence extraction pro-
cess, the preprocessing adopted and the elimination of
duplicate sequences, which are important aspects for TIS
prediction. We also present an approach to not incur
the unbalancing, common situation in TIS identifica-
tion. Besides, we have demonstrated the viability by using
asymmetric extraction windows with a large amount of
nucleotides in the downstream region.

The results show that the TSVM approach ensured
an improvement, specially in F-measure and sensitiv-
ity, for organisms that have a small amount of mRNA
molecules, as observed in the Rattus norvegicus and Mus
musculus organisms. For organisms with a larger number
of sequences, the inductive approach is recommended.
When compared with other tools, in a real scenario of
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Table 8 Comparison among methods

Page 14 of 15

Rattus norvegicus Mus musculus Homo sapiens Drosophila melanogaster Arabidopsis thaliana
Method Hit not Hit Hit not Hit Hit not Hit Hit not Hit Hit not Hit
TransduTIS-| 109 16 22 14 102 1 95 1 15 0
TransduTIS-T 122 3 36 0 107 6 105 1 15 0
TISHunter 112 13 35 1 106 7 93 13 14 1
TIS Miner 89 36 34 2 91 22 76 30 12 3
NetStart 109 16 31 5 84 29 78 28 5 10

TransduTIS-I and TransduTIS-T are, respectively, the inductive and transductive approaches developed in this work

TIS identification, the transductive approach proved to be
efficient for TIS identification in mRNA molecules.

Although the proposed methodology has achieved sat-
isfactory results, some limitations can be mentioned:
first, the sequences extraction process depends of a win-
dow fixed size, in both the upstream and downstream
regions. This limits the classification of some molecules,
as observed in Caenorhabditis elegans organism, which
has a small upstream window. Another observed aspect
corresponds to retraining process of the TSVM classifier,
when it is desired to identify the TIS of new molecules.

Finally, this work provides a web interface, TransduTIS-I
and TransduTIS-T, for the identification of T1IS.

Endnotes

! Available at http://tishunter.ucr.edu/

2 Available at http://www.ncbi.nlm.nih.gov/

3 A description of each status is available at http://www.
ncbi.nlm.nih.gov/books/NBK21091/

*https://cran.r-project.org/web/packages/fdth/

® Available at http://transdutis.com.br/

® Available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/

7 More information available at http://www.cesup.ufrgs.br

8 http://www.icei.pucminas.br/projetos/dsrgroup/?
wpdmpro=transdutis

? http://tishunter.ucr.edu/cgi-bin/tishunter.cgi

9 http://dnafsminer.bic.nus.edu.sg/cgi-bin/tis.pl

" http://www.cbs.dtu.dk/cgi-bin/webface2.fcgi

Additional file

Additional file 1: SVM parameters obtained by executing the Grid Search
method Due to the high amount of available molecules (around 20
thousand) for the remaining analyzed organisms and the Grid Search’s high
runtime (given by the SVM's execution time and the amount of records in
the training set), we use 10% of the available sequences. Those sequences
were chosen using the Mersenne Twister method, but keeping the ratio of
positive (TIS) and negative (nTIS) classes. Grid Search was executed for each
of the organisms and window size defined in this work. This table presents
the values for the parameters (C, ) found by the Grid Search using RBF
kernel function, which were used for the training of ISYM and TSVM. (XLS
28.0 kb)
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