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Abstract: Controlling the residence time of drops on the solid surface is related to a wide spectrum
of engineering applications, such as self-cleaning and anti-icing. The symmetry-breaking dynamics
induced by the initial drop shape can promote drop bouncing. Here, we study the bouncing features
of spherical and ellipsoidal drops on elliptical surfaces that continuously change curvatures inspired
by natural succulent leaves. The bounce characteristics highly depend on the geometric relations
between the ellipsoidal drops and curved surfaces. Numerical results show that ellipsoidal shapes of
the drops amplify asymmetries of the mass and momentum in synergy with an influence of the surface
curvature during the impact, which is verified by experiments. Effects of the surface anisotropy
and drops’ ellipticity on the residence time are investigated under various surface morphologies
and Weber numbers. The residence time is closely associated with an initial surface curvature at the
apex. The underlying principle of modifying the residence time via the drops’ ellipticity and initial
surface curvature is elucidated based on momentum asymmetry. The understanding of the bouncing
features on curved surfaces will offer practical implications for enhanced heat transfer performances
and controlled water repellency, etc.

Keywords: superhydrophobic surface; anisotropic surface; interfacial dynamics

1. Introduction

Bouncing dynamics of drops on solid surfaces have gained substantial attention over
the last two decades for industrial applications, such as self-cleaning [1], anti-icing [2],
low friction [3], and dropwise condensation [4]. The bounce characteristics are highly
dependent on the surface roughness, temperature, wettability, and ambient conditions [5,6].
The residence time is considered essential because it determines the extent to which mass,
momentum, and energy are exchanged between surfaces and drops. Drops impacting on
superhydrophobic surfaces can lift off quickly because of the low wetting hysteresis at the
contact line, inspired by effects of the lotus leaves and pitcher plant [7,8]. The residence time
can be shortened to the inertio-capillary time scale of (ρD3/σ)1/2 with circular symmetry,
where ρ, D, and σ are the density of liquid, diameter of drop, and interfacial tension,
respectively [9–11]. The emphases of recent works focus mainly on compelling drops to
depart from the surfaces as fast as possible.

Many efforts have been devoted to further reducing the residence time by utilizing
surface textures and chemical compositions. The surface morphologies were relevant to
the sub-millimeter textures decorated on flat substrates, including center-assist bouncing
along macro-ridge structures [12,13] and complicated cross-shaped macro-textures [14],
counter-intuitive bouncing on lattice patterns of posts with nanostructures [15], and water-
ring bouncing on point-like defects [16]. The research progress in this field developed some
fresh regimes to enhance drop mobility based on the surface modifications.

Along with the development, recent works have demonstrated asymmetric bouncing
dynamics on surfaces with the radius of curvature comparable to drop size, including
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asymmetric bouncing on tubular surfaces and natural succulent leaves [17], ribbed-curved
surfaces [18], and cylindrical ridges in millimetric size [19,20]. The shape and size of the
cylindrical ridges altered the drops’ behavior significantly, and hence the residence time
could reduce further, compared with the dynamics on the flat surfaces. Particularly, there
are two distinct regimes where the variation of the ridge in size has reverse effects on the
residence time [19]. For cylindrical ridges greater than the drop size [17], the mass and
momentum redistribute in the manner of a hydrodynamic interplay between the momenta
in the tangential direction along the curve side and axial direction. The lift-off time further
reduced at higher curvatures because the bouncing dynamics were closely related to the
anisotropic curvature of the surface. On the contrary, when the ridge is much smaller
than the drop size [12,13], a role of the flat substrate on which the ridge laid would be
played in an interaction with the drops. After the impact, the drop split into two parts that
retracted and bounced separately. Further demonstrations on Y-shaped or cross-shaped
macro-texture surfaces reported that drops could be configured into several subunits and
take off at the reduced residence time [13,14]. The lift-off time decreased as the ridge size
increased in this regime [19].

Another methodology for the control of the residence time with non-spherical shaping
has been suggested by our group [21]. The symmetry-breaking dynamics induced by
the initial drop shape could potentially open up opportunities for modifying the impact
dynamics. Ellipsoidal shapes allowed the peculiar spreading and retraction behaviors,
thereby forming liquid alignment with the principal axis during retraction [21]. When the
ellipsoidal drops were colliding on the heated [22] and superhydrophobic surfaces [23],
the drops produced the preferential flow to the minor axis of the initial elliptical footprint,
which led to the decrease in the residence time and bounce height. The distinguishable
features of shape-dependent dynamics could significantly change the outcome of impact
without target surface modification or additional chemical composition of the liquid.

However, most of the previous works focused their attention solely on the scenarios of
drop impact on flat substrates, and the effect of the initial drop shapes on hydrodynamics
on anisotropic surfaces has yet to be explored [21–23]. Furthermore, there was a lack of
knowledge on how shape distortions of impinging drops had an influence on the bouncing
characteristics on the surfaces in practical spraying systems. Initial drop shapes would
potentially amplify asymmetries of the mass and momentum in synergy with an influence
of the surface curvature, which can alter the residence time. The recent study of our group
investigated the bouncing features of the ellipsoidal drops on superhydrophobic cylinders and
reported a further decrease in the residence time, compared with spherical drops impacting
on the surfaces [24]. However, the latter study showed the shape-dependent dynamics on
curved surfaces that were limited to circular cylinders. The knowledge may still be insufficient
for practical applications, such as self-cleaning and biomimetic strategies.

The current work was motivated by the symmetry-breaking bouncing on the Echeveria
succulent leaves [17], which can be represented as the bouncing on elliptically curved
surfaces in a more realistic situation, as captured in Figure 1a. The other leaves we found
also exhibited the curved surfaces that change curvature along the surfaces, as shown
in Figure 1b. To understand how the initial drop shape and surface curvature affect the
dynamics, we study the bouncing features of the drops on elliptically curved surfaces
(E-surfaces). The current work focuses on the above-mentioned hydrodynamic regime
where the drops never contact the flat surface on which the ridge laid, and the ridge
width is equal to or more than two-fold of the drop size. The influences of the drops’
ellipticity (e) and surface curvature (κ) on the residence time are scrutinized under various
surface curvatures and impact velocities. In the momentum analysis, we discuss how the
momentum asymmetry is relevant to the decrease in the residence time.
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Figure 1. Surface morphologies of the natural succulent leaves and elliptical models. (a) Echeveria, (b) Pachyphytum (top), 
and Cotyledon (bottom) leaves showing the continuously changing radii of curvature in the millimetric scale. (c) Schematics 
of the elliptically curved surfaces (E-surfaces) and three geometric relationships between the surfaces and drops. (d) Di-
mensionless surface curvatures, κ, along the x axis. The color bar on the right indicates the relative magnitude of the 
curvature. 
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Dimensionless parameters were used as follows: x, y, and z are the Cartesian coordi-
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ture of the E-surfaces, normalized by R, respectively. w is the drop’s width normalized by 
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Figure 1. Surface morphologies of the natural succulent leaves and elliptical models. (a) Echeveria, (b) Pachyphytum (top), and
Cotyledon (bottom) leaves showing the continuously changing radii of curvature in the millimetric scale. (c) Schematics of the
elliptically curved surfaces (E-surfaces) and three geometric relationships between the surfaces and drops. (d) Dimensionless
surface curvatures, κ, along the x axis. The color bar on the right indicates the relative magnitude of the curvature.

2. Materials and Methods

In the simulation, the volume of fluid (VOF) methods were employed to study the
bouncing dynamics affected by the surface curvature and drops’ ellipticity. Water and air at
room temperature and atmospheric pressure were chosen as operating fluids. The fraction
of volume was represented as ψ. Overall, schemes were based on our earlier work and
literatures that predicted the drop impingement on a substrate [21,25,26]. The unsteady
and incompressible mass and momentum equations were coupled in the computational
domain as:

∂

∂t
(ρ) +∇·(ρ→v ) = 0 (1)

∂

∂t
(ρ
→
v ) +∇·(ρ→v→v ) = −∇p +∇·[µ(∇→v + (∇→v )

T
)] + ρ

→
g + 2σργ∇ψ2/(ρ1 + ρ2) (2)

where ρ = ψ2ρ2 + (1− ψ2)ρ1, µ = ψ2µ2 + (1− ψ2)µ1, and γ = −(∇·→n ) that is the
curvature of the liquid–vapor interface, where

→
n is the unit vector normal to the interface.

In the interfaces, the volume tracking method was employed using the VOF algorithm [27].
The advection of the volume fraction was obtained from:

∂ψ/∂t +
→
v ·∇ψ = 0 (3)

The interfacial tension was calculated from the last term of the momentum equa-
tion [28]. The spatial derivatives were discretized by employing convective model [29].
The time step and maximum internal iteration were used as 1 µs and 30 per time step,
respectively. A contact angle of 155◦ was adopted to reproduce the drop dynamics. A
mesh resolution of the domain corresponded to at least 45 cells per drop diameter. The
initial drop shapes with a constant volume were obtained from a formulation of the prolate
spheroids and were patched in the computational domain.

Dimensionless parameters were used as follows: x, y, and z are the Cartesian coor-
dinates normalized by drop radius, R. a, b, and κ−1 are the semiaxes and the radius of
curvature of the E-surfaces, normalized by R, respectively. w is the drop’s width normalized
by D, τc is the residence time normalized by that of the spherical drop on flat surfaces, and
p is the drop’s momentum in a certain axis, normalized by (π/6)ρD3U as:

px =
∫

ρ[vx · sgn(x)]ψ2 dV / [(π/6)ρD3U] (4)
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where vx and sgn(x) are the velocity component and sign function of the axis respectively,
V is the volume, U is the impact velocity, and pn, pt, and pz are the dimensionless mo-
menta in the normal, tangential, and axial directions of the elliptic cylindrical coordinates,
respectively.

To verify the numerical results, the experiment was performed using a nozzle-ring
electrospray device. The setup for the ellipsoidal drop generation and impact on the solid
surface was based on our previous works that studied the drop impact [21]. The inner
shape of the ring was elliptic for the deformation of the drop by an electric field. To
pinch the hanging drop off at the end of the nozzle (Hamilton 27 gauge), a pulse signal of
6–7 kV was applied to the electrodes for 7–10 ms, which produced the ellipsoidal drops.
After being pinched off, the drop started to deform itself into the prolate spheroids that
had the major axis of x when passing through the rings, as shown in Appendix A. The
drop oscillated until the drop touched the solid surface. We fabricated superhydrophobic
flat surfaces and circular wires with diameters of 2 mm, individually. The contact angles
on the two surfaces were measured as 155 ± 3◦ and 155 ± 4◦, respectively. The overall
behaviors of the bouncing drops were captured using a high-speed camera (Fastcam SA3,
Photron, Tokyo, Japan). The comparative outcomes from the simulation and experiment
were obtained through the quantitative analysis of the temporally resolved widths of the
horizontal axes. The bouncing dynamics of the drop obtained numerically were comparable
to those obtained experimentally. Details of ellipsoidal drop generation and verification of
the simulation are described in Appendix A.

Drop dynamics on the curved surfaces can be ruled by the inertio-capillary balance
because the relevant dimensionless numbers give us Weber number We = ρDU2/σ = 14–34
and Ohnesorge number Oh = µ/(ρDσ)1/2 = 0.0027� 1. Therefore, the inertial and surface
forces affect the drop dynamics, and the effect of the viscous force is negligible. The main
parameters related to drop impact on curved surfaces range the drops’ ellipticity as e = 1 −
B/A = 0~+0.53 for the case of the major axis parallel to the z axis, and e = −(1 − B/A) =
−0.53~0 for the case of the major axis parallel to the x axis, where A and B are the major
and minor axes of the ellipsoidal drops at the moment of impact, respectively. E-surfaces
have the semiaxes of a = 2.0~4.0 and b = 0.4~16 in this study.

3. Results and Discussion

We established the model of E(a, b) surfaces that represent the semi-elliptic surfaces
with the semiaxes of a and b, as shown in Figure 1c. The bouncing dynamics are highly af-
fected by the geometric configurations between curved surfaces and drops. The ellipsoidal
drops have the ellipticities of e+ (e > 0) and e− (e < 0) when arranged to be the major axes
of the z and x, respectively. Figure 1d indicates dimensionless surface curvatures that are
derived from κ(x, y) = (ab)4/(b4x2 + a4y2)3/2, and the value at the apex is equal to an initial
surface curvature κ0 = b/a2. Distinct from circular cylindrical surfaces with the constant κ
(a = b), the curvatures of the E-surfaces are increasing (a > b) or decreasing (b > a) along the
x axis. The color bar shown in Figure 1d means the magnitude of curvature, which will be
used as the color of the E-surface later.

To understand the effects of the drops’ ellipticity and surface curvature on the bounc-
ing behavior, we studied the temporal evolutions of the drops under b = 1.2 (b1.2) and
2.8 (b2.8), as shown in Figure 2a,b. e+ drops spread wider along the x axis and leave the
surface earlier than the spherical and e− drops on the surfaces. In addition, all the drops
on the b2.8 surfaces exhibit further extensions along the x axis and bounce off the surface
faster, compared with the drops on the b1.2 surfaces, as shown in Figure 2a,b at 6 ms. The
bouncing characteristics are confirmed by the temporal variations of the x and z widths
and the detachment times pointed out by using the single-circle symbols for each solid line,
as shown in Figure 2c.
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The solid and dashed lines correspond to the x- and z-widths respectively, and open circles for each solid line denote the 
bouncing moments of the drops. (d) Ellipsoidal drops impacting on flat surfaces. (e) Maximum spreading widths (wm) on 
the flat surface as a function of e, obtained from the experiment (symbol) and simulation (line). 
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drops. The tc on the flat and a2.0 surfaces (i.e., E(2.0, b) surface) are plotted in Figure 3a as 
a function of e, which reveals that rapid bouncing is found at high b/a and e. The e+ drops 
provide an efficient pathway to reduce tc on E-surfaces, which presents a striking contrast 
to e− drops. On the b1.2 surfaces, for example, tc of the e+ drops could reduce by approxi-
mately 19% and 40% below the spherical cases on the b1.2 surfaces and flat surfaces, re-
spectively. On the b4.0 surfaces, tc of the e+ drops could reduce by approximately 16% and 
46% below the spherical cases on the b4.0 surfaces and flat surfaces, respectively. By con-
trast, tc of the e− drops generally increases with |e| on surfaces with increasing κ (a > b), 
whereas those are generally independent of e on surfaces with decreasing κ (b > a). For 
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Figure 2. (a,b) Snapshots of the evolution of the drops on (a) E(2.0, 1.2) and (b) E(2.0, 2.8) surfaces at We = 24. (c) Temporal
variations of the normalized widths, w, of the spherical (e0) and ellipsoidal drops with e = ±0.45 on the curved surfaces.
The solid and dashed lines correspond to the x- and z-widths respectively, and open circles for each solid line denote the
bouncing moments of the drops. (d) Ellipsoidal drops impacting on flat surfaces. (e) Maximum spreading widths (wm) on
the flat surface as a function of e, obtained from the experiment (symbol) and simulation (line).

On the flat surfaces, as the limiting case (κ0 = 0), the e+ (e−) drops have the hydro-
dynamic features of the spreading and retraction behaviors and the subsequent liquid
alignment on the x axis (z axis) before bouncing, as shown in Figure 2d. The initially
ellipsoidal shapes induce the predominant outward flow to the direction of the minor axis
of the elliptical footprint during the impact. Thus, the e+ drops stretch wider to the x axis
than the z axis. In addition, the maximal extension of the x axis (wxm) is found later and
greater than that of the z axis (wzm). Figure 2e represents the maximal extensions (wm) as a
function of e, which shows that the drops have significant variations in wxm, but only slight
variations in wzm in the simulation and experiment. The maximum relative error of the
maximal extensions between numerical and experimental results is within 6%.

We investigated the effects of the surface anisotropy on the residence time of the
drops. The tc on the flat and a2.0 surfaces (i.e., E(2.0, b) surface) are plotted in Figure 3a
as a function of e, which reveals that rapid bouncing is found at high b/a and e. The e+

drops provide an efficient pathway to reduce tc on E-surfaces, which presents a striking
contrast to e− drops. On the b1.2 surfaces, for example, tc of the e+ drops could reduce by
approximately 19% and 40% below the spherical cases on the b1.2 surfaces and flat surfaces,
respectively. On the b4.0 surfaces, tc of the e+ drops could reduce by approximately 16%
and 46% below the spherical cases on the b4.0 surfaces and flat surfaces, respectively. By
contrast, tc of the e− drops generally increases with |e| on surfaces with increasing κ
(a > b), whereas those are generally independent of e on surfaces with decreasing κ (b > a).
For instance, tc of the e− drops increases up to 7.7 and 6.0 ms on the b1.2 and b2.8 surfaces,
which correspond to increases of approximately 22% and 3% above the spherical cases on
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the same surfaces, respectively. Distinctively, tc of the e− drops on the b0.4 surfaces has a
peak value at low |e|. This result is because the roles of the initial drop shape and surface
curvature in symmetry-breaking in drop bouncing might be comparable to each other at
the peak.
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Residence times on the curve surfaces result from a hydrodynamic interplay between
the flow induced by effects of the drops’ initial shape and surface curvature. Assuming
that e+ drops are impacting on flat surfaces, the e+ shapes induce a pronounced flow in
the x axis, which could be intensified on the curved surfaces by the positive influence of
the tangential momentum (pt) due to anisotropy of the surface. Conversely, assuming that
e− drops are colliding on flat surfaces, the e− shapes induce the pronounced flow in the z
axis, which could be suppressed on the curved surfaces by the negative influence of the pt
that is orthogonal to the axial momentum (pz). Figure 3b shows tc of the e+ and e− drops
as a function of b under several We. As We increases, tc on the b1.2 surfaces increases up
to 8.2 ms for e− drops and decreases down to 4.8 and 6.1 ms for e+ and spherical drops,
respectively. In addition, tc of the e− drops has peak values on the b1.2 surfaces at the
given Weber numbers. As the height, b, increases, the role of the surface curvature in
the asymmetric momentum transfer becomes dominant, thereby causing a monotonous
decrease in tc of all the drops.

To interpret the mechanism of reducing the residence time, the drop dynamics were
analyzed in terms of the axial momenta. Figure 4 shows the dimensionless momenta in the
normal to the surface (pn), tangential along the ridgeline (pt), and axial directions (pz) of
the elliptic cylindrical coordinates, and y-directions (py). The signs of p were imposed in
the spreading (positive) and the retraction processes (negative) based on its definition. The
insets represent snapshots at the distinct times. After touching the surfaces, the spherical
drops enhance pt and pz and reach the maximum values, ptm and pzm, in the spreading
process at nearly 1 ms, as shown in Figure 4a. Thereafter, the pt and pz become negative
values at 3.5 and 2.6 ms, the onset times for the retraction process along their own directions,
respectively. The gap between pt and pz could be closely relevant to the asymmetric mass
and momentum transfer because a significant gap leads to the massive transfer in one
direction and the subsequent liquid alignment with the same direction, as depicted in
snapshots of Figure 4a at 6.0 ms. After this time, the drop leaves the surfaces at 6.3 ms, as
pointed out by the single-circle symbol for each line.
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Figure 4d shows the temporal evolutions of pn and momentum asymmetry (pt–pz, in 
the inset) on the flat and E-surfaces, which reveals that the e+ drops show the rapid rising 
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mum values of (pt–pz)m, as indicated by the arrow of the inset. Meanwhile, the maximal 
asymmetry of the e− drops on the b1.2 (increasing κ) surfaces occurs during the spreading 
because of the dominant role of the drops’ initial shape in the hydrodynamics at the low 

Figure 4. Axial momentum analysis for (a) spherical and (b,c) ellipsoidal drops with e = ±0.45 on E(2.0, 1.2) surfaces at
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distinct times. (d) Temporal evolutions of pn and the momentum asymmetry (pt–pz in the inset) indicate that e+ drops show
the rapid rising of pn and (pt–pz). Open circles for each solid line denote the bouncing moments of the drops.

e+ drops expand the discrepancy between pt and pz and complete the liquid alignment,
as shown in Figure 4b, at 4.0 ms. The drops enhance the asymmetries of the mass and
momentum, thereby leading to fast bouncing at 5.1 ms, which is in marked contrast to e−

drops. This is because the e− drops display a minor difference between pt and pz, even
until nearly 7.0 ms, and are thereby detached from the surfaces at 7.7 ms, as presented
in Figure 4c. The switching times of the pt and pz required to change from the spreading
to retraction process are comparable to each other for the e− drops. The snapshots of
the inset at 4–8 ms indicate that the retraction dynamics are approximately axisymmetric,
comparable to the features of the spherical drops.

Figure 4d shows the temporal evolutions of pn and momentum asymmetry (pt–pz,
in the inset) on the flat and E-surfaces, which reveals that the e+ drops show the rapid
rising of pn and (pt–pz) at the earliest time and detach from the surfaces at the lowest tc
among the several drops. The momentum asymmetry of the drops shown in the inset of
Figure 4d is also closely connected to the bounce speed. The enhanced asymmetry of the
momenta is found at high values of |pt–pz|. Asymmetry of the spherical and e+ drops
reach the maximum values of (pt–pz)m, as indicated by the arrow of the inset. Meanwhile,
the maximal asymmetry of the e− drops on the b1.2 (increasing κ) surfaces occurs during the
spreading because of the dominant role of the drops’ initial shape in the hydrodynamics at
the low surface curvatures. We suggest that the momentum asymmetry can be convincing
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evidence for the decrease in the residence time. Details in the velocity fields for ellipsoidal
drops are described in Figure S1 of the Supplementary Materials.

To better elucidate the effects of the height, b, on the residence times, we examined
the evolutions of the shapes on b0.8 and b4.0 surfaces. Figure 5a shows that e+ drops on
the b4.0 surfaces exhibit severe elongation to the x axis, compared with those on the b0.8
surfaces, as shown at 6 ms. On the contrary, e− drops on the b0.8 surfaces behave as roughly
axisymmetric by evolving into the vertical liquid column before bouncing, whereas those
on the b4.0 surfaces massively redistribute to the x axis and then depart from the surfaces
early. Figure 5b,c indicate the temporal variation of the axial momenta of the ellipsoidal
drops on b0.8 (solid line) and b4.0 surfaces (dashed line). Figure 5d shows the temporal
variations of pn and (pt–pz) for several drops. The solid and dashed lines correspond to the
momenta of the e+ and e− drops, respectively. The discrepancy between pt and pz of the
e+ drops on the b4.0 surface is more intensified than that on the b0.8 surfaces. Meanwhile,
the discrepancy of the e− drops on the b0.8 surfaces has negative signs because the role of
the drops’ initial shape is dominant in the hydrodynamics at the low surface curvatures,
as discussed earlier. The e+ drops on the b4.0 surfaces show the fastest growths of pn and
(pt–pz) among several drops. As the height, b, increases, the initial surface curvature and
the momentum asymmetry increase.
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Figure 5. Effects of the height, b, of the curved surface on the residence time. (a) Shape evolutions of the drops with
e = ±0.45 on E(2.0, 0.8) and E(2.0, 4.0) surfaces at We = 24. (b,c) Axial momenta of the drops with (b) e = +0.45 and (c)
e = −0.45 on the b0.8 (solid line) and b4.0 surfaces (dashed line). The illustrations of the insets indicate the surface outlines.
(d) Temporal variations of pn and the momentum asymmetry (pt–pz, in the inset) for e+ (solid line) and e− (dashed line)
drops on a2.0 surfaces. Single-circle symbols for the pn-curves denote the bouncing moments of the drops.
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Figure 6a shows tc of the ellipsoidal drops with e = ±0.45 and spherical ones (insets)
under three different a. The tc of the e− drops has peaks around b = 1.2, 2.7, and 4.0 at
a = 2.0, 3.0, and 4.0, respectively. When tc is plotted by the initial surface curvature, κ0, the tc
is roughly gathered around one line for each drop, as shown in Figure 6b. Thus, residence
times could be characterized in terms of κ0. The figure reveals that the drops have the only
slight deviation of tc between the surfaces with the different widths at high κ0, in spite of
the relatively high deviation of tc at low κ0. Figure 6c shows shape evolutions of the drops
on E(2.0, 0.4) and E(4.0, 1.6) surfaces, commonly with κ0 = 0.1. The figure indicates that the
ellipsoidal drop dynamics on the two surfaces are similar to each other. Accordingly, the
conditions of the high κ0 and high e play an important role in the symmetry-breaking in
the mass and momentum distribution. Temporal variations of the momentum symmetries
on the several E-surfaces with κ0 = 0.1, including E(10, 10) surfaces, were comparable to
each other, which is described in Figure S2 of the Supplementary Materials.
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plotted by Pwh, it is well-fitted by the single lines with slopes of −0.55 and 1.1 at the positive 
and negative Pwh respectively, as shown in Figure 7b, where Pwh = (pt–pz)m, the maximum 
difference between the momenta within the whole spreading and retraction processes. 
The spherical and e+ drops hold the slope of −0.55. Meanwhile, the e− drops hold the slope 
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Figure 6. Dependency of residence time on the initial surface curvature, κ0. (a) tc of the drops with e = ±0.45 and spherical
drops (inlet) as a function of b under a = 2.0 (pink), 3.0 (gray), and 4.0 (green). (b) Residence times of the latter drops as a
function of κ0. The tc is roughly gathered around one line for each drop when plotted with κ0. (c) Snapshots of the drops
with e = ±0.45 on E(2.0, 0.4) and E(4.0, 1.6) surfaces with κ0 = 0.1 at We = 24.

The residence time can be closely related to the maximal asymmetry of the momenta.
We plotted the normalized residence time, τc, with Psp, where Psp = (ptm–pzm), the difference
between the maximum momenta within the spreading process, as shown in Figure 7a. The
solid lines and symbols represent the drops’ several ellipticities ranging from−0.53 to +0.53.
The inset represents the plot of Psp as a function of κ0, which reveals that Psp has a significant
value at high e and high κ0. Additionally, the τc is generally in inverse proportion to Psp,
partly satisfying the slope of −0.45 at very high Psp. However, when the τc is plotted
by Pwh, it is well-fitted by the single lines with slopes of −0.55 and 1.1 at the positive
and negative Pwh respectively, as shown in Figure 7b, where Pwh = (pt–pz)m, the maximum
difference between the momenta within the whole spreading and retraction processes. The
spherical and e+ drops hold the slope of −0.55. Meanwhile, the e− drops hold the slope of
1.1, retaining the negative Pwh at low κ0, as shown in the inset of Figure 7b. Therefore, the
maximal asymmetry, Pwh, can serve to determine the reduction in τc by emphasizing the
richness of the physics of how surface curvatures and initial drop shape affect the bouncing
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features. We also concluded that the drops’ ellipticity is considered capable of controlling
the drop mobility by offering a broader range of the τc (approximately from 0.5 to 0.9),
compared with the spherical case (τc ≈ 0.6–0.8).
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As an additional note, we found the shape evolution of the oblate drops on curved
surfaces to compare with those of the prolate spheroidal shapes, which showed that the
dynamics of the prolate and oblate drops were similar. In addition, we also predicted the
bouncing dynamics of ellipsoidal drops that were rotated 45◦ on the y axis, and indicated
that the symmetry-breaking bouncing on E-surfaces was also significantly affected by
anisotropic curvatures. Details of the impact dynamics were described in Figures S3 and S4
of the Supplementary Materials.

4. Conclusions

We investigated the bouncing features and tc of ellipsoidal drops on the E-surfaces,
compared with spherical drops. The numerical results revealed that the dynamics highly
depended on the geometric configuration between the elliptical curves and ellipsoidal
drops. The tc obtained from the different geometric relations could be determined by the
hydrodynamic interplay between the influence of the initial drop shape and surface curva-
ture. To better understand the roles of the two factors in drop dynamics, we investigated
the evolutions of shapes and momentum asymmetries of the drops on various E-surfaces,
which revealed that the rapid bouncing appeared at high κ0 and high e. tc of e+ drops on
E(2.0, 4.0) surfaces could diminish by approximately 46% below the spherical cases on flat
surfaces at We = 24, which presented the enhancement of asymmetries of the mass and
momentum. tc of e− drops generally increased with |e| on surfaces with increasing κ,
whereas those were independent of e on surfaces with decreasing κ, in general. In addition,
we found that the residence time could be closely related to the maximal asymmetry of
the momenta, which showed that τc decreased roughly linearly against (pt–pz)m for the
spherical and e+ drops. The drops’ ellipticity could have the ability to adjust the repellency
from surfaces by covering a broad range of the residence time beyond the spherical cases.
We believe that reshaping of the ellipsoidal drops will provide new insight into the strate-
gies for further lower retention on bioinspired surfaces, such as an array of cylinders or
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corrugated surfaces. The fundamental understanding of the drop dynamics will be able to
assist practical applications, such as dropwise condensation, anti-corrosion, and anti-icing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13172940/s1, Figure S1: velocity fields of ellipsoidal drops, Figure S2: momentum
asymmetry on several surfaces at the constant κ0, Figure S3: shape evolutions of oblate ellipsoidal
drops on E-surfaces, Figure S4: shape evolutions of 45◦-rotated ellipsoidal drops on E-surfaces.

Author Contributions: Conceptualization, S.Y.; methodology, investigation, visualization, W.C. and
S.Y.; writing—original draft, S.Y; writing—review and editing, W.C. and S.Y. Both authors have read
and agreed to the published version of the manuscript.
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funded by the Korea government (MSIT) (No. 2019R1C1C1010031 and 2020R1C1C1013487).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

To verify the numerical results, the experiment was performed using a nozzle-ring
electrospray device. When a pulse signal of high voltage was applied between the elec-
trodes, the hanging drop from the nozzle began to stretch out toward the ring. After being
pinched off, the drop started to deform itself into the prolate spheroids that had the major
axis of x when passing through the rings, as shown in Figure A1a. The bouncing dynamics
of the drop obtained numerically were similar to those obtained experimentally, as shown
in Figure A1b,c.
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