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Abstract: Epicardial fat is a continuously growing target of investigation in cardiovascular diseases
due to both its anatomical proximity to the heart and coronary circulation and its unique physiology
among adipose depots. Previous reports have demonstrated that epicardial fat plays key roles in
coronary artery disease, but the non-coding RNA and transcriptomic alterations of epicardial fat
in coronary artery disease have not been investigated thoroughly. Micro- and lncRNA microar-
rays followed by GO-KEGG functional enrichment analysis demonstrated sex-dependent unique
mi/lncRNAs altered in human epicardial fat in comparison to subcutaneous fat in both patients with
and without coronary artery disease (IRB approved). Among the 14 differentially expressed microR-
NAs in epicardial fat between patients with and without coronary artery disease, the hsa-miR-320
family was the most highly represented. IPW lncRNA interacted with three of these differentially ex-
pressed miRNAs. Next-generation sequencing and pathway enrichment analysis identified six unique
mRNAs–miRNA pairs. Pathway enrichment identified inflammation, adipogenesis, and cardiomy-
ocyte apoptosis as the most represented functions altered by the mi/lncRNAs and atherosclerosis and
myocardial infarction among the highest cardiovascular pathologies associated with them. Overall,
the epicardial fat in patients with coronary artery disease has a unique mi/lncRNA profile which is
sex-dependent and has potential implications for regulating cardiac function.

Keywords: epicardial adipose tissue; non-coding RNAs; coronary artery disease; sex differences

1. Introduction

Coronary artery disease (CAD) is a disorder of the coronary arteries characterized by
the buildup of atherosclerotic plaques. Beyond obstruction of blood flow, these plaques can
lead to other serious complications such as myocardial infarction and ischemic stroke [1].
CAD affects a large portion of the United States population, with 2017 rates showing
an age-adjusted prevalence of 7.2% and 4.2% for males and females, respectively [2].
Investigations into the etiology, progression, and pathological mechanisms leading to CAD
are thus needed to better understand both the causes of and potential treatments for CAD.
A novel area of investigation that has a growing body of literature is how epicardial adipose
tissue (EAT) is altered in patients with CAD and its role (if any) in the disease pathology.

EAT is a metabolically, physiologically, and anatomically distinct adipose tissue de-
pot that is contiguous with the heart, being situated between the myocardium and the
visceral layer of the serous pericardium (even extending into the myocardium without
known negative clinical implications) [3]. EAT and the myocardium share the coronary
microcirculation, allowing for paracrine interactions between the tissues [4]. Numerous
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potential EAT–cardiac interactions have been reported on, including pathological inter-
actions (particularly EAT-mediated cardiac and vascular effects) in a variety of disease
states, especially cardiometabolic disorders such as obesity, diabetes, and CAD [3–12]. The
physiological significance of EAT in relation to the heart is yet to be fully elucidated, but
two prominent roles are the potential for EAT to protect the heart from hypothermia (due
to a possible increased thermogenic potential of EAT owing to brown adipocytes in the
tissue) and the potential for EAT to supply fatty acids to the myocardium during times of
high energy demand (since the myocardium primarily utilizes fatty acid metabolism, and
since EAT is more lipolytic than other adipose tissue depots) [13–15].

A novel mechanism for EAT-mediated cardiac effects is the release of exosomes contain-
ing non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), that can subsequently
be taken up by cardiomyocytes or vascular endothelial cells [4,16–18]. miRNAs are short,
non-coding RNAs that have an average length of 22 nucleotides and generally act to repress
the translation of target mRNA transcripts either by cleavage (when complementarity
between the miRNA and its target sequence on the mRNA transcript is exact) or, more
commonly, RNA interference and subsequent deadenylation leading to mRNA degradation;
however, some ability to activate translation has also been demonstrated under certain
conditions [19,20]. Though they are non-coding, miRNAs carry out important physiological
functions via their interaction with other parts of the transcriptome, and hence altered
regulation of miRNAs has been implicated in a variety of pathologies, with cancer being
one of the most studied [21].

Characterization of the miRNA profiles of particular cell/tissue types during dis-
ease is useful both for elucidating novel pathological mechanisms and discovering novel
biomarkers for disease states [22–24]. Due to EAT’s ability to impact cardiac function via
the secretion of a variety of molecules that can be taken up by the heart and coronary cir-
culation, characterization of the miRNA expression of EAT under pathological conditions
can offer insights both into the differential transcriptomic regulation of EAT as well as
how those same miRNAs could impact cardiac function. Thus, this characterization can
elucidate both direct and indirect effects of EAT on cardiac function under pathological
conditions stemming from altered miRNA expression.

Indeed, such characterization has been conducted in a variety of disease states al-
ready: hyperglycemia, atrial fibrillation, and CAD complicated by type 2 diabetes mellitus
(T2DM) [25–27]. Interestingly, EAT volume itself has been shown to be correlated with
differential expression of miRNAs even when controlling for confounding factors, making
the use of miRNA expression as a biomarker for EAT volume a possibility [28]. Prior
research has already demonstrated that the EAT of patients with CAD has a distinct gene
expression profile [29]. Analysis of differences in the miRNA expression of the EAT of CAD
vs. non-CAD patients can aid in giving a more detailed view of the altered transcriptomic
regulation of EAT in patients with CAD. While some studies have begun to elucidate the
altered miRNA profile of EAT in patients with CAD, further characterization and validation
are necessary [30]. Transcriptomic regulation is further complicated by the presence of
other ncRNAs that can influence gene expression at various levels of regulation. Long
non-coding RNAs (lncRNAs) are a major example of these additional regulations. lncRNAs
interact with both proteins and nucleic acids in a plethora of ways that alter gene expression:
competitive interactions with histones that allow transcription of bound DNA, ‘guidance’
of proteins to either increase or decrease gene transcription, sequestration of RNA splicing
proteins, and ‘sponging’ of miRNAs to allow for the translation of the mRNAs normally
repressed by those miRNAs [31,32]. Of particular interest is its interactions with miRNAs
since these interactions will alter gene expression and hence physiological pathways. Given
the studies demonstrating altered miRNA regulation of EAT in pathological conditions, it
is possible that lncRNAs could complicate the present understanding of such regulation.

Thus, the central goal of this investigation was to characterize both the miRNA and
lncRNA profiles of EAT in the presence and absence of CAD. This will help determine the
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potential roles of both these ncRNAs in the altered transcriptomic regulation of EAT in
patients with CAD.

2. Results
2.1. Differential Expression of miRNAs between EAT and SAT in CAD and Non-CAD Patients

miRNA microarray revealed differential expression of miRNAs between EAT and
subcutaneous adipose tissue (SAT) in both CAD and non-CAD patients. Comparing the
EAT (n = 3 males and n = 5 females) and SAT (n = 3 males and n = 5 females) in the
non-CAD patients revealed 25 differentially expressed miRNAs (DEmiRNAs; p < 0.05)
(Figure 1A) of which 13 miRNAs were downregulated, 3 miRNAs were upregulated, and
8 miRNAs, though significant, had low abundance. In contrast, 31 miRNAs were signif-
icantly (p < 0.05) differentially expressed between EAT (n = 12 males and n = 14 females)
and SAT (n = 13 males and n = 11 females) in patients with CAD (Figure 1B). Fourteen miR-
NAs were downregulated, 8 miRNAs were upregulated, and 9 miRNAs were significant
but had low abundance (Table S1).
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cance of p < 0.01. Four miRNAs had low average abundance (hsa-miR-30a-3p, hsa-miR-
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Figure 1. Heatmap of differentially expressed miRNAs between epicardial and subcutaneous adipose
tissue samples from patients with and without CAD: microRNA microarray on EAT and SAT samples
from both males and females were analyzed and compared. The heatmap (LC Sciences, Houston,
TX, USA) displayed shows differentially expressed microRNAs between EAT and SAT in non-
CAD patients (A) and CAD patients (B). Differential analysis was first performed using ANOVA
to produce a miRNA expression profile overview across all samples. This was followed by t-tests
p < 0.05, to identify significantly differentiated miRNAs between EAT and SAT in patients with and
without CAD.

Comparing the EAT of CAD patients (n = 12 males and 13 females) to the EAT of
non-CAD patients (n = 3 males and 5 females) revealed 14 DEmiRNAs that were statistically
significant (p < 0.05) (Figure 2A). The miR-320 family was the most highly represented,
with hsa-miR-320a, hsa-miR-320b, and hsa-miR-320c all being downregulated in the EAT of
CAD patients. Two miRNAs, hsa-miR-146b-5p and hsa-miR-21-5p, reached a significance
of p < 0.01. Four miRNAs had low average abundance (hsa-miR-30a-3p, hsa-miR-34a-5p,
hsa-miR-377-3p, and hsa-miR-361-5p). Among the DEmiRNAs, there were 9 miRNAs that
were similarly differentially expressed and regulated in EAT vs. SAT between the non-CAD
and CAD patients, hsa-miR-130a-3p; hsa-miR-146b-5p were upregulated whereas hsa-miR-
10a-5p; hsa-miR-10b-5p; hsa-miR-185-5p; hsa-miR-224-5p; hsa-miR-23a-3p; hsa-miR-451a;
hsa-miR-486-5p were all downregulated (Figure 2B). hsa-miR-21-5p was upregulated in
EAT vs. SAT in non-CAD patients but downregulated in EAT when compared between
CAD and non-CAD patients. Similarly, hsa-miR-24-3p was downregulated and hsa-miR-
342-3p and hsa-miR-376C were upregulated in EAT vs. SAT in CAD patients, whereas the
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former miRNA was upregulated and the latter two miRNAs were downregulated in EAT
when compared between CAD and non-CAD patients (Figure 2B).
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Figure 2. Heatmap of differentially expressed miRNAs in EAT between CAD and non-CAD: mi-
croRNA microarray on EAT from patients with and without CAD (both males and females) were
compared. Fourteen microRNAs were significantly altered (expression data points for each miRNA
were normalized on a 0–100 scale with 0 (green), being the lowest expression and 100 (red) being the
greatest). hsa-miR-29c-3p, hsa-miR-24-3p, and hsa-26b-5p were upregulated in the EAT of patients
with CAD (A). List of microRNAs that were similarly altered in EAT vs. SAT in patients with or
without CAD and their sex specificity is displayed in the table and lotus matrix (B). Only miRNAs
with expressions that were found to be significantly different (p < 0.05) in unpaired t-test are presented.
The following groups of comparisons were included: CAD (EAT vs. SAT) = epicardial adipose tissue
(EAT or E) versus subcutaneous adipose tissue (SAT or S) in patients with CAD (‘up’ indicates greater
and ‘down’ indicates lower expression in EAT); nCAD (EAT vs. SAT) = epicardial adipose tissue
versus subcutaneous adipose tissue in patients without CAD (‘up’ indicates greater and ‘down’
indicates lower expression in EAT); EAT (CAD vs. nCAD) = epicardial adipose tissue from patients
with CAD versus epicardial adipose tissue from patients without CAD (‘up’ indicates greater and
‘down’ indicates lower expression in EAT of patients with CAD); CAD (male vs. female) = males
versus females in patients with CAD (‘up’ indicates greater and ‘down’ indicates lower expression
in females).

Comparing miRNA expression between males and females showed 57 DEmiRNAs
(p < 0.05) in the CAD condition (Figure 3A). Two-way ANOVA (using sex and disease
status) showed significant differences in miRNA expression and an interaction between
disease status and gender (Figure 3B).

2.2. Functional Pathway Analysis Reveals Potential Roles for the DEmiRNAs in the EAT of
CAD Patients

Using the publicly available bioinformatics tool TAM 2.0 [33] (which uses published
literature on miRNA-associated functions and pathologies rather than target prediction) to
correlate the DEmiRNAs with both functional pathways and disease pathologies demon-
strated various potential roles for miRNAs in the EAT of CAD patients (Figure 4). Metabolic-
and cardiovascular-related conditions such as ischemic cardiomyopathy, acute cerebral
infarction, myocardial infarction, and carotid atherosclerosis were among the top hits for
disease pathologies associated with the DEmiRNAs (Figure 4A). Overall, the correlations
with these pathologies indicate that the deregulation of miRNAs in the EAT of CAD pa-
tients could play a similar role as the deregulation of these miRNAs in other metabolic-
and cardiovascular-related conditions, implicating the miRNA profile of EAT as a potential
mechanism of either CAD progression or protection from deleterious alterations in CAD.
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Further, the determination of associations between the DEmiRNAs of the EAT of CAD
patients and functional pathways using TAM 2.0 revealed particular physiological roles
that the deregulated miRNA profile of CAD patients EAT could have. Inflammation, adi-
pogenesis, and cell cycle regulation were the most associated functional pathways for the
DEmiRNAs (Figure 4B). Performing the same analysis using only the two miRNAs with sig-
nificance levels of p < 0.01 (hsa-miR-146b-5p and hsa-miR-21-5p) produced cardiomyocyte
apoptosis as the most associated functional pathway (Figure 4C).
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Figure 3. Sex specific differences in miRNA regulation in EAT and SAT from patients with CAD:
microRNA microarray on EAT and SAT samples from patients with CAD showed sex-specific
differences in expression. Unpaired t-test (p < 0.05) significantly altered microRNAs are displayed (A).
Two-way ANOVA showed significant differences in microRNAs and interactions between both sex
and disease status and interactions were observed (B).

2.3. GO and KEGG Functional Enrichment Analyses of the DEmiRNAs in EAT

For more specific functional enrichment associations, correlation of the DEmiRNAs to
GO categories and KEGG pathways was performed using ClueGo v2.5.8 and CluePedia
v1.5.8 in Cytoscape v3.9.0 [34,35]. The determination of mRNA targets of the DEmiRNAs
in EAT was performed using the miRTarBase dataset, a curation of experimentally verified
miRNA–mRNA interactions [36]. CluePedia and ClueGo (using the miRTarBase dataset)
produced a broad network of mRNA targets, many of which were only targeted by single
miRNAs, but a substantial portion of which were targeted by multiple of the DEmiRNAs
(Figure S1). Correlation with GO categories showed enrichment of the following biological
processes or cellular components associated with the mRNAs targeted by the DEmiRNAs:
regulation of protein serine/threonine kinase activity, cellular response to organonitrogen
compound, cellular response to oxygen levels, response to peptide, and vasculature devel-
opment (Figures 5A, S2 and S3). Correlation with KEGG pathways showed enrichment of
the functional pathways associated with the mRNAs targeted by the DEmiRNAs: cellular
senescence, pathways in cancer, small cell lung cancer, MAPK signaling pathway, and
microRNAs in cancer (Figures 5B, S4 and S5).
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Figure 4. Functional pathways and disease correlations targeted by the DEmiRNAs in EAT: TAM 2.0
identified both disease pathologies (A) and functional pathways (B), associated with the miRNAs
differentially expressed (all with p < 0.05) in EAT from patients with and without CAD as well as the
functional pathways associated with the two miRNAs that had p < 0.01 (C); (functional association
strength is expressed as the-log10 (p) along the x-axis). Negative similarity scores in panel A (green)
indicate that the regulation of the miRNAs was opposite to the normal regulation seen in the disease
pathology while positive scores (red) indicated that the regulation of the miRNAs was the same
direction as the regulation normally seen in the disease pathology. Coloration of the bars in panels
(B,C) is for stylization and not meant to reflect particular values. Cardiac diseases and cardiomyocyte
apoptosis had the highest correlations.
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ysis shows the biological processes and cellular components of the DEmiRNAs in the EAT of
CAD patients (A). KEGG enrichment analysis shows the molecular functions associated with the
DEmiRNAs (B). ClueGO v2.5.8 and CluePedia v1.5.8 in Cytoscape v3.9.0 were used for enrichment
analysis. ** indicates p < 0.01 for the associations.
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2.4. Pathway Enrichment Analysis of DEmiRNAs and DEmRNA Interactions in EAT

Next-generation sequencing (NGS) was performed, and data analysis revealed
125 differentially expressed mRNAs (DEmRNAs) (p < 0.05) between the EAT and SAT of
the patients sampled. The targets of the DEmiRNAs were then detected in the DEmRNAs
dataset. Pathway enrichment analysis was performed on the RNA sequencing data and
miRNA microarray data using Ingenuity Pathway Analysis (IPA). The targets of miRNAs
relevant to cardiovascular diseases (CVDs) were further identified using TargetScan after a
stringent filtering process (Figure 6A) [37]. mRNA targets of differentially expressed miR-
NAs with IPA annotations for selected cardiovascular disorders are shown in (Figure 6B).
The colored arrows for miRNAs denote their cardiovascular annotations. Six miRNA–
mRNA pairs (some of the mRNAs were targeted by multiple miRNAs) that played a role
in CVD were identified. The potential interactions between the two datasets found that
the EAT transcriptome is involved in cardiovascular-related pathologies (atherosclerosis,
hypertriglyceridemia, hypercholesterolemia, and myocardial infarction) (Figure 6B) and
identified genes such as DUSP4, TUBB1, LDLR, FOXO3, APOB, and GRIN1 as major targets
of possible interest.
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Figure 6. Pathway enrichment analysis of the DEmiRNAs and DEmRNA interactions from EAT
and SAT: Ingenuity Pathway Analysis (IPA) was used to perform pathway enrichment analysis on
the mRNA (RNA-seq) and miRNA (microRNA microarray) that were differentially expressed in
EAT compared to SAT. Targets of miRNAs relevant to cardiovascular diseases were identified after
a stringent filtering process (A). mRNA targets of DEmiRNAs are shown with IPA annotations for
selected cardiovascular disorders (B). Six miRNA–mRNA pairs that played a role in cardiovascular
disease were identified.

2.5. qPCR Validation of the Differentially Expressed mRNAs in the EAT of Patients with CAD

qPCR of RNA isolated from the EAT of patients with and without CAD (validation
cohort) demonstrated that the mRNAs DUSP4 and FOXO3 had statistically significant
(p < 0.0001) upregulation in the EAT of patients with CAD (Figure S6A). Both mRNAs had
a >200-fold upregulation, demonstrating significant CAD-induced differential expression
of the two mRNAs in EAT. This confirms the distinct involvement of these mRNAs in the
pathophysiology of EAT (in comparison to SAT) found in the NGS results.

2.6. qPCR Validation of the Differentially Expressed miRNAs in the EAT of Patients with CAD

qPCR of miRNAs isolated from the EAT of patients with and without CAD (vali-
dation cohort) demonstrated that the miRNAs hsa-21-5p and hsa-320a had statistically
significant (p < 0.03 and p < 0.01, respectively) downregulation in the EAT of patients
with CAD (Figure S6B). This confirms the downregulation of these miRNAs found in the
miRNA array results. hsa-146b-5p and hsa-26b-5p both also showed downregulation in the
EAT of patients with CAD in the qPCR, but the changes were not statistically significant
(Figure S6B).
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2.7. LncRNA Array Shows Differential Expression of Long Non-Coding RNAs

The lncRNA PCR arrays showed three lncRNAs were significantly downregulated
in the EAT of male patients with CAD compared to EAT from patients without CAD:
IPW, TINCR, and linc00853. DIANA-LncBase v3.0 did not show any interactions with
the DEmiRNAs for TINCR or linc00853 but showed that three of the DEmiRNAs had
interactions with IPW: hsa-miR-24-3p, hsa-miR-26b-5p, and hsa-29c-3p. As observed by
the miRNA microarray analysis, all three of these miRNAs were upregulated in the EAT
of patients with CAD. Thus, the data suggest that the downregulation of IPW in the EAT
of male patients with CAD may lead to a subsequent upregulation in the three miRNAs
that showed interactions with IPW (Figure 7). Functional analysis using TAM 2.0 showed
significant functional associations for the three miRNAs interacting with IPW: adipogenesis,
apoptosis, vascular inflammation, cell proliferation, and stem cell regulation (Figure 7).
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Figure 7. DElncRNAs in EAT: LncRNA array and data analysis was conducted using Qiagen Gene-
Globe analysis tool. Red: higher expression; green: low expression. DElncRNAs expression for
male patients with or without CAD. The lncRNAs with statistically significant differential expression
were TINCR, IPW, and LINC00853 (A). Sex differences in DElncRNAs in patients without CAD. The
lncRNAs with statistically significant differential expression were RMST, MEG9, and LINC00853 (B).
lncRNA–miRNA interactions were determined in the DElncRNAs in EAT based on CAD status in
males. In CAD male patients, IPW downregulation leads to an increase in the levels of the miR-
NAs hsa-miR-24-3p, hsa-miR-26b-5p, and hsa-miR-29c-3p, associated with adipogenesis, apoptosis,
vascular inflammation, cell proliferation, and stem cell regulation as determined by TAM 2.0 (C).

In the EAT of female patients, lncRNA arrays did not show any differential lncRNA
expression with statistical significance between CAD and non-CAD patients. There were
also no differentially expressed lncRNAs between the EAT of male and female CAD patients.
However, there did exist three DElncRNAs when comparing the EAT of male and female
non-CAD patients, all of which were upregulated in males in comparison to females: RMST,
MEG9, and linc00853. DIANA-LncBase v3.0 did not show any experimentally verified
human miRNA interactions for RMST or MEG9 but did show that linc00853 interacts with
hsa-miR-1180-3p, though it was not detected in the DEmiRNAs in EAT of male and female
patients without CAD.
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3. Discussion

Increased prevalence of obesity rates in the United States has increased the burden of
heart diseases including CAD. Recent studies have suggested that increased EAT volumes
are associated with the severity of CAD [38,39]. Hence, determining functional changes in
EAT compared to other adipose depots in patients with CAD compared to those without
will provide a better understanding of the role of this fat in heart disease and identify novel
targets for diagnostics or treatment for CAD. In this study, we assessed ncRNA (miRNA
and lncRNA) changes in EAT versus SAT obtained from both patients with and without
CAD. We also assessed if there were sex differences in the differentially expressed ncRNAs.
Finally, we correlated the DEmiRNAs to the DEseq data and DElncRNA to DEmiRNAs in
these tissues to identify any interactions that might be of significance in CAD. We also used
pathway analysis tools for target prediction and physiological/pathological pathways that
the DEmiRNAs could potentially target.

Using RNA sequencing as well as microRNA microarray analysis showed that both
the mRNA and miRNA expression profiles differed between EAT and SAT. These findings
were consistent with the long line of literature pointing towards a distinct EAT pheno-
type [3,10,15,40,41]. Importantly, IPA analysis of the DEmRNA and DEmiRNAs of the EAT
of CAD patients demonstrated the potential involvement of miRNAs with cardiovascular
pathologies. The appearance of atherosclerosis in the hit targets as a pathology related
to the DEmRNA–DEmiRNA interactions was particularly relevant because it points to-
wards altered regulation of EAT transcriptome in CAD. Also of note was the appearance
of hypertriglyceridemia and hypercholesteremia, two lipid dysregulations shown to be
associated with diseased EAT, further confirming the unique relation of EAT to cardiovas-
cular and metabolic pathways in comparison to SAT [42,43]. Additionally, gene targets
such as FOXO3, LDLR, and APOB are well studied in CVDs [44,45]. Adiponectin pro-
motes macrophage autophagy by suppressing Akt/FOXO3 signaling [46]. Tubulin beta 1
(TUBB1) is highly expressed in platelet and megakaryocyte microtubules [47]. Polymor-
phism in TUBB1 (Q43P) has been shown to protect men from CVD [48]. Dual Specificity
Phosphatase 4 (DUSP4) modulates Akt and p38 kinase pathways. DUSP4 is considered a
protective target in cardiomyopathy and other CVDs [49,50]. By modulating p38 kinase
activity, DUSP4 is considered a good target for the treatment of myocardial infarction [51].
GRIN1 is a major subunit of the N-methyl-D-aspartate receptors (member of the gluta-
mate receptor channel superfamily). It regulates the excitatory firing rate of cardiomy-
ocytes [52]. Dextromethorphan, a GRIN1 antagonist, has been shown to inhibit neo-intima
and atherosclerosis formation in mice [53,54] and has shown promise as an adjunct treat-
ment for diabetes [55]. Interestingly, GRIN1 and DUSP4 directly interact with each other
and can modulate each other’s expression [56]. Overall, the data presented here further
confirm that EAT is distinct from SAT in ways that implicate it in cardiovascular conditions,
including CAD.

The global functional enrichment pathways targeted by the miRNAs that were differ-
entially expressed in the EAT of CAD patients compared to non-CAD patients, determined
by various bioinformatics tools such as TAM 2.0, KEGG, and GO, included changes in
metabolism, immune responses, inflammation, and cardiac function (such as association
with cardiovascular pathologies and cardiomyocyte apoptosis). All of these findings are
in line with the growing conception of EAT as a metabolic center with both paracrine
and endocrine functions [57,58]. The appearance of atherosclerosis as a pathology associ-
ated with the miRNAs differentially expressed in the EAT of CAD patients was expected
given that CAD normally results from the buildup of atherosclerotic plaques within the
coronary arteries. The appearance of myocardial infarction as highly associated with the
DEmiRNAs, however, points towards a rather novel relationship between EAT and cardiac
function, especially as it relates to CAD. It could be the case that EAT in patients with CAD
could release an altered miRNA profile into the local circulation, including miRNAs that
induce direct cardiac effects, such as ones that are associated with myocardial infarction
or cardiomyocyte apoptosis (hsa-miR-320 family, miR-146b-5p, and hsa-miR-499) [59–62].
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Changes in miRNAs associated with immune system and inflammatory mediators (such as
hsa-miR-320 family and hsa-miR-21) potentially point towards a role for miRNA regula-
tion in EAT-mediated CAD progression (since those mediators play integral roles in CAD
progression, and EAT has been implicated in such progression) [7,63–65]. The appearance
of lipid regulation pathways as associated with the DEmiRNAs is interesting as EAT has
been considered a producer of free fatty acids (due to its being highly lipolytic) for the
heart; thus, CAD may affect the metabolic relationship between EAT and the heart via
miRNA regulation [14]. hsa-24-3p, hsa-miR-378, and hsa-miR-33, for instance, have been
shown to regulate lipolysis in adipose tissue, suggesting that changes in their expression in
EAT could alter the supply of free fatty acids in the local circulation for the heart [66–68].
Previous reports identified elevated hsa-miR-34a as a potential biomarker for CAD with
high clinical significance both in EAT and plasma [69,70]. However, our samples showed
a statistically significant downregulation of hsa-miR-34a-5p (p < 0.05). This downregu-
lation may be attributable to a few factors. First, all samples gave very low abundance
levels for hsa-miR-34a-5p. Secondly, the patient population utilized for this investigation
may have differed from those used in the previous investigations in ways that altered
hsa-miR-34a-5p expression.

In contrast to previous reports, we found a downregulation of the hsa-miR-320 family
members (a/b/c) in the EAT of CAD patients. In adipocytes, hsa-miR-320 has been shown
to suppress insulin signaling through the PI3K pathway, potentially leading to increased
lipolysis, decreased glucose uptake, and reduced lipogenesis [71,72]. hsa-miR-320 family
members have also been shown to be positively correlated with endoplasmic reticulum
stress and inflammatory mediator production in adipocytes [73]. In terms of cardiac
function, miR-320 family members have been shown to reduce cardiac survival, induce
cardiomyocyte apoptosis, and lead to lipotoxicity-induced cardiac dysfunction stemming
from increased fatty acid uptake in diabetic mice and humans [59,74,75]. Interestingly, the
latter effect of miR-320 family members was shown to result from transcriptional induction
of the CD36 gene (fatty acid translocase) [74]. Importantly, the ability of miRNAs to affect
different cell types in different ways is implicated in the interaction between miR-320 family
members and cardiac function. Recently, cardiac miR-320 family members have been shown
to be deleterious in cardiomyocytes but protective in cardiac fibroblasts [61]. The plethora
of observed functions associated with the miR-320 family provides ample ways in which
the downregulation of its members in EAT could affect both EAT function and cardiac
function (indirectly and directly). For EAT itself, miR-320 family downregulation in CAD
may increase insulin sensitivity, leading to reduced lipolysis, increased glucose uptake,
and increased lipogenesis; however, the study demonstrating miR-320 family effects in
adipocytes was conducted on white adipocytes. However, EAT is considered to be “beige-
like” due to there being brown adipocytes heterogeneously embedded within the tissue,
introducing the possibility that miRNA regulation in EAT could differ from other adipose
depots [15,40]. The possible decreased lipolysis could indirectly affect cardiac function
since there would be less fatty acid release from EAT, reducing local supplies for the my-
ocardium [14]. There is also the possibility that miR-320 family members (along with other
miRNAs) could be released into the coronary microcirculation by EAT, being transferred
to the myocardium; this leaves the question of how a reduced uptake of miR-320 family
members by cardiac cells resulting from a downregulation of miR-320 family members in
EAT would affect cardiac function. The dual effects of miR-320 in cardiac function (having
different effects in different cardiac cells) complicate this question since miR-320 could
have both positive and negative effects on the cardiac system under stress from CAD. For
instance, reduced miR-320 family members in cardiomyocytes could reduce cardiomyocyte
apoptosis, but reduced miR-320 in cardiac fibroblasts could promote hypertrophy [61].
Overall, the possible roles of miR-320 family members and other DEmiRNAs identified in
both the EAT and EAT–cardiac interactions of patients with CAD are extensive and require
mechanistic studies in the future.
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The observation of differential miRNA expression between the EAT of males and
females only in patients with CAD but not without CAD suggests possible sex-dependent
changes in miRNA expression resulting from CAD or other sex-dependent factors. Sexual
dimorphisms in miRNA expression have been documented in a variety of pathologies,
including cardiac pathologies [76,77]. We have previously reported on sex-dependent
changes in both mRNA and miRNA expression in EAT (related to obesity and aging,
respectively), lending credence to the possibility of sex-dependent changes in EAT miRNA
expression in CAD [78,79]. The significance resulting from two-way ANOVA (using sex
and disease status) suggests an interaction between CAD status and sex in EAT miRNA
expression. Future studies need to better elucidate the influence of sex on the miRNA
expression in the EAT of patients with CAD as well as other cardiovascular conditions.

The differential expression of multiple lncRNAs in the EAT of male CAD patients
adds another layer to the possible transcriptomic alterations occurring under pathological
conditions. The limitation of this study was the use of an RT2 PCR array, which only detects
84 lncRNAs, and not sequencing technologies. The finding that downregulation of IPW
led to upregulation of the miRNAs (microRNA microarray data) known to interact with it
(hsa-miR-24-3p, hsa-miR-26b-5p, and hsa-miR-29c-3p) supports the idea that lncRNAs in
EAT may be involved in regulating miRNAs. However, validation of the target miRNAs
did not support the directionality of the lncRNA regulation, which can be attributed to
the variability in the patient samples used and the sample sizes tested. The functions
associated with the DEmiRNAs that interact with IPW point towards the potential roles
of EAT in either mediating or protecting against CAD-induced pathological alterations
(Figure 7). Vascular inflammation particularly stands out as it is a component of CAD
progression [1]; meaning, the miRNAs in EAT could be involved in one of the critical
components of CAD progression. Importantly, EAT has been shown to be involved in
mediating inflammation [80], and thus, the data here suggest lncRNAs and miRNAs as
possible factors influencing the alterations in EAT that aid in CAD progression.

Our study further validates the unique nature of EAT that implicates it in cardiovas-
cular function, particularly under pathological conditions. We show that EAT in CAD
patients has an altered non-coding RNA (miRNA and lncRNA) profile that points towards
altered functional regulation in this tissue during CAD. The differential expression of
the non-coding RNAs can also be influenced by the clinical characteristics of the patient
cohorts which needs to be further explored. Future studies should evaluate the changes
in DEmi/lncRNAs–DEmRNA interactions to obtain a larger picture of the functional al-
terations in EAT in CAD. Larger samples may also be useful for evaluating any potential
sex-specific changes in these alterations. Overall, we find that the altered non-coding RNA
regulation in EAT may be a part of the pathophysiology of CAD.

4. Materials and Methods
4.1. Sample Collection and Clinical Characteristics

Samples of epicardial adipose tissue (EAT) and subcutaneous adipose tissue (SAT)
were obtained from a total of 61 patients (36 males and 24 females) who either had CAD
(n = 42) and were undergoing coronary artery bypass graft (CABG, 26 males and 16 fe-
males) or did not have CAD (n = 18) and were undergoing aortic valve replacement/repair
(AVR, 11 males and 7 females). All samples were obtained from St. Mary’s Medical
Center, Huntington, WV, USA, and were frozen immediately. The collection and use
of these samples for this study were approved by the Marshall University Human In-
vestigations Committee (IRB). All patients involved were consented, and all applicable
HIPAA regulations were followed. The average age was, males = 65 ± 2 years (range:
28–80 years) and females = 58 ± 2 years (range: 43–73 years). The average BMI was,
males = 30.8 ± 1.2 kg/m2 (range: 21.79-63.26 kg/m2) and females = 33.1 ± 1.3 kg/m2

(range: 19.9–46.3 kg/m2). The baseline average LDL for males = 96.9 ± 6.9 mg/dL
(range: 51–218 mg/dL) and females = 101.1 ± 6.4 mg/dL (range: 44–154 mg/dL) and
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average triglyceride levels for males = 165.2 ± 16.6 mg/dL (range: 52–436 mg/dL) and for
females = 172.2 ± 18.6 mg/dL (range: 62–382 mg/dL).

4.2. miRNA Microarray of EAT and SAT

miRNAs were isolated from both the SAT and EAT of all patients using a commercially
available miRNA isolation kit (QIAGEN, Germantown, MD, USA). A miRNA microarray
was performed (LC Sciences, Houston, TX, USA) on EAT (n = 12 males with CAD and n = 3
non-CAD; n = 14 females with CAD and n = 5 non-CAD) and SAT (n = 13 males with CAD
and n = 3 non-CAD; n = 11 females with CAD and n = 5 non-CAD) samples to determine
differentially expressed miRNAs (DEmiRNAs). The microRNA microarray data analysis
was performed by LC Sciences which includes image digitization, background subtraction,
signal significance analysis, normalization, and differential analysis. The image digitization
was performed using the “Array-Pro Analyzer” (MediaCybernatics). After background
subtraction and signal significance analysis, normalization was performed using LOWESS
(locally weighted scatterplot smoothing) method. Since we had several groups of samples,
the differential analysis was first performed using ANOVA to produce a miRNA expression
profile overview across all samples. This was followed by t-tests to identify significantly
differentiated miRNA combinations of two groups of interest. Unpaired t-test was used
to determine the DEmiRNAs between the EAT and SAT using the data collected from all
patients. Unpaired t-test was also used to determine the DEmiRNAs in both the EAT and
SAT between patients with and without CAD and between males and females. TAM 2.0 was
used to correlate the DEmiRNAs, comparing the EAT of CAD patients to non-CAD patients,
with holistic functional pathways and pathologies [33]. ClueGO v2.5.8 and CluePedia v1.5.8
were used in Cytoscape v3.9.0 to find the mRNA targets of the DEmiRNAs and to determine
the Gene Ontology (GO) and KEGG pathway associations for those targets [34,35,81].

4.3. Next-Generation Sequencing of EAT and SAT

RNA isolated from the EAT and SAT of CAD (n = 10) and non-CAD (n = 4) was
subjected to NGS using an Illumina 1500 (Illumina, San Diego, CA, USA). Reads were
aligned using TopHat and counted using Rsamtools. DEseq was used to determine the dif-
ferential expression of mRNAs. Ingenuity Pathway Analysis (IPA) (Qiagen, Germantown,
MD, USA) was used to correlate the differentially expressed mRNAs (DEmRNAs) with
miRNAs and pathologies.

4.4. LncRNA Array

EAT samples from 16 males (n = 8 CAD and n = 8 non-CAD) and 16 females (n = 8 CAD
and n = 8 non-CAD) were used to determine the expression of lncRNAs in patients with
and without CAD. Total RNA was isolated from the samples using QIAzol lysis reagent
(QIAGEN, Germantown, MD, USA) to lyse the adipocytes followed by isolation of the
RNA using an miRNeasy kit (QIAGEN, Germantown, MD, USA). Complementary DNA
(cDNA) was prepared from the isolated RNA via reverse transcription. The prepared cDNA
was plated into 384-well plates (4 samples per plate) containing primers for 84 different
long non-coding RNAs (LAHS-001Z, RT2 lncRNA PCR Array Human lncFinder, QIAGEN,
Germantown, MD, USA) and qPCR was conducted using a Roche LightCycler 480 II (Roche
Sequencing and Life Sciences, Wilmington, MA, USA) to determine the differential expres-
sion of the lncRNAs. Statistical analysis for differential expressed lncRNAs (DElncRNAs)
was conducted using the Qiagen Geneglobe analysis tool specific for the lncRNA array used.
DIANA-LncBase v3.0 was used to determine the miRNAs potentially ‘sponged’ by the
DElncRNAs, i.e., DEmiRNA–DElncRNA interactions [82]. The targets of the DElncRNAs
were compared to the DEmiRNAs to determine potential lncRNA-mediated changes in
miRNA expression in the EAT of CAD patients. For matches between the two datasets, the
direction of regulation of the DElncRNAs was compared to the direction of regulation of the
DEmiRNAs; the pairings with opposite directionality (e.g., upregulation of the DElncRNA
and downregulation of its miRNA target) were considered potential lncRNA–miRNA inter-
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actions that could affect the translation of mRNAs targeted by miRNAs. The DEmiRNAs
selected from this process were analyzed using TAM 2.0 to determine cellular functions
that may be subject to regulation by lncRNA-miRNA interactions in EAT.

4.5. qPCR Validation of DEmRNAs

qPCR was conducted on 12 new samples of EAT (n = 6 CAD, and n = 6 non-CAD) to
validate select target mRNAs (DUSP4 and FOXO3) found through NGS. Total RNA was
isolated from the EAT of all patients using a commercially available miRNA isolation kit
(QIAGEN, Germantown, MD, USA). Reverse transcription of the total RNA was conducted
using the commercially available iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA).
Forward and reverse PCR primers for DUSP4 (TAGTACAGGCCTCTAGCCCCA and TG-
CAATATTGACATCCCCCGA, respectively) and FOXO3 (GAGGCCGTCGATTCGCTC and
CAGGAGGACCTGAAGACGT, respectively) were obtained from Invitrogen (Waltham,
MA, USA). qPCR was conducted on the resultant cDNA on an Applied Biosystems StepOne-
Plus Real-Time PCR System (Waltham, MA, USA).

4.6. qPCR Validation of DEmiRNAs

qPCR was conducted using 12 new samples of EAT (n = 6 CAD and n = 6 non-CAD) to
validate select DEmiRNAs (hsa-146b-5p, hsa-26b-5p, hsa-21-5p, hsa-320a) in the EAT of pa-
tients with CAD. miRNAs were isolated from the EAT of all patients using a commercially
available miRNA isolation kit (QIAGEN, Germantown, MD, USA). Reverse transcription
of the miRNAs was conducted using the miRCURY LNA RT Kit (QIAGEN, Germantown,
MD, USA). PCR primers for hsa-miR-146b-5p, hsa-miR-26b-5P, hsa-miR-21-5p, and hsa-
miR-320a were obtained from Qiagen. qPCR was conducted on a CFX Connect Real-Time
System (Bio-Rad, Hercules, CA, USA) using the cycle settings recommended in the miR-
CURY LNA RT Kit (QIAGEN, Germantown, MD, USA). ∆Ct values were determined for
each miRNA in each sample using the spliceosomal RNA U6 for normalization. Unpaired t-
test (using ∆Ct values) was used to determine statistically significant differential expression
of the miRNAs between patients with and without CAD.
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