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Simple Summary: Human-exhaled volatile organic compounds (VOCs) can be altered by lung cancer
and become identifiable biomarkers. We used selected ion flow tube mass spectrometry (SIFT-MS)
to quantitatively analyze 116 kinds of VOCs, which were exhaled by 148 lung cancer patients and
168 healthy individuals and collected from the environment to obtain a group of comprehensive
data. A predictive model yielding 0.92 accuracy, 0.96 sensitivity, 0.88 specificity, and 0.98 area under
the curve (AUC) was established using an advanced machine learning eXtreme Gradient Boosting
(XGBoost) algorithm that considered the influences of exhaled and environmental VOCs.

Abstract: (1) Background: Lung cancer is silent in its early stages and fatal in its advanced stages. The
current examinations for lung cancer are usually based on imaging. Conventional chest X-rays lack
accuracy, and chest computed tomography (CT) is associated with radiation exposure and cost, limiting
screening effectiveness. Breathomics, a noninvasive strategy, has recently been studied extensively.
Volatile organic compounds (VOCs) derived from human breath can reflect metabolic changes caused by
diseases and possibly serve as biomarkers of lung cancer. (2) Methods: The selected ion flow tube mass
spectrometry (SIFT-MS) technique was used to quantitatively analyze 116 VOCs in breath samples from
148 patients with histologically confirmed lung cancers and 168 healthy volunteers. We used eXtreme
Gradient Boosting (XGBoost), a machine learning method, to build a model for predicting lung cancer
occurrence based on quantitative VOC measurements. (3) Results: The proposed prediction model
achieved better performance than other previous approaches, with an accuracy, sensitivity, specificity,
and area under the curve (AUC) of 0.89, 0.82, 0.94, and 0.95, respectively. When we further adjusted the
confounding effect of environmental VOCs on the relationship between participants’ exhaled VOCs and
lung cancer occurrence, our model was improved to reach 0.92 accuracy, 0.96 sensitivity, 0.88 specificity,
and 0.98 AUC. (4) Conclusion: A quantitative VOCs databank integrated with the application of an
XGBoost classifier provides a persuasive platform for lung cancer prediction.

Keywords: volatile organic compounds; SIFT-MS; XGBoost; lung cancer; breath analysis; machine learning

1. Introduction

Scientists have been interested in volatile organic compounds (VOCs) released by
human bodies for over five decades. In 1971, Nobel Prize winner Linus Pauling revealed
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that breath is a complex mixture comprised of approximately 250 VOCs [1]. In 1999,
Phillips et al. [2] detected over 3400 different volatile compounds in exhaled human breath.
Metabolic processes of the human body produce these compounds; they enter the lungs via
blood and are exhaled. Therefore, variations in exhaled breath compounds’ concentrations
can be directly linked to a disease, such as cancer [3]. Of all cancer types, there are
1.6 million lung cancer deaths per year, which is more than the sum of the next three
most common cancers, i.e., prostate, breast, and colon cancer [4]. Lung cancer is usually
quiet in the early stages; patients frequently experience coughing, chest pain, weight loss,
etc. These symptoms early tend to be ignored until advanced disease development to be
taken seriously. Generally, the 5-year survival related to late diagnosis is around 10–15%.
Using conventional diagnostic procedures such as computer tomography (CT), sputum
cytology, and biopsy, 85% of lung cancer cases are detected at a phase at which therapy
is ineffective for curing the disease [5]. Low-dose thoracic CT can detect tumors at early
stages and reduce mortality from lung cancer [6]. With the incidences of lung cancer rising
worldwide, early detection techniques are an essential and immediate need. Since the
cost and concern regarding radiation exposure mainly impair the applications of currently
available examinations, an effective, radiation-free, and less invasive approach for lung
cancer screening needs to be established. Some of the current and developing methods
used for lung cancer noninvasive detection methods are summarized in Table 1.

Studying VOCs is one of the most interesting strategies and has many advantages
(Table 1). Researchers, commonly using gas chromatography-mass spectrometry (GC-MS),
have demonstrated the presence of lung-cancer-specific profiles of VOCs [7]. Though
GC-MS is an established technique for VOC analysis, compared with selected ion flow
tube mass spectrometry (SIFT-MS), GC-MS requires precise calibrations of standard com-
pounds if highly specific and reliable quantification is needed [8]. Though GC-MS analysis
integrated with library search is a powerful strategy for compound identification, the quan-
titative assessment of VOC using GC-MS is far more complicated. On the contrary, SIFT-MS
design benefits the quantitative analysis and real-time study of VOCs [9,10]. The research
using SIFT-MS has been primarily centered on the esophagus and colorectal cancers [11,12],
whereas the breath profile of lung cancer analysis by SIFT-MS has rarely been reported.
The features of direct sampling and quantitative VOC estimation of SIFT-MS can provide a
large quantity of VOC data useful for additional statistical modeling. For this kind of large
data, multivariate and machine learning tools for chemometric applications seem to be the
rational way to define, project, model, and interpret the results [7].

The SIFT-MS technique was used in this study for the detection of VOCs in human
breath from lung cancer patients and healthy volunteers. A machine learning approach
named eXtreme Gradient Boosting (XGBoost) [13] was used to classify participants accord-
ing to status, cancerous or healthy, based on their VOC analyses. The sampling process
and flow chart of SIFT-MS analysis are shown in Figure 1.

Table 1. Summary of the noninvasive detection methods for lung cancer.

Biomarkers/Specimen Analytic
Platform Detection Target Sensitivity (%) Advantages Deficiencies Ref.

CTCs/Blood IF; FISH EpCAM,
Size-based cells 30.0–69.5

Viable cell, high
specificity, high

throughput

Limited
sensitivity;

require
enrichment; only
detect advanced

cancers

[14,15]

Traditional
Proteins/Blood ECLIA CEA, CYFRA 21-1 22–69 Rapid and

common

Limited
sensitivity and

specificity
[16]

Novel Proteins/EBC,
Saliva, Urine, Blood

Microarray;
LC-MS/MS

CKAP4, exosomal
proteins (NFX1,
PKG1, GPC1)

70.0–84.0
Higher

sensitivity; high
throughput; rapid

Quantity required
(MS); validation

required
[17–19]
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Table 1. Cont.

Biomarkers/Specimen Analytic
Platform Detection Target Sensitivity (%) Advantages Deficiencies Ref.

microRNA/Blood Microarray;
RT-PCR; NGS

miRNAs-126,
-145, -210 and

-205-5p, -17, -190b,
-19a, -19b, -26b,

-375

80.0–91.5 High throughput,
stable

Specialized
abilities and
facilities are

required

[20–24]

Methylated
DNA/Blood NGS; PCR

HOXD10, PAX9,
PTPRN2, STAG3,

SHOX2
70.0–87.8 High sensitivity

and specificity
Require

standardization [25–27]

ctDNA/Blood NGS;
Multiplex-PCR

Genetic mutation,
SNVs 48.0–59.0

Target for
precision

medicine; early
detection (~70

days prior to CT
image)

Limited
sensitivity,

require expensive
equipment

[28–30]

VOCs/Exhaled
Breath

E-Nose sensors;
GC-MS; PTR-MS,

IMS; LPPI-MS

propanol,
isoprene, acetone,
pentane, hexanal,
toluene, benzene,

ethylbenzene,
and others

81.0–96.5
Rapid, simple,
noninvasive;
inexpensive

Require
standardization [7,31,32]

Abbreviations: CTCs (circulating tumor cells); IF (immunofluorescence); FISH (fluorescence in situ hybridization); EpCAM (epithelial cell
adhesion molecule); ECLIA (electrochemiluminescence immunoassay); CEA (carcinoembryonic antigen); CYFRA 21-1 (cytokeratin fraction
21-1); EBC (exhaled breath condensate); NGS (next-generation sequencing); CT(computed tomography); RT-PCR (reverse transcription
PCR); ctDNA (circulating tumor DNA); SNVs (single-nucleotide variants); GC-MS (gas chromatography mass spectrometry); PTR-MS
(proton transfer reaction mass spectrometry); IMS (ion mobility spectrometry); LPPI-MS (low-pressure photoionization mass spectrometry);
VOCs (volatile organic compounds).
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Figure 1. The research flow chart. (a) Collecting the alveolar air. The breath was exhaled through the mouthpiece with
a direct-connect three-way valve. At the first stage, the exhaled air flows through Exit 1. When the volume of the front
portion of the exhaled air reaches 0.2 L, the three-way valve switches to Exit 2 and starts to collect the rest of the exhaled air,
i.e., alveolar air, in a 1.0 L aluminum bag. The process of sample collection may be repeated 2–3 times to collect enough
samples for analysis. (b) Delivery and analysis of an exhaled sample. Selected ion flow tube mass spectrometry (SIFT-MS)
extracts the exhaled breath from an aluminum bag and analyzes the composition of volatile organic compounds (VOCs).
The VOC data are used for model construction, machine learning, and prediction of lung cancer.

2. Results
2.1. Characteristics of Patients with Lung Cancer and Healthy Volunteers

In this study, we enrolled 168 health volunteers (101 women) aged 20 to 74 years
(controls) and 148 lung cancer patients (73 men) aged 37 to 90 years (Table 2). Lung cancer
patients were older (p < 0.001) than the controls. Most histological types of lung cancer
were adenocarcinoma (72.9%). The most elevated target driver mutation is exon 19 deletion
(22.3%) and exon 21 point mutation (20.3%). Most patients had a nonresectable disease at
clinical stage IIIB and C (18.2%), IVA (43.9%), or IVB (27%).

2.2. VOCs for SIFT-MS Analysis

This study investigated 116 specific VOCs previously reported as human breath
biomarkers, shown in Table A1. Fifty VOCs showed significant differences between lung
cancer patients and healthy controls in all three statistical hypothesis tests adopted (* in
Table A1), which can be used as biomarkers for lung cancer. When analyzing the collected
background air samples, we identified 57 environmental VOCs whose concentrations were
not significantly different between the National Yang Ming Chiao Tung University (NCTU)
and the National Taiwan University Hospital Hsin-Chu Branch (NTUH) in all statistical
hypothesis tests († in Table A1). The heat map for VOCs of different participants is shown
in Figure 2. Fifty-seven percent (n = 84) of cancer patients were clustered tightly together
(top red in the color bar on the left). Another 24% (n = 36) of cancer patients and 38%
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(n = 43) of healthy volunteers of NCTU were grouped closely (middle red and green in
the color bar on the left). Healthy volunteers of NTUH were more spread out (blue in
the color bar on the left). The hierarchical clustering identified several VOC groups (the
dendrogram on the top), where two groups contained dominant features for distinguishing
between cancer cases and healthy controls. Ethanol, formic acid, ethanedial, methanol,
acetone, butane, and hexane (the far-left brown in the first color bar at the top) had higher
values in cancer cases than in healthy controls. Another group of VOCs, including benzoic
acid and beta-caryophyllene, (the far-right brown in the first color bar on the top), showed
an extremely low concentration for most healthy controls. All these dominant VOCs,
except hexane, were significantly different between lung cancer cases and healthy controls.
Hexane and beta-caryophyllene were not significantly different between the NCTU and
NTUH.

Table 2. Characteristics of patients with lung cancer and healthy volunteers of the study.

Characteristic Lung Cancer Patients (n = 148) Health Controls (n = 168)

Age (years), y *
Mean ± SD 64.5 ± 11 31.4 ± 10.4
Rage 37–90 20–74

Sex, n (%) †

Female 75 (50.7) 101 (60.1)
Male 73 (49.3) 67 (39.9)
Smoking status, n (%) *
Current smoker 9 (6) 0
Former smoker 47 (31.2) 1
Nonsmoker 92 (62.1) 167 (99)

Lung cancer type, n (%)

-
Adenocarcinoma 108 (72.9)
Squamous cell carcinoma 17 (11.5)
Small cell lung cancer 14 (9.5)
Other lung cancer 8 (5.4)

Targetable driver mutation, n (%)
EGFR

-

Exon 19 deletion 33 (22.3)
Exon 21 point mutation 30 (20.3)
T790M 6 (4.1)
ALK 7 (4.7)
ROS1 3 (2.0)
Wild type 75 (50.7)

PD-L1 expression, n (%)
>50% 18 (12.1)

-1–49% 57 (39.0)
<1% 29 (19.6)

Clinical stage status, n (%)
IA and B 4 (2.7)

-

IIA and B 4 (2.7)
IIIA 8 (5.4)
III B and C 27 (18.2)
IVA 65 (43.9)
IVB 40 (27.0)

* Significantly different between lung cancer patients and healthy controls at p-value < 0.05. † Significantly different between lung cancer
patients and healthy controls at p-value < 0.1. Abbreviations: EGFR (epidermal growth factor receptor); ALK (anaplastic lymphoma kinase);
ROS1 (ROS1 oncogene); NTUH (National Taiwan University Hospital Hsin-Chu Branch); NCTU (National Yang Ming Chiao Tung University).

2.3. XGBoost Prediction Model

For prediction modeling, we first applied XGBoost to all VOC measurements for lung
cancer disease state prediction, and its accuracy, sensitivity, specificity, and area under
the curve (AUC) were 0.89, 0.82, 0.94, and 0.95, respectively. Using XGBoost with 50 sig-
nificantly different VOCs between lung cancer cases and healthy controls, we obtained
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accuracy, sensitivity, specificity, and AUC of 0.90, 0.84, 0.94, and 0.94, respectively, demon-
strating the efficacy of our list of potential lung cancer biomarkers. Notably, our sensitivity
and specificity were different, indicating the model’s differential prediction ability for
lung cancer cases and healthy controls. This might be due to the confounding effect from
environmental VOCs, where all cases’ breath samples were taken in the hospital, whereas
those from controls were taken either in the hospital or in the academic campus.
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Figure 2. The heat map of 116 volatile organic compounds (VOC) measurements (log concentrations) for 316 participants.
In the color matrix at the center, each row represents a participant, and each column represents a single VOC with the
diverging color scheme of red (high concentration) and blue (low concentration). VOCs and participants are clustered using
the agglomerative hierarchical clustering method. In the color bar on the left, red indicates cancer patients, green indicates
healthy volunteers of the National Yang Ming Chiao Tung University (NCTU), and blue indicates healthy volunteers of the
National Taiwan University Hospital Hsin-Chu Branch (NTUH). The two-color bars at the top represent the significance
of VOCs. The first bar indicates whether VOCs showed significant differences between lung cancer patients and healthy
controls (brown for significant and black for nonsignificant). The second bar indicates whether VOCs were significantly
different between NCTU and NTUH (green for significantly different and blue for not significantly different).

2.4. Adjust Algorithm for Environmental VOCs

When XGBoost was built on environmentally nondifferential VOCs to eliminate the
potential confounding effect from environmental VOCs, the accuracy, sensitivity, specificity,
and AUC were 0.88, 0.84, 0.90, and 0.92, respectively, representing a slight improvement in
sensitivity but a deterioration in specificity. We further applied SMOTE [33] to the VOC
values of the collected background air samples to create synthetic environmental VOCs for
each participant. The XGBoost prediction model incorporating participants’ exhaled VOCs
and these simulated environmental VOCs can account for nonendogenous VOCs present
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in the environment. This model achieved better performance with 0.92 accuracy, 0.96 sen-
sitivity, 0.88 specificity, and 0.98 AUC. These results are consistent with our speculation
concerning the confounding effect of environmental VOCs. The approaches adopted here
which consider environmental VOC effects can also improve prediction accuracy.

3. Discussion

Each whole breath can be divided into three parts according to the pressure of CO2
in the exhalation. The first and second parts are dead space from the oropharynx and
upper respiratory tract. The third part is the air from the alveoli deep inside the lungs
that can exchange gases with the blood [34]. Previous breath analyses of lung cancer
were performed by collecting the whole breath [35,36]. Some studies collected end-tidal
breath by discarding the front of the breath [37,38] or filling the dead space air into other
bags [39]. Studies have shown that the concentration of VOC is different in whole breath
and end-tidal breath [40]. Our study used three-way connectors to manually fill Tedlar
bags with air from dead areas of the mouth and upper respiratory tract and subsequently
collect alveolar air from deep in the lungs into aluminum bags. Since VOCs in the alveoli
are derived from the blood and gas exchange within the alveoli, this approach can better
reflect VOCs’ relationship with metabolic state changes caused by disease physiology.

The influence of environmental VOCs at the time of sampling can be considerable in
the breathomics of lung cancer. More than 1000 exogenous VOCs are known to be detected
in human respiration [41]. The relationship between environmental VOCs and the human
body is complex and involves the processes of mixing, diffusion, and distribution in the
blood and the metabolism in adipose tissue [42]. The concentration, exposure time, and
solubility of the environmental VOCs in the human body and the individual physiology
are the important factors that significantly affect the VOC contents of exhaled breath [43].
In past studies, there were no generally applicable rules for considering the influence of
environmental VOCs. In addition to using the alveolar gradient concept [44], researchers
solved this problem using inspiration filters [45] or having patients spend some time in
the ventilation room before collection [38]. Although these methods are effective and
widely accepted, we take one step further to eliminate the possible variances caused by
environmental factors. Herein, we successfully introduced new algorithms to simulate en-
vironmental VOCs at the sampling time and incorporated them into the model to improve
prediction accuracy. We showed that our approach could further abrogate the perturbation
from environmental VOCs. For further applicability in various environments in the future,
we suggest collecting and analyzing VOCs from participants and the environment simulta-
neously. The XGBoost model can further proceed with the process of learning and tuning,
thus minimizing confounding effects. We significantly improved lung cancer prediction
accuracy by selecting the phase of breath and calibrating environmental VOCs’ impact.

This study describes an innovative machine-learning-based approach that uses SIFT-
MS quantitative data to accurately distinguish respiratory samples of lung cancer patients
from healthy controls. SIFT-MS quantitative analysis is achieved by applying precisely
controlled ultra-soft chemical ionization combined with mass spectrometry detection [8].
The advantage of direct SIFT-MS is that it simplifies the needs for sample preparation,
preconcentration, and chromatography. Our study shows that this machine-learning-
based breath test is 0.96 sensitive, 0.88 specific, and highly accurate (0.98 area under the
curve (AUC)) for identifying lung cancer, whereas the previous studies using multivariate
classifiers based on VOCs’ chemometrics analyzed by GC-MS demonstrated moderate
to high accuracy (AUCs of 0.63–0.9, Table 3). The models reported herein show several
advantages. The quantitative characteristics of SIFT-MS are attractive because many
quantitative data can enhance model development and fine-tune the XGBoost model
to improve prediction accuracy. The adopted XGBoost has been well-recognized and
successfully applied in big data analytics. More importantly, our strategy of incorporating
environmental VOC factors has unequivocally enhanced the power of XGBoost modeling
for prediction.
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Limitations of this study include the fact that it was a single-center and case–control
study, and most of the patients were elderly and with advanced lung cancer. Our lung
cancer patients were significantly older than healthy controls, leading to age mismatches
and bias in case–control studies. With aging, a higher degree of oxidative stress occurs,
and levels of VOCs in the breath increase, such as isoprene, alkanes, and methylated
alkanes [46,47]. Our prediction model built on older and late-stage patients may fail in
early detection of the disease. A multicenter study is currently planned to collect young,
early, and operable lung cancer patients, aiming to provide an effective approach for early
detection of lung cancer and a definitive answer to the test’s accuracy.

The clinical application of breathomics in lung cancer remains challenging up to the
present. There are considerable differences in respiration sampling procedures, study
designs, and data analysis methods implemented by studies for breathomics of lung cancer,
which lead to inconsistent results. The effect of nutritional habits on breath VOCs can be
complicated. By modifying metabolism, inflammation, or redox status, or communicating
with gut flora, food influences breath VOCs. However, how long it takes for the dietary
VOCs to be removed from the breath is not known. The dietary style also has a sustained
influence that fasting could not remove [31]. There is no consensus on how to eliminate
these dietary effects. We thus did not strictly screen participants’ nutritional status because
we wanted to collect data of different dietary habits to establish a big data model that
can be universally applied to the general population in the future. Another issue is that
there is no validated list of VOC lung cancer biomarkers in the literature [31,48]. The lung
cancer biomarkers found in these studies are mostly inconsonant [49]. The mechanism of
most VOCs exhaled by the human body remains unclear. The following factors affect the
concentration and composition of lung cancer VOCs in the human body: oxidative stress,
cytochrome P450, liver enzymes, metabolic carbohydrates (glycolysis/gluconeogenesis
pathways), and lipid metabolism [32]. These possible biochemical pathways vary from
person to person, resulting in increased or decreased volatile organic compounds con-
centrations. Under these complex mechanisms, biochemical pathways of VOCs research
cannot provide a definite answer. These VOCs that are considered possible and focused can
be classified into the following families: hydrocarbons, primary and secondary alcohols,
aldehydes and branched aldehydes, ketones, esters, nitriles, and aromatic compounds [32].
Our list of the targeted 116 VOCs was mainly derived from a literature search [32,49]. In
this paper, we detail our approaches for VOC breathomics and provide suggested guide-
lines for further studies. Based on VOC analysis, this is by far the most comprehensive
study (Table 3). Our research outcome provides a potentially useful model and platform
for nonradiative and noninvasive lung cancer diagnosis.

Table 3. Summary of various algorithms applied to lung cancer diagnosis using multiple VOCs.

Algorithms Analytical
Platform

Patients with
Cancer No.

Analyzed
VOC No. Sensitivity % Specificity % AUC Reference/(Year)

Stepwise
Discriminant

Analysis
GC-MS 67 9 85.1 80.5 NR [35]/(2003)

Logistic Regression GC-MS 193 16 84.6 80.0 0.88 [50]/(2007)
Weighted Digital

Sum Discriminator GC-MS 193 30 84.5 81 0.9 [32]/(2008)

Support Vector
Machine GS-MS 107 5 95 89 NR * [51]/(2016)

Artificial Neural
Networks GC-MS 108 88 86.36 86.36 0.86 [52]/(2019)

K-nearest Neighbor GC-MS 325 NR NR NR 0.63 † [53]/(2020)

Extreme Gradient
Boosting SIFT-MS 148 116

82 94 0.95
This Work

Considering only
participants’ VOCs

96 88 0.98
Considering both

participants’ VOCs and
environmental VOCs

Abbreviations: AUC, area under the curve; GC-MS, gas chromatography-mass spectrometry; NR, not reported; SIFT-MS, selected ion flow
tube mass spectrometry; * Accuracy: 89%, † Classify adenocarcinoma and squamous cell carcinoma patients.
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4. Materials and Methods
4.1. Study Participants and Data Collection

Between May 2019 and June 2020, we obtained breath samples from 148 patients with
histologically confirmed lung cancers and 168 healthy volunteer staff. All breath samples of
lung cancer patients were collected in the National Taiwan University Hospital Hsin-Chu
Branch (NTUH), and 112 and 56 healthy volunteers had their breath samples collected in
the National Yang Ming Chiao Tung University (NCTU) and NTUH, respectively. Although
we collected multiple breath samples from each healthy volunteer of the NCTU, only one
randomly selected sample of each volunteer was included in the flowing analyses. The
healthy volunteers had no history of significant pulmonary disease in any other organ
and were free of disease. The patients’ demographic profiles, history of cigarette smoking,
staging, pathological finding, and cancer mutation testing were retrospectively collected
from their medical records. The clinical cancer stage was based upon the American Joint
Committee on Cancer (AJCC) TNM staging system 8th edition [54]. To evaluate the
confounding effect from environmental VOCs, we also collected 18 and 29 background
air samples from the NCTU and NTUH, respectively. These environmental VOCs were
collected in the same place on the same day as participants’ VOCs were obtained. All
collected VOCs of the environment and participants were then analyzed. Each patient and
volunteer provided written informed consent. This research was approved by the National
Taiwan University Hospital Hsin-Chu Branch institutional review board (108-023-E).

4.2. Breath Sampling Methodology

All participants orally rinsed with water before sampling for breathing and stayed
in the same place for more than 30 min before collecting the gas. To collect the alveolar
breath and remove dead space air, each participant breathed normally through a disposable
mouthpiece and into the device. We collected 0.2 L of the front portion of the exhaled
breath flow through Exit 1 into a Tedlar bag (SKC Inc., Eighty Four, PA, USA), controlled
by a 3-way valve. The remaining part of the exhaled breath, alveolar air, was collected in a
1.0 L aluminum bag, as shown in Figure 1a. A bag of room air was collected concurrently
with some breath samples to account for nonendogenous VOCs present in the environment.
Before collection, aluminum breath analysis bags were flushed with nitrogen gas at least
ten times to remove background VOCs associated with the bags. The sealed samples
were kept at room temperature (25 ◦C) and analyzed within 6 h. (Figure 1b). In some
reports [55–57], VOC storage in bags potentially causes VOC content changes in breath
samples due to storage and transportation conditions. In our case, we collected the samples
from the location within a 15-min driving distance. To confirm our storage condition’s
feasibility, we performed a time-dependent analysis (twice a day for three days) on ten
breath samples. By comparing the quantitative data from each sample, we conclude that
most VOCs are considered stable.

4.3. Measurements of VOCs in Exhaled Air

The SIFT-MS theory is based on direct mass spectrometric analysis of VOCs in air or
vapor samples by chemical ionization. Selected precursor ions (H3O+, NO+, and O2

+) are
injected into the helium carrier gas and ionize the VOCs in the breath samples, generating
characteristic productions detected by the downstream quadrupole mass spectrometer.
Real-time quantification is achieved by measuring the count rate of both precursor ions
and the characteristic product ions in the downstream detection system. The concentration
of trace and volatile compounds is achieved at the parts-per-billion or parts-per-million
by volume. It enables the simultaneous quantification within a gaseous mixture of several
VOCs. A SIFT-MS instrument (VOICE200 ultra, Syft Technologies, Christchurch, New
Zealand) was used to analyze the exhaled breath samples applying the selective ion mode
(SIM). The 116 compounds shown in Table A1 were separated into seven categories: alkanes,
ketones, aldehydes, alcohols, amines, thiols, and others for quantitative analysis. Among
these VOCs, some of the product ions from different VOCs, e.g., MH+ ions at No. 43,
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47, 57, 59, 60, 61, 69, 71, 75, 85, 87, 89, 91, 97, 99, 101, and 103, overlap with others. The
quantitative estimations of the selected VOCs were performed based on the pre-set protocol
of SIFT-MS. This setting combines several product ions derived from three different reagent
ions, H3O+, O2

+, and NO+, with a tolerance feature setting at 20%. The tolerance feature
is employed to deal with product ion interferences for every single compound. The final
analyte concentration is calculated as an average of the lowest product ion concentration
and anything within 20%. Any product ion that falls beyond the 20% tolerance range will
not be accounted for in the calculation. Note that part of VOCs with the interference of
product ions cannot be resolved by tolerance feature set can only be quantified as a relative
scale. Both the accurate measurements and the VOCs’ relative scales are collected and
employed to construct statistical models.

4.4. Statistical Analysis

All analyses were performed using the R software (version 4.0.2; R Foundation for
Statistical Computing). Participants’ characteristics were analyzed and compared between
lung cancer patients and healthy controls using the t-test or Wilcoxon rank-sum test for
continuous variables and the Chi-square test or Fisher’s exact test for categorical variables.

The heat map [58] was used to visualize VOCs’ changes in different participants,
helping establish the initial research hypothesis. We used the Wilcox rank-sum test and
two-sample t-test with or without equal variance assumption to determine whether VOCs’
differences between lung cancer patients and healthy controls were significant. To correct
for multiple comparisons, the significance of the difference for each of the 116 VOC mea-
surements was assessed at Bonferroni-corrected p-value = 0.0004 (0.05/116) [59]. We used
the XGBoost [13], a machine learning method, to build a prediction model that used VOC
measurements to predict lung cancer’s disease state. We used 70% of the collected VOC
data as the training set to build the prediction model and then used the other 30% to test its
performance. The prediction model was established based on either all VOC measurements
or those with a significant difference between the two study groups. To eliminate the
confounding effect from environmental VOCs, we tried out two approaches: the prediction
model built on VOCs whose concentrations were not significantly different among different
environments and the model incorporating participants’ exhaled VOCs and corresponding
environmental VOCs simulated via SMOTE [33] from collected background air samples.
The performance of various approaches was evaluated in terms of accuracy (the proportion
of correctly classified participants), sensitivity, specificity, and AUC (the area under the
ROC curve) on the test data.

5. Conclusions

To summarize, the machine learning model proposed in this study can accurately iden-
tify lung cancer using participants’ exhaled breath. It is a non-invasive and radiation-free
system, which can accelerate the diagnosis of lung cancer. We successfully demonstrated
a new approach for disease diagnosis by integrating several techniques, including com-
prehensive and quantitative VOC analysis and deep learning algorithms for minimizing
the interference of environmental factors, which resulted in an accurate prediction model.
The development of standardized and automatic breath sampling protocols is an ongoing
project that we expect will vastly simplify the process of sample collection and guarantee
sample quality. We are confident that these efforts will ultimately unlock the potential and
importance of human breathomics.
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published version of the manuscript.



Cancers 2021, 13, 1431 11 of 14

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of National Taiwan
University Hospital Hsin-Chu Branch (108-023-E, approved 31 May 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to technical limitations, the potential
issue of intellectual property, and ethics.

Acknowledgments: This work was financially supported by the MOST project 109-2634-F-009-028
and the Center for Emergent Functional Matter Science of National Yang Ming Chiao Tung University
from The Featured Areas Research Center Program within the framework of the Higher Education
Sprout Project by the Ministry of Education (MOE) in Taiwan. The funding source had no role in the
study design; in the collection, analysis, and interpretation of data; in the writing of the report; and
in the decision to submit the article for publication.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The 116 VOCs selected for selected ion flow tube mass spectrometry analysis of breath samples in this study.

No. Compound No. Compound No. Compound No. Compound

1 *,† beta-caryophyllene
(87-44-5) 30 2-pentanone (107-87-9) 59 diethyl ether (60-29-7) 88 † 1,4-diaminobutane

(110-60-1)

2 pyrrole (109-97-7) 31 *,† (E)-2-heptenal
(18829-55-5) 60 isobutyl alcohol

(78-83-1) 89 o-xylene (95-47-6)

3 * benzoic acid (65-85-0) 32 † 3-buten-2-one (78-94-4) 61 † 2-methylpentane
(107-83-5) 90 † cyclopentane (287-92-3)

4 *,† 2,5-dimethylfuran
(625-86-5) 33 † butanone (78-93-3) 62 methylcyclopentane

(96-37-7) 91 propane (74-98-6)

5 * acetophenone (98-86-2) 34 *,† 1,5-diaminopentane
(462-94-2) 63 † heptanal (111-71-7) 92 heptane (142-82-5)

6 pyridine (110-86-1) 35 *,† alpha-terpinene
(99-86-5) 64 1-butanol (71-36-3) 93 propanal (123-38-6)

7 * 2-methylpyrazine
(109-08-0) 36 * 1-butyne (107-00-6) 65 3-methyl-2-butenal

(107-86-8) 94 * 2-propanol (67-63-0)

8 † tridecane (629-50-5) 37
1-methyl-2-

pyrrolidinone
(872-50-4)

66 † pentanoic acid
(109-52-4) 95 *,† cyclohexane (110-82-7)

9 † 2,5-dimethylpyrazine
(123-32-0) 38 † diisopropyl ether

(108-20-3) 67 * ethylbenzene (100-41-4) 96 ethane (74-84-0)

10 † 1,3-butadiene (106-99-0) 39 2-pentanone new
(107-87-9) 68 *,† 1-heptene (592-76-7) 97 carbon disulfide

(75-15-0)

11 *,† dodecane (112-40-3) 40 * 1,2,4-trimethylbenzene
(95-63-6) 69 *,† dimethyl sulfide

(75-18-3) 98 *,† trimethylamine
(75-50-3)

12 propyne (74-99-7) 41 † nonane (111-84-2) 70 *,† propanoic acid (79-09-4) 99 acetaldehyde (75-07-0)

13 † (E)-2-nonenal
(18829-56-6) 42 * propylbenzene

(103-65-1) 71 toluene (108-88-3) 100 dimethyl ether
(115-10-6)

14 * 4-isopropyl toluene
(99-87-6) 43 3-butyn-2-ol new

(2028-63-9) 72 p-xylene (106-42-3) 101 † acetic acid (64-19-7)

15 † 2-hexanone (591-78-6) 44 *,† cyclohexanone
(108-94-1) 73 † 3-methylbutanal

(590-86-3) 102 propene (115-07-1)

16 undecane (1120-21-4) 45 *,† ethylcyclohexane
(1678-91-7) 74 butanal (123-72-8) 103 formaldehyde (50-00-0)

17 * benzaldehyde
(100-52-7) 46 † 2-methylbutanal

(96-17-3) 75 xylenes + ethylbenzene
(1330-20-7) 104 furan (110-00-9)

18 * styrene (100-42-5) 47 * nonanal (124-19-6) 76 * isopropylamine
(75-31-0) 105 * 1-propanol (71-23-8)

19 *,† eucalyptol (470-82-6) 48 *,† limonene (138-86-3;
7705-14-8) 77 *,† methyl acetate (79-20-9) 106 † isobutane (75-28-5)

20 † furfural (98-01-1) 49 † 2-pentene (109-68-2) 78 *,† 1-hexene (592-41-6) 107 isoprene (78-79-5)
21 * 1-pentanol (71-41-0) 50 decane (124-18-5) 79 *,† 1-butene (106-98-9) 108 * formic acid (64-18-6)

22 *,† butyl acetate (123-86-4) 51 methyl n-propyl sulfide
(3877-15-4) 80 † pentanal (110-62-3) 109 pentane (109-66-0)

23 * octanal (124-13-0) 53 † 2-methylpropanal
(78-84-2) 81 1-methoxy-2-propanol

(107-98-2) 110 * acetonitrile (75-05-8)

24 * 3-methyl-1-butanol
(123-51-3) 53 *,† acetoin (513-86-0) 82 2,3-butanediol (513-85-9;

513-89-3) 111 * ethanol (64-17-5)
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Table A1. Cont.

No. Compound No. Compound No. Compound No. Compound

25 † (E)-2-hexenal
(6728-26-3) 54 *,† alpha-pinene (80-56-8;

2437-95-8) 83 † hexanal (66-25-1) 112 † hexane (110-54-3)

26 † 1,4-butyrolactone
(96-48-0) 55 * acrylonitrile (107-13-1) 84 *,† acrolein (107-02-8) 113 * methanol (67-56-1)

27 †
6-methyl-5-hepten-2-

one
(110-93-0)

56 *,† ethyl acetate (141-78-6) 85 † acetic anhydride
(108-24-7) 114 * acetone (67-64-1)

28 benzene (71-43-2) 57 *,† 2,3-butanedione
(431-03-8) 86 † 3-methylpentane

(96-14-0) 115 * butane (106-97-8)

29 † decanal (112-31-2) 58 *,† 2-methyl-2-propenal
(78-85-3) 87 *,† octane (111-65-9) 116 * ethanedial (107-22-2)

* The VOC that showed a significant difference between lung cancer patients and healthy controls in all three statistical hypothesis tests
adopted. † VOCs whose concentration was not significantly different between the National Yang Ming Chiao Tung University (NCTU) and
the National Taiwan University Hospital Hsin-Chu Branch (NTUH) in all statistical hypothesis tests adopted.
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10. Španěl, P.; Smith, D. Selected Ion Flow Tube Mass Spectrometry for On-Line Trace Gas Analysis in Biology and Medicine. Eur. J.

Mass Spectrom. 2007, 13, 77–82. [CrossRef]
11. Markar, S.R.; Chin, S.-T.; Romano, A.; Wiggins, T.; Antonowicz, S.; Paraskeva, P.; Ziprin, P.; Darzi, A.; Hanna, G.B. Breath

Volatile Organic Compound Profiling of Colorectal Cancer Using Selected Ion Flow-tube Mass Spectrometry. Ann. Surg. 2019,
269, 903–910. [CrossRef]

12. Markar, S.R.; Wiggins, T.; Antonowicz, S.; Chin, S.-T.; Romano, A.; Nikolic, K.; Evans, B.; Cunningham, D.; Mughal, M.;
Lagergren, J.; et al. Assessment of a Noninvasive Exhaled Breath Test for the Diagnosis of Oesophagogastric Cancer. JAMA Oncol.
2018, 4, 970–976. [CrossRef]

13. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [CrossRef]

14. Tanaka, F.; Yoneda, K.; Kondo, N.; Hashimoto, M.; Takuwa, T.; Matsumoto, S.; Okumura, Y.; Rahman, S.; Tsubota, N.; Tsujimura, T.;
et al. Circulating Tumor Cell as a Diagnostic Marker in Primary Lung Cancer. Clin. Cancer Res. 2009, 15, 6980–6986. [CrossRef]

15. Sonn, C.-H.; Cho, J.H.; Kim, J.-W.; Kang, M.S.; Lee, J.; Kim, J. Detection of circulating tumor cells in patients with non-small cell
lung cancer using a size-based platform. Oncol. Lett. 2017, 13, 2717–2722. [CrossRef] [PubMed]

16. Okamura, K.; Takayama, K.; Izumi, M.; Harada, T.; Furuyama, K.; Nakanishi, Y. Diagnostic value of CEA and CYFRA 21-1 tumor
markers in primary lung cancer. Lung Cancer 2013, 80, 45–49. [CrossRef]

17. Nolen, B.M.; Lomakin, A.; Marrangoni, A.; Velikokhatnaya, L.; Prosser, D.; Lokshin, A.E. Urinary Protein Biomarkers in the Early
Detection of Lung Cancer. Cancer Prev. Res. 2015, 8, 111–119. [CrossRef]

18. López-Sánchez, L.M.; Jurado-Gámez, B.; Feu-Collado, N.; Valverde, A.; Cañas, A.; Fernández-Rueda, J.L.; Aranda, E.;
Rodríguez-Ariza, A. Exhaled breath condensate biomarkers for the early diagnosis of lung cancer using proteomics. Am. J.
Physiol. Cell. Mol. Physiol. 2017, 313, 664–676. [CrossRef] [PubMed]

19. Yanagita, K.; Nagashio, R.; Jiang, S.-X.; Kuchitsu, Y.; Hachimura, K.; Ichinoe, M.; Igawa, S.; Fukuda, E.; Goshima, N.; Satoh, Y.; et al.
Cytoskeleton-Associated Protein 4 Is a Novel Serodiagnostic Marker for Lung Cancer. Am. J. Pathol. 2018, 188, 1328–1333. [CrossRef]

20. Kim, H.; Yang, J.M.; Jin, Y.; Jheon, S.; Kim, K.; Lee, C.T.; Chung, J.-H.; Paik, J.H. MicroRNA expression profiles and clinico-
pathological implications in lung adenocarcinoma according to EGFR, KRAS, and ALK status. Oncotarget 2017, 8, 8484–8498.
[CrossRef] [PubMed]

21. Li, N.; Wei, Y.; Wang, N.; Gao, H.; Liu, K. MicroRNA-26b suppresses the metastasis of non-small cell lung cancer by targeting
MIEN1 via NF-κB/MMP-9/VEGF pathways. Biochem. Biophys. Res. Commun. 2016, 472, 465–470. [CrossRef]

http://doi.org/10.1073/pnas.68.10.2374
http://www.ncbi.nlm.nih.gov/pubmed/5289873
http://doi.org/10.1016/S0378-4347(99)00127-9
http://doi.org/10.1001/jamaoncol.2018.2815
http://www.ncbi.nlm.nih.gov/pubmed/30128487
http://doi.org/10.3322/caac.21442
http://doi.org/10.1056/NEJMoa1102873
http://doi.org/10.1088/1752-7163/ab0684
https://www.lqa.com/wp-content/uploads/2017/08/SIFTMS-vs-GCMS.pdf
https://www.lqa.com/wp-content/uploads/2017/08/SIFTMS-vs-GCMS.pdf
http://doi.org/10.1002/mas.20303
http://doi.org/10.1255/ejms.843
http://doi.org/10.1097/SLA.0000000000002539
http://doi.org/10.1001/jamaoncol.2018.0991
http://doi.org/10.1145/2939672.2939785
http://doi.org/10.1158/1078-0432.CCR-09-1095
http://doi.org/10.3892/ol.2017.5772
http://www.ncbi.nlm.nih.gov/pubmed/28454457
http://doi.org/10.1016/j.lungcan.2013.01.002
http://doi.org/10.1158/1940-6207.CAPR-14-0210
http://doi.org/10.1152/ajplung.00119.2017
http://www.ncbi.nlm.nih.gov/pubmed/28619761
http://doi.org/10.1016/j.ajpath.2018.03.007
http://doi.org/10.18632/oncotarget.14298
http://www.ncbi.nlm.nih.gov/pubmed/28035073
http://doi.org/10.1016/j.bbrc.2016.01.163


Cancers 2021, 13, 1431 13 of 14

22. Dacic, S.; Kelly, L.; Shuai, Y.; Nikiforova, M.N. miRNA expression profiling of lung adenocarcinomas: Correlation with mutational
status. Mod. Pathol. 2010, 23, 1577–1582. [CrossRef]

23. Lu, S.; Kong, H.; Hou, Y.; Ge, D.; Huang, W.; Ou, J.; Yang, D.; Zhang, L.; Wu, G.; Song, Y.; et al. Two plasma microRNA panels for
diagnosis and subtype discrimination of lung cancer. Lung Cancer 2018, 123, 44–51. [CrossRef]

24. Leng, Q.; Lin, Y.; Jiang, F.; Lee, C.-J.; Zhan, M.; Fang, H.; Wang, Y.; Jiang, F. A plasma miRNA signature for lung cancer early
detection. Oncotarget 2017, 8, 111902–111911. [CrossRef] [PubMed]

25. Wielscher, M.; Vierlinger, K.; Kegler, U.; Ziesche, R.; Gsur, A.; Weinhäusel, A. Diagnostic Performance of Plasma DNA Methylation
Profiles in Lung Cancer, Pulmonary Fibrosis and COPD. EBioMedicine 2015, 2, 929–936. [CrossRef]

26. Ilse, P.; Biesterfeld, S.; Pomjanski, N.; Wrobel, C.; Schramm, M. Analysis of SHOX2 methylation as an aid to cytology in lung
cancer diagnosis. Cancer Genom. Proteom. 2014, 11, 251–258.

27. Duan, G.-C.; Zhao, Q.-T.; Guo, T.; Wang, H.-E.; Zhang, X.-P.; Zhang, H.; Wang, Z.-K.; Yuan, Z. Diagnostic value of SHOX2 DNA
methylation in lung cancer: A meta-analysis. OncoTargets Ther. 2015, 8, 3433–3439. [CrossRef]

28. Fiala, C.; Diamandis, E.P. Circulating tumor DNA for personalized lung cancer monitoring. BMC Med. 2017, 15, 1–3. [CrossRef]
29. Abbosh, C.; Birkbak, N.J.; Wilson, G.A.; Jamal-Hanjani, M.; Constantin, T.; Salari, R.; Le Quesne, J.; Moore, D.A.; Veeriah, S.;

Rosenthal, R.; et al. Erratum: Corrigendum: Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nat. Cell Biol.
2018, 554, 264. [CrossRef] [PubMed]

30. Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection
and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [CrossRef]

31. Jia, Z.; Patra, A.; Kutty, V.K.; Venkatesan, T. Critical Review of Volatile Organic Compound Analysis in Breath and In Vitro Cell
Culture for Detection of Lung Cancer. Metabolism 2019, 9, 52. [CrossRef] [PubMed]

32. Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile Organic Compounds of Lung Cancer
and Possible Biochemical Pathways. Chem. Rev. 2012, 112, 5949–5966. [CrossRef] [PubMed]

33. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res.
2002, 16, 321–357. [CrossRef]

34. D’Mello, J.; Butani, M. Capnography. Indian J. Anaesth. 2002, 46, 269–278.
35. Phillips, M.; Cataneo, R.N.; Cummin, A.R.; Gagliardi, A.J.; Gleeson, K.; Greenberg, J.; Maxfield, R.A.; Rom, W.N. Detection of

Lung Cancer With Volatile Markers in the Breatha. Chest 2003, 123, 2115–2123. [CrossRef] [PubMed]
36. Wehinger, A.; Schmid, A.; Mechtcheriakov, S.; Ledochowski, M.; Grabmer, C.; Gastl, G.A.; Amann, A. Lung cancer detection by

proton transfer reaction mass-spectrometric analysis of human breath gas. Int. J. Mass Spectrom. 2007, 265, 49–59. [CrossRef]
37. Poli, D.; Carbognani, P.; Corradi, M.; Goldoni, M.; Acampa, O.; Balbi, B.; Bianchi, L.; Rusca, M.; Mutti, A. Exhaled volatile organic

compounds in patients with non-small cell lung cancer: Cross sectional and nested short-term follow-up study. Respir. Res. 2005,
6, 71. [CrossRef] [PubMed]

38. Wang, Y.; Hu, Y.; Wang, D.; Yu, K.; Wang, L.; Zou, Y.; Zhao, C.; Zhang, X.; Wang, P.; Ying, K. The analysis of volatile
organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines. Cancer Biomark. 2012, 11, 129–137.
[CrossRef] [PubMed]

39. Peng, G.; Hakim, M.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of lung, breast,
colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 2010, 103, 542–551.
[CrossRef] [PubMed]

40. Doran, S.L.F.; Romano, A.; Hanna, G.B. Optimisation of sampling parameters for standardised exhaled breath sampling. J. Breath
Res. 2017, 12, 016007. [CrossRef] [PubMed]

41. De Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A review of the
volatiles from the healthy human body. J. Breath Res. 2014, 8, e014001. [CrossRef] [PubMed]

42. Phillips, M.; Greenberg, J.; Awad, J. Metabolic and environmental origins of volatile organic compounds in breath. J. Clin. Pathol.
1994, 47, 1052–1053. [CrossRef] [PubMed]

43. Beauchamp, J. Inhaled today, not gone tomorrow: Pharmacokinetics and environmental exposure of volatiles in exhaled breath. J.
Breath Res. 2011, 5, e037103. [CrossRef]

44. Rudnicka, J.; Kowalkowski, T.; Ligor, T.; Buszewski, B. Determination of volatile organic compounds as biomarkers of lung cancer
by SPME–GC–TOF/MS and chemometrics. J. Chromatogr. B 2011, 879, 3360–3366. [CrossRef]

45. Machado, R.F.; Laskowski, D.; Deffenderfer, O.; Burch, T.; Zheng, S.; Mazzone, P.J.; Mekhail, T.; Jennings, C.; Stoller, J.K.; Pyle, J.; et al.
Detection of Lung Cancer by Sensor Array Analyses of Exhaled Breath. Am. J. Respir. Crit. Care Med. 2005, 171, 1286–1291. [CrossRef]

46. Lechner, M.; Moser, B.; Niederseer, D.; Karlseder, A.; Holzknecht, B.; Fuchs, M.; Colvin, S.; Tilg, H.; Rieder, J. Gender and age
specific differences in exhaled isoprene levels. Respir. Physiol. Neurobiol. 2006, 154, 478–483. [CrossRef] [PubMed]

47. Phillips, M.; Greenberg, J.; Cataneo, R.N. Effect of age on the profile of alkanes in normal human breath. Free Radic. Res. 2000,
33, 57–63. [CrossRef] [PubMed]

48. Krilaviciute, A.; Heiss, J.A.; Leja, M.; Kupcinskas, J.; Haick, H.; Brenner, H. Detection of cancer through exhaled breath: A
systematic review. Oncotarget 2015, 6, 38643–38657. [CrossRef] [PubMed]

49. Saalberg, Y.; Wolff, M. VOC breath biomarkers in lung cancer. Clin. Chim. Acta 2016, 459, 5–9. [CrossRef] [PubMed]
50. Phillips, M.; Altorki, N.; Austin, J.H.; Cameron, R.B.; Cataneo, R.N.; Greenberg, J.; Kloss, R.; Maxfield, R.A.; Munawar, M.I.;

Pass, H.I.; et al. Prediction of lung cancer using volatile biomarkers in breath1. Cancer Biomark. 2007, 3, 95–109. [CrossRef] [PubMed]

http://doi.org/10.1038/modpathol.2010.152
http://doi.org/10.1016/j.lungcan.2018.06.027
http://doi.org/10.18632/oncotarget.22950
http://www.ncbi.nlm.nih.gov/pubmed/29340099
http://doi.org/10.1016/j.ebiom.2015.06.025
http://doi.org/10.2147/OTT.S94300
http://doi.org/10.1186/s12916-017-0921-6
http://doi.org/10.1038/nature25161
http://www.ncbi.nlm.nih.gov/pubmed/29258292
http://doi.org/10.1126/science.aar3247
http://doi.org/10.3390/metabo9030052
http://www.ncbi.nlm.nih.gov/pubmed/30889835
http://doi.org/10.1021/cr300174a
http://www.ncbi.nlm.nih.gov/pubmed/22991938
http://doi.org/10.1613/jair.953
http://doi.org/10.1378/chest.123.6.2115
http://www.ncbi.nlm.nih.gov/pubmed/12796197
http://doi.org/10.1016/j.ijms.2007.05.012
http://doi.org/10.1186/1465-9921-6-71
http://www.ncbi.nlm.nih.gov/pubmed/16018807
http://doi.org/10.3233/CBM-2012-00270
http://www.ncbi.nlm.nih.gov/pubmed/23144150
http://doi.org/10.1038/sj.bjc.6605810
http://www.ncbi.nlm.nih.gov/pubmed/20648015
http://doi.org/10.1088/1752-7163/aa8a46
http://www.ncbi.nlm.nih.gov/pubmed/29211685
http://doi.org/10.1088/1752-7155/8/1/014001
http://www.ncbi.nlm.nih.gov/pubmed/24421258
http://doi.org/10.1136/jcp.47.11.1052
http://www.ncbi.nlm.nih.gov/pubmed/7829686
http://doi.org/10.1088/1752-7155/5/3/037103
http://doi.org/10.1016/j.jchromb.2011.09.001
http://doi.org/10.1164/rccm.200409-1184OC
http://doi.org/10.1016/j.resp.2006.01.007
http://www.ncbi.nlm.nih.gov/pubmed/16510318
http://doi.org/10.1080/10715760000300611
http://www.ncbi.nlm.nih.gov/pubmed/10826921
http://doi.org/10.18632/oncotarget.5938
http://www.ncbi.nlm.nih.gov/pubmed/26440312
http://doi.org/10.1016/j.cca.2016.05.013
http://www.ncbi.nlm.nih.gov/pubmed/27221203
http://doi.org/10.3233/CBM-2007-3204
http://www.ncbi.nlm.nih.gov/pubmed/17522431


Cancers 2021, 13, 1431 14 of 14

51. Sakumura, Y.; Koyama, Y.; Tokutake, H.; Hida, T.; Sato, K.; Itoh, T.; Akamatsu, T.; Shin, W. Diagnosis by Volatile Organic Compounds
in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm. Sensors 2017, 17, 287. [CrossRef]

52. Rudnicka, J.; Kowalkowski, T.; Buszewski, B. Searching for selected VOCs in human breath samples as potential markers of lung
cancer. Lung Cancer 2019, 135, 123–129. [CrossRef]

53. Wang, C.; Long, Y.; Li, W.; Dai, W.; Xie, S.; Liu, Y.; Zhang, Y.; Liu, M.; Tian, Y.; Li, Q.; et al. Exploratory study on classification of
lung cancer subtypes through a combined K-nearest neighbor classifier in breathomics. Sci. Rep. 2020, 10, 1–12. [CrossRef]

54. Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.;
Winchester, D.P. AJCC Cancer Staging Manual, 8th ed.; Springer: New York, NY, USA, 2017.

55. Mochalski, P.; King, J.; Unterkofler, K.; Amann, A. Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm
sampling bags. Analyst 2013, 138, 1405–1418. [CrossRef] [PubMed]

56. Van Harreveld, A. (Ton) Odor Concentration Decay and Stability in Gas Sampling Bags. J. Air Waste Manag. Assoc. 2003, 53, 51–60.
[CrossRef] [PubMed]

57. Di Gilio, A.; Palmisani, J.; Ventrella, G.; Facchini, L.; Catino, A.; Varesano, N.; Pizzutilo, P.; Galetta, D.; Borelli, M.;
Barbieri, P.; et al. Breath Analysis: Comparison among Methodological Approaches for Breath Sampling. Molecules 2020, 25, 5823.
[CrossRef] [PubMed]

58. Heat Map—Wikipedia. Available online: https://en.wikipedia.org/wiki/Heat_map (accessed on 22 February 2021).
59. Rosner, B. Fundamentals of Biostatistics, 6th ed.; Thomson-Brooks/Cole: Belmont, CA, USA, 2006.

http://doi.org/10.3390/s17020287
http://doi.org/10.1016/j.lungcan.2019.02.012
http://doi.org/10.1038/s41598-020-62803-4
http://doi.org/10.1039/c2an36193k
http://www.ncbi.nlm.nih.gov/pubmed/23323261
http://doi.org/10.1080/10473289.2003.10466121
http://www.ncbi.nlm.nih.gov/pubmed/12568253
http://doi.org/10.3390/molecules25245823
http://www.ncbi.nlm.nih.gov/pubmed/33321824
https://en.wikipedia.org/wiki/Heat_map

	Introduction 
	Results 
	Characteristics of Patients with Lung Cancer and Healthy Volunteers 
	VOCs for SIFT-MS Analysis 
	XGBoost Prediction Model 
	Adjust Algorithm for Environmental VOCs 

	Discussion 
	Materials and Methods 
	Study Participants and Data Collection 
	Breath Sampling Methodology 
	Measurements of VOCs in Exhaled Air 
	Statistical Analysis 

	Conclusions 
	
	References

