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Abstract: Medical imaging is essential nowadays throughout medical education, research, and care.
Accordingly, international efforts have been made to set large-scale image repositories for these pur-
poses. Yet, to date, browsing of large-scale medical image repositories has been troublesome, time-
consuming, and generally limited by text search engines. A paradigm shift, by means of a query-
by-example search engine, would alleviate these constraints and beneficially impact several practical
demands throughout the medical field. The current project aims to address this gap in medical imaging
consumption by developing a content-based image retrieval (CBIR) system, which combines two image
processing architectures based on deep learning. Furthermore, a first-of-its-kind intelligent visual
browser was designed that interactively displays a set of imaging examinations with similar visual
content on a similarity map, making it possible to search for and efficiently navigate through a large-scale
medical imaging repository, even if it has been set with incomplete and curated metadata. Users may,
likewise, provide text keywords, in which case the system performs a content- and metadata-based
search. The system was fashioned with an anonymizer service and designed to be fully interoperable
according to international standards, to stimulate its integration within electronic healthcare systems and
its adoption for medical education, research and care. Professionals of the healthcare sector, by means
of a self-administered questionnaire, underscored that this CBIR system and intelligent interactive
visual browser would be highly useful for these purposes. Further studies are warranted to complete a
comprehensive assessment of the performance of the system through case description and protocolized
evaluations by medical imaging specialists.

Keywords: clinical; content-based image retrieval; education; imaging; interactive visual browser;
query-by-example; research

1. Introduction

Nowadays, imaging plays a central role in medicine. Large amounts of imaging data
are constantly generated in daily clinical practice, leading to continuously expanding
archives, and ever progressive efforts are being made across the world to build large-scale
medical imaging repositories [1,2]. This trend is in line with the increasing medical image
consumption needs, which have been studied and categorized into four groups: patient
care-related, research-related, education-related, and other [3].
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In the era of big data, however, navigating through large-scale medical imaging
archives is becoming, correspondingly, increasingly troublesome. Browsing any available,
large-scale medical imaging repository through a conventional text-based search engine is
time-consuming, severely hampered if the repository lacks curated or expert-annotated
metadata, the search results display options are limited. Conversely, the need for collecting
curated or expert-annotated metadata may, in turn, be preventing the building of large,
multi-center, international medical imaging repositories that meet the medical imaging
needs of today. In this scenario, there is an enormous need for efficiently archiving,
organizing, managing, and mining massive medical image datasets on the basis of their
visual content (e.g., shape, morphology, structure), and it may be expected that this demand
will only become more substantial in the foreseeable future.

Accordingly, attempts have been made over the last few decades to complement search
strategies of conventional text-based engines by means of advancing image content-based
repository indexation technology as this may lead to novel search engine possibilities [4].
Several approaches have been used to develop content-based image retrieval (CBIR) sys-
tems that allow for automatic navigation through large-scale medical image repositories [4].
Such promising capability fuels research efforts in the fields of computer vision and
deep learning.

Formally, a CBIR system is a quadruple {D, Q, F, R (g;, d;)}, where: (i) D is a set com-
posed of representations for the images in a given collection, (ii) Q is a set of representations
for user information needs, operationally known as queries, (iii) F is a representational
framework that allows images, queries, and their relationships to be jointly modeled, and,
finally, (iv) R(g;, d;) is a ranking function which associates a real number with a query ¢;
in Q and an image d; in D. The ranking defines an ordering among the images in a given
collection regarding the query 4.

Regarding F, this framework can be learned using supervised or unsupervised ap-
proaches. In supervised approaches, the representational framework has a grounded
dataset made up of pairs of images and queries along with their respective ranking scores.
The main limitation of these approaches is the difficulty of building a large volume of cu-
rated data that allows the system to generalize for new queries and images not considered
during the training phase of the system. On the other hand, unsupervised approaches do
not require a grounded dataset to train the representational framework. Instead, this type
of system is typically based on distances between vector representations of images and
queries. We take this second approach for this proposal.

CBIR systems have the potential to deliver relevant technology for clinical imaging
through several use cases in medical education, research, and care, including clinical
diagnostics [5]. In radiology, for instance, it has long been shown that CBIR can facilitate
diagnosis, especially for less experienced users such as radiology residents, but also for
radiologists in cases of less frequent or rare diseases [6]. Noteworthy, relatively less explored
has been the possibility that image content-based repository indexation technology brings
about to augment search results display options. This indexation approach empowers
the development and application of intelligent similarity maps to display search results,
which may further boost efficiency of navigation through large-scale medical imaging
repositories. If integrated with a PACS (Picture Archiving and Communication System),
this approach would make it possible to perform novel, automatic, independent, medical
inter-consultations using medical image content with similar cases available in the local
and other linked archives without requiring the user to enter a priori keywords to drive
the search towards the best visual content match. Furthermore, such a CBIR system and
intelligent and interactive visual browser, thoughtfully designed to be fully interoperable
with healthcare systems according to international standards, may stimulate a burst of
novel opportunities for medical education, research, and care.

The literature on this topic has identified use cases even when technical limitations
would only allow CBIR based on shallow features such as shape and texture, and at a time
when medical imaging fields have counted on a narrow set of digital images of limited
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resolution. Novel deep learning architectures have paved the pathway towards unleashing
the potential for innovative applications to solve long-standing medical image search
problems. Moreover, features from deep convolutional neural networks have yielded
state-of-the-art performance in CBIR systems by efficiently overcoming long-standing com-
putational shortcomings [7-9]. With current computing capacity increasingly supplying
powerful image analysis techniques, a new surge of capabilities and applications have
been devised. Novel deep learning architectures have also empowered internal image rep-
resentation learning, specifically, latent representations, which can be used to implement
ground-breaking image content search engines [10-12].

Looking towards their implementation in the daily clinical workflow, however, there
remain technical challenges. Large-scale repositories, reciprocally, are needed for CBIR
systems to deliver appealing search results. For that purpose, in turn, local teams with
experience in the use of healthcare integration standards are required. For multi-center col-
laborative efforts, there is also needed a data extractor inside each institution to anonymize,
and transfer and convert data to a standardized semantic term.

The aim of the present project was to develop a CBIR system using learned latent
image representation indexation, with a visual content, similarity-based, intelligent and
interactive visual browser for efficient navigation. The system was developed using interna-
tional standards to be fully interoperable to ease integration into routine clinical workflow
and, thus, support current medical image demands throughout education, research and
clinical care.

2. Materials and Methods
2.1. Building an Interoperable, Standardized and Anonymized Medical Image Repository

Integration with the hospital (Clinical Hospital University of Chile, Santiago, Chile) to
have continuous feeding of medical images and metadata was composed of different mi-
croservices. First, a Mirth Connect integration system was used to receive data in different
health standard types, DICOM channels, HL7 messages, and HL7-FHIR messages. Mirth
Connect was integrated to an Anonymizer service, which eliminates all patients’ personal
data and extracts healthcare data to feed an FHIR server using international standardized
health terms (SNOMED-CT, ICD-9, ICD-10). This allows the development of an inter-
operable and standardized repository. The Institutional Review Board approved (METc
2020/035, on 8 July 2020) the storage and management of thorax computed tomography in
this repository. All procedures were conducted in adherence to the declarations of Helsinki.

2.2. Deep Learning-Based Medical Image Indexation and Retrieval Strategy

Two image processing architectures based on deep learning were combined. The
first, CE-Net (Context Encoder Network) [13], was used to build a representation of
the input image in a lower dimensional space, i.e., a latent representation. Using these
image embeddings, a second neural architecture was trained, Xception [14], which is
capable of learning a new representation of the input image. This architecture is trained
to solve a diagnosis classification task, which helps group images that coincide with their
initial diagnosis.

2.2.1. CE-Net

The image segmentation architecture CE-Net [13] was used first, which allows 2D
medical images to be processed. The CE-Net architecture is an extension of the U-Net
architecture [15], which is an encoder-decoder architecture. Encoder-decoder architectures
work with a tandem of neural layers, wherein the first architecture block, the encoder,
is a sequence of layers responsible for building a representation of the input image in
a lower dimensional space, known as latent space. The second architecture block, the
decoder, is another sequence of layers responsible for transforming the encoding from
latent space to original space, recovering the original dimensionality of the image. The
layers of the U-Net architecture are convolutional, introduce max-pooling operators, and
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add residual connections to prevent the network from the loss of information between
layers. This allows the construction of lower dimensional representations that retain the
most important information from the encodings obtained in the previous layers. The
architecture parameters are adjusted in such a way as to minimize the reconstruction error
(defined as the difference between the original image and the reconstructed image). Thus,
the encoder-decoder architectures are intended to encode the images in the latent space.
The CE-Net architecture extends the U-Net architecture by incorporating two processing
modules: the dense a-trous convolution (DAC) and the residual multi-kernel pooling (RMP)
module. Both modules were designed to capture high-level characteristics, preserving
spatial information throughout the encoder-decoder architecture. These representations
were used to feed the second neural architecture used by the system, the Xception.

2.2.2. Xception

Xception [14] is an architecture that extends the Inception [16] architecture used in im-
age classification. Classification models based on deep learning achieve good performance
by incorporating representation learning mechanisms that enable adapting of these repre-
sentations to the tasks for which they are trained. The Inception architecture uses modules
based on convolutional operators that capture short-range dependencies in the input image;
this allows learning of a new representation of the input image by identifying patterns
between the pixels of the original image, which is useful for a better representation. The
Xception architecture extends the Inception architecture by incorporating convolutional
layers that allow capturing long-range dependencies, which has allowed this architecture
to obtain good results in classification problems.

Yet, one of the disadvantages of architectures such as Xception, is that they have many
parameters and, therefore, require a large volume of data to be trained. The Xception
architecture was validated on an internal Google dataset, called JFT, which has more than
350 million high resolution images with labels on the order of 17,000 classes. The availability
of labeled imaging data at this volume is unlikely to be reached in the medical field in the
near future. Because the scale of the repositories with which this project works is much
smaller, training an Xception architecture for medical images from scratch is not feasible.

Therefore, a different approach was introduced that allows reducing of the gap be-
tween the need for large volumes of data to use deep learning, and the actual availability
of medium-scale datasets in the clinical setting. Two architectures trained in different tasks
were combined. The CE-Net architecture was used to segment the images of the repository,
and the latent representations were used as pre-trained vectors to adjust the Xception
architecture according to diagnosis. By segmenting the images and working with their
latent representations, their variability was reduced and placed in a common representa-
tion space, which provides better generalization abilities to the Xception because, instead
of working with the original images, it works with images with reduced dimensionality.
Thus, the Xception network can work with fewer parameters when solving the diagnostic
classification task, making it possible to avoid the risk of overfitting attributable to limited
volumes of data. Another advantage of this way of proceeding is that it enables working
on images of different types. Since the CE-Net architecture builds a common representa-
tion space for images of different types, the Xception network can process these images
indistinctly, solving the diagnostic classification problem on heterogeneous image sources.

Note that Xception is a supervised method. To solve the classification problem accord-
ing to diagnosis, the model must encode the images to consistently activate the feature
maps of the output layer in correspondence with the diagnosis. Accordingly, the encod-
ings of the images that coincide in diagnosis decrease their relative distance, producing a
clustering effect in the embedding space. Our representational framework takes advantage
of these Xception features to improve the system’s search abilities in the target classes.
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2.2.3. Ce-Net + Xception Assembling

We tested latent embeddings extracted from the DAC and RMP blocks of the Ce-Net,
the latter delivering the best results in our system. The encoding extracted from the RMP
block was fed into the Xception network. Accordingly, instead of working directly on the
images, the Xception network works on the encodings of the images delivered by the
Ce-Net RMP block. The RMP block gathers information from the DAC block using four
different-sized pooling kernels. These features are fed into a 1 x 1 convolution to reduce
the dimension of feature maps. Finally, these features are concatenated with the original
features extracted from the DAC block, producing an encoding.

The Ce-Net processes images of 512 x 512 dimensions. The RMP block produces
encodings with 384 x 344 dimensions. This encoding is ingested into the Xception, which
outputs an activation map of the same dimensions. Both encodings, of the RMP block
and for the output activation of the Xception, are flattened and concatenated, producing a
one-dimensional embedding with 264,192 entries.

According to the formal definition of a CBIR system provided in Section 1, each
quadruple element corresponds to the following elements of our framework. D is the set
of images indexed by our system, Q is an unbounded set of images used to query our
system, F is the representational framework defined by the Ce-Net + Xception ensemble,
and R(g;, d;) is the distance computed by the nearest neighbor query engine. Note that
the queries are unseen images, i.e., medical images not used during the representation
learning training phase. In order to create the query encodings, we need to feed these
images into the representational framework. Accordingly, for each query image, their
embeddings are retrieved from the RMP block and the last feature activation map of the
Xception network. Finally, these embeddings are used as query vector representations to
feed the query engine.

One of the characteristics of our ensemble is that it combines two different capabilities
in a single representational framework. On the one hand, the Ce-Net encodes images
using convolutional filters of different sizes, which allows it to represent tumoral lesions
of different sizes. This characteristic is mainly due to pooling kernels, which are used in
the DAC and RMP blocks of the architecture. On the other hand, the Xception network
allows images to be grouped according to diagnosis. The effect that this network produces
in the latent space is to cluster the encodings, reducing the relative distances between the
images that coincide in diagnosis. This capacity provides the system with better detection
capabilities in the target classes. Due to the above, it is expected that images with lesions
of different sizes or types of tissues, but that coincide in diagnosis, will cluster in the
embedding space.

2.2.4. Training

The CE-Net can be trained for medical image segmentation tasks by showing original
segmented image pairs to the network at the input and output of the network. This
requires having a set of medical images together with their segmentation masks, generated
by medical imaging specialists. To do this, we trained CE-Net with public datasets of
different types of medical images.

The SARS-CoV-2 CT scan dataset was used to train the Xception network (SARS-CoV-2
CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification.
Available online: https://www.medrxiv.org/content/10.1101/2020.04.24.20078584v3, ac-
cessed on 27 July 2021). The dataset contains 1252 CT slices that are positive for SARS-CoV-2
infection (COVID-19) and 1230 CT slices for patients non-infected by SARS-CoV-2. Since
each scan contains multiple slices, and some do not show ground-glass or other evidence
of COVID-19, we used the Ce-Net to sample CT slices. The segmenter allowed CT slices to
be sampled for COVID-19 patients who had evidence of ground-glass or pleural effusion.
One axial slice was sampled per scan, maintaining the balance between healthy and sick
patient slices.
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As a validation set, the COVID-CT-dataset (COVID-CT. Available online: https://
github.com/UCSD-AI4H/COVID-CT, accessed on 27 July 2021) was used as a testing set.
The dataset contains 349 CT slices from 216 COVID-19 patients and 463 non-COVID CT
slices. The dataset contains images acquired with different media, for example, CT slices
post-processed by cell phone cameras and some images with very low resolution. For
these reasons, the dataset represents the real conditions of image acquisition for a system
of this kind.

To generate a balanced set of queries, the Clinical Hospital of the University of Chile
supported us with eight CT scans where half of them had suffered from COVID-19. From
these CTs, 25 slices with COVID-19 and 25 slices without COVID-19 were extracted. Each
of these queries was used to query our system.

As the Ce-Net is a network with many parameters, and to avoid overfitting, we
initialized their weights using ImageNet samples [17] (ImageNet. Available online: https:
//image-net.org/, accessed on 27 July 2021).

2.2.5. Validation

The performance of our search system was evaluated using precision and recall
measures. To compute these metrics, the CT slices” ground labels are considered according
to SARS-CoV-2 diagnosis, counting matches between image examples labels and their list
results. This proposal was evaluated considering four alternative methods:

- Ce-Net [13]: Corresponds to a search system based on the encoding of the testing
images obtained from the Ce-Net using the RMP block.

- Xception [14]: Corresponds to a search system based on the encoding of the testing
images obtained from the Xception using its last layer.

- U-Net-ME (manifold embeddings): Corresponds to a search system based on the
encoding of the testing images obtained from the architecture of Baur et al. [18], which
extended U-Net and was trained for 5 epochs for segmentation and then 5 epochs
with the manifold embedding loss. The embeddings were obtained using the last
layer of the architecture.

- U-Net-ML (mixed learning): Corresponds to a model based on [18], for searches over
the encoding of the testing images obtained from a U-Net architecture. Trained for
5 epochs for segmentation, then 5 more epochs for classification. We conducted tests
with several layers of the encoding but those that obtained the best results were the
embeddings obtained using the last layer of the architecture.

The results of the experiments are shown in Figure 1. The performance plots on the
whole set of testing queries (at the top of Figure 1) show that our proposal outperforms the
other methods in precision. As we might expect, the precision drops slightly as the list of
results grows. The variance around the mean precision also decreases gradually. The recall
of all the methods is quite similar, reaching around 20% in lists with 50 image results.

By separating the testing set between COVID-19 and non COVID-19 queries, the
results in Figure 1 show that our method obtains advantages over other methods when
using queries of patients with COVID-19, surpassing by a significant margin the most direct
competitor, the Xception network. The other methods have lower performances. U-Net-ME
performs well in the healthy patient class. However, this model exhibits overfitting to this
class as its performance in the COVID-19 class is very low. Our proposal surpasses the
other methods in COVID-19 images regarding recall rates, while U-Net-ME generates a
better recall in images of healthy patients. The results confirm that our proposal is suitable
for searching for images of COVID-19 patients, surpassing all its competitors in precision
and without generating overfitting to any of the classes.

With the Ce-Net + Xception network validated, latent vectors were indexed in a
nearest neighbors query engine, which is the basis of the intelligent visual browser.
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Figure 1. Precision and recall scores of the methods evaluated in this study. The plots at the top show the whole set of

images’ performance, while the plots at the bottom show the results disaggregated by class.

2.3. Intelligent Interactive Visual Browser for Medical Images

The data ingestion pipeline (content + metadata) to the PACS has been systematically
tested in its different stages, with different image sources. The software architecture design
of the CBIR system was developed following a model of microservices grouped in the
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back-end and front-end of the system. These services are communicated via REST API
(representational state transfer) in order to have a scalable system for a correct incorporation
of new data and their respective descriptive metadata. This pipeline makes available
the metadata information necessary for the results of the CBIR system. In the case of
content (images), the procedures for their incorporation into the PACS go together with the
metadata in the data ingestion pipeline, thus being available as potential search results for
the CBIR system. The design of the system allows us to function in a decoupled way to the
nature of the image for which the architecture of neural networks are designed to work.
In the event that the image format is changed, it would only be necessary to update the
network architecture.

2.3.1. Back-End

The combination CE-Net + Xception constitutes the back-end of the browser. The
back-end provides a vector representation of all the images in the repository, i.e., the
latent representations constructed using the CE-Net + Xception allow obtaining continuous
and dense vectors of the same dimensionality for all the images in the repository. It is
noteworthy that combining these architectures makes metadata availability requirements
more flexible since none of the networks require metadata for ingested imaging datasets.
This means that images of different types could be received without metadata, and all
of them would have a latent representation in the same latent space that Xception uses
for classification. Moreover, images of latent representations retrieved by Xception are
expected to be separated by types of images (as a result of the CE-Net segmentation
model) and by diagnosis (as a result of the Xception classification model). The clustering
hypothesis according to type of image and diagnosis is supported by the combination of
both architectures in tandem. This means that while the segmenter allows different types of
medical images to be represented in the same representation space, the Xception network
helps to separate them by diagnosis. It is worth mentioning that if diagnostic metadata is
not available, the Xception network will obtain the representation of the unlabeled images
using them as a testing partition.

2.3.2. Front-End

The front-end is responsible for enabling the search engine on the repository. To
do this efficiently, the images are indexed using an efficient data structure that allows
searching for close neighbors. This data structure is Multiple Random Projection Trees
(MRPT) [19], which is considered to be state-of-the-art in the approximate search for close
neighbors. MRPT allows the building of a search index with recall guarantees. This means
that we can indicate a minimum recall rate and the structure is built in a way that satisfies
this restriction. This element is important because if the repository grows in volume, an
index that scales to a larger volume of data will be required. Once the index has been
built, queries of close neighbors can be run. The user determines the number of nearest
neighbors from the repository and returns the identifiers of the corresponding images.
Queries are new images that do not need to be labeled, i.e., they do not need to be entered
with any accompanying text. To enter it as a query, the image is first segmented using the
CE-Net network pre-trained on the repository images. After retrieving its latent vector
and ingesting it in the Xception network, the latent vector is retrieved from the Xception
network, which is used as a representation of the image. This vector is in the same latent
space as the images indexed in MRPT, so it can be used as a query vector to retrieve its
nearest neighbors. As the representation is built on the same pipeline with which the
repository images have been processed, the nearest neighbors will correspond to images
that are similar in content, both in segmentation structure and diagnosis.

Figure 2 shows the pipeline of our proposed assistance system, including the query
pipeline implemented on the front-end to enable the intelligent interactive visual browser
for medical images.
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PACS. The system has a query pipeline on the front-end of the intelligent interactive visual browser for medical images. A
new image is processed using the CE-Net + Xception architectures to obtain its vectorized latent representation. The query
engine accesses the repository indexes, retrieving the nearest neighbors images from the repository, which are displayed by

the interactive visual browser for medical images (as shown further in Figure 3). Metadata, whenever available, is also

displayed. Then, the nearest neighbors” graph is shown in the front-end to visualize the results.
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without colored halo, respectively) centered around the query image (yellow). The user can select an image from the graph,

which displays the image’s metadata tab, if the metadata is available. The system is currently available in Spanish (marca

dispositivo, device brand; parte del cuerpo, body part; organizacion, organization; simbologia, symbology).
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Since the browser is based on proximity searches, creating an ego network around the
query image would provide valuable information to the user as to understand the different
groups of images that make up the set of results. Because displaying the results according to
similarities may be expected to be more informative than conventional displaying fashion
in the form of a list, the visual browser was designed taking into consideration that once
the nearest neighbors of the query image are retrieved, the results could be displayed by
implementing a proximity graph.

2.4. Results Display

A key aspect of our visual browser concerns its fashion for displaying search results.
A graphic library called VivaGraph (VivaGraph. Available online https://github.com/
anvaka/VivaGraph]S, accessed on 27 July 2021) was selected, in JavaScript, which allows
rendering results’ graphs in near real-time. The VivaGraph library allows a graph display
with thousands of nodes in fractions of seconds, making it ideal for the purposes of this
search engine. The rendering of the graph consists of generating a node for each result, and
joining the results with edges whose length is inversely proportional to their proximity. In
this way, the closest results are grouped into clusters and the most distant are more distantly
displayed. The rendering is defined by a layout algorithm. A Force Atlas layout is used
that produces more compact graphs than other layouts, which is useful for the tool. The
graph is responsive, i.e., it allows the user to select an image and display a metadata box
that complements its description (if available). Whenever metadata is available, the viewer
will show it in a responsive selection box, which delivers a tab of an image selected by the
user on the proximity graph. The system allows the user to provide text (e.g., diagnosis of
the query image) as part of the repository consultation, in which case it will be used to filter
out the results returned by the query engine. This case is called hybrid search (content +
metadata). If the user does not provide text, the query is performed by using a content-only
search (no metadata). Figure 3 shows a query graph displayed using our system.

2.5. Survey among Professionals of the Healthcare Sector

To explore the potential applications that professionals of the healthcare care sector
would foresee for a CBIR system with an intelligent interactive visual browser, a survey was
performed among nurses, medical technologists, dentists, general practitioners, radiology
residents, radiologists, and other medical specialists such as ophthalmologists, surgeons,
gynecologists, urologists, pediatricians, and otolaryngologist, among others, at the Clinical
Hospital University of Chile. The composition of the survey sample was: 56.7% medical
doctors, 26.9% medical technologists, 7.4% nurses, 3% dentists, 3% medical informatics,
1.5% biochemists, and 1.5% students. On the other hand, the sample was distributed as
31.4% male, 34.3% female, and 34.3% unknown gender.

The invitation to participate was shared through digital media (electronic mailing
and social networks). All participants were invited to, in turn, share the link to the survey
with healthcare professionals of their working and social network. The survey was applied
between November and December 2020. In total, 67 subjects completed the survey. For the
questions “in which cases would a CBIR system be useful?” and “in which cases would an
intelligent interactive visual browser be useful?”, respondents were asked to choose from
six possible answers: medical education; research; clinical care; innovation/technological
development; personal study; management statistics.

We found that most respondents from the healthcare sector foresee that a CBIR sys-
tem would be useful for medical education (57/67 = 85%), research (51/67 = 76%), and
clinical care (57/67 = 85%), while it would be less useful for innovation and technological
development (25/67 = 37%), personal study (2/67 = 0.3%), and management statistics
(1/67 = 0.1%). Similarly, most respondents from the healthcare sector foresee that an in-
telligent interactive visual browser would be useful for medical education (47/67 = 70%),
research (52/67 = 78%), and clinical care (47/67 = 70%), while being less useful for innova-
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tion and technological development (18/67 = 27%) and personal study (2/67 = 0.3%). The
results of this survey are shown in Figure 4.

B

o
ln —
o
v —
<
o
o ™
c
g
o
O
g °
[N
o
o _|
T T T T | l | T T 1
AN o Q AN o
& & © e SN AR
@ & KRG S . ? ® & K S
> I S > Ny RY S S o S
& & & 2 > N\ & BN
\ S e N

Figure 4. Results of the survey among professionals of the healthcare sector (n = 67). Medical education, research, and
clinical care were considered the most relevant use cases for (A) a content-based medical image retrieval system and (B) an

intelligent interactive visual browser.

To further evaluate the system’s usability, the System Usability Scale will be applied in
upcoming evaluations of the system once it is implemented and running in a corresponding
environment for medical education, research, and care purposes.

3. Discussion
3.1. State-of-the-Art Image Content-Based Search Engines in the Medical Field

An ever-increasing amount and quality of digital medical imaging has driven the call
and international efforts for the building of large-scale medical image repositories that may
unleash unprecedented possibilities for medical education, research, and care purposes. In
turn, the burst of medical image analytics capacity due to advances in computer science,
computer vision, and deep learning has redeemed novel technological capabilities for
developing advanced CBIR systems over the past few decades. These systems are relevant
to ease the management of and navigation through large-scale medical image reposito-
ries, with long proposed use cases in each of the aforementioned medical purposes [4].
Ahmed et al. [20] proposed a method for merging color and spatial information, achiev-
ing excellent results in multiple datasets specialized in texture, color, and morphology.
Wei et al. [21] used kernel trick techniques to make the model learn by calculating the
Mahalanobis distance, so that it is possible to handle both visual and semantic information.
Yet, despite traditional methods having achieved good performance in specific medical
contexts, it should be noted that conventional methods for analyzing medical images have
reached a point of limited success as they are not capable of tackling the current huge
amounts of image data [4]. It is noteworthy that single medical imaging examinations may
comprise thousands of images, meaning that massive amounts of images have to be stored
in medical image repositories, which challenges the efficiency of CBIR systems for medical
purposes and clinical settings [22]. Achieving both accuracy and efficiency to perform
real-time image analyses through large-scale repositories such as those currently possible
in the era of big data remains a challenge. The problem to tackle nowadays is efficiency, as
it is key for ensuring its actual application by end users in medicine.
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Novel techniques leveraging large-scale medical image analysis bring about unprece-
dented opportunities to minimize the usual trade-off between efficiency and accuracy,
paving the pathway towards developing CBIR systems that are both highly accurate and
efficient. It has been proposed that reducing the dimensions of feature representation
vectors and improving the data indexing strategy may aid on addressing this issue. Yet, it
should be noted that good feature representation is essential to accomplish good perfor-
mance in CBIR systems. Feature representation is categorized into hand-crafted (features
are obtained by means of domain expert knowledge) and learned (solely data-driven
methods). On the one hand, although hand-crafted features obtained favorable results in
CBIR systems, for large-scale medical image settings their major drawback is the need for
(expensive) expert knowledge. It is time-consuming, computationally expensive, and the
specificity of some hand-crafted methods limits the extension of its use from one medical
domain to another [4]. Whereas, on the other hand, for learned features, deep learning does
not require domain expert knowledge but only a set of training data to disclose feature
representations in a self-learned fashion [23,24]. Many deep learning architectures have
been built to map features into abstract representations using manifold neural network
layers and numerous parameters [12]. Therefore, having large-scale medical image reposi-
tories actually lies in the foundational interests of deep learning-based approaches, as it
provides amounts of training data in order of magnitudes that make it possible to optimize
the thousands to millions of parameters set up in its neural network’s architectures. Some
recent examples of deep learning systems are that of Cai et al. [25], which used a Siamese
network to generate a binary embedding through hashing and built a special loss function
that allows to distance or approximate such embedding if the pair of input images to the
network have the same label or not, generating a robust image recovery system. Next, in
2020, Yang et al. [26], achieved the state-of-the-art method in information retrieval for the
public histological dataset Kimia Path24 [27] using a mixed attention approach that involves
both spatial attention and channel attention.

Supervised and unsupervised deep neural networks have been applied to produce
feature representations of medical images. The first demands labeled training data, which,
for the case of large-scale medical image datasets, equals expensive physician or domain
expert annotation. In order to circumvent these restraints, unsupervised deep neural
networks, i.e., auto-encoders, have been proposed for feature representation, for which
representation power improves when several auto-encoders are stacked to form deep
stacked auto-encoders. Deep belief networks and deep Boltzmann machines are also
prevalent deep neural network alternatives for medical image feature representation [10,11],
the latter being proposed as a promising solution for next-generation medical image
indexing and retrieval systems [4]. It should be realized, however, that learned feature
representations are currently used mostly for medical image analytics tasks, but much less
frequently for indexation and medical image retrievals tasks [4]. The reason is that, up
until relatively recently, most CBIR tasks have been aimed at small-scale image datasets,
which inherently prohibits training such deep learning neural networks, whereas domain
expert-designed features reach good performance in datasets of this order of magnitude.
Nowadays, besides the aforementioned limitations in cases of large-scale datasets of
medical images, deep learning-based methods allow the learning of different types of
features compared to domain expert-designed features, further underscoring the potential
of using deep learning-based methods for the design of CBIR systems in the medical field.

The deep learning neural network used was CE-Net [13], which is an encoder-decoder
architecture. The Xception [14] architecture was used in tandem. As this incorporates
convolutional layers that allow the capturing of long-range dependencies, this architec-
ture obtains good results in classification problems. Yet, since this architecture has many
parameters, it requires data volumes in order of magnitudes unlikely to be reached in the
medical field in the near future. Hence, a different approach was introduced to reduce
this gap, i.e., the latent representations created by the CE-Net architecture (images with
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reduced variability) were used as pre-trained vectors to adjust the Xception architecture
(with improved generalization ability) according to diagnosis.

As a result, with our state-of the-art approach, while CE-Net allows different types of
medical images to be represented in the same representation space, the Xception network
helps to separate them by diagnosis. It is possible to compute and rank the distance between
the query image and the feature vectors (images) in the database, to display the search
results on a near neighbor or similarity map, which we have called a proximity graph.

3.2. Applications in Medical Education, Research and Care

The previous literature has highlighted education as the major potential beneficiary of
image CBIR systems. Such systems would allow medical students, interns, or specialists-
in-training (e.g., radiology residents) to query a particular case encountered during their
studying, practicing, or training schemes by using the system to retrieve similar cases
and related metadata for consideration and instruction. In particular, the intelligent in-
teractive visual browser developed in this project allows apprentices to browse through
available images in an easy, intuitive, and straightforward fashion, wherein similar cases
are organized and showcased according to their similarity. This possibility is expected to
support and enhance self-studying potentiality, and it may also help the down-turning
negative effects of otherwise impaired mentor-mentee interactions due to unforeseen
circumstances, such as that of the current COVID-19 pandemic. We expect usability to
be highly increased, particularly in training and practicing scenarios, by integrating our
system into clinical workstations, allowing the direct exportation from the PACS without
the need for saving or transforming the original clinical image. Taking into account the
importance of easing integration to the PACS and electronic healthcare records, we have
developed a fully interoperable repository, which adheres to international standards and
integral terminologies. Next, medical lecturers may likewise see potential educational
applications. Instructors can easily find medical cases for teaching while graphically dis-
playing potential differential diagnoses of a particular case. This would allow comparing
of different annotations for otherwise visually similar medical cases. These are all use
cases not previously possible by means of conventional text-based search engines and
display. It should also be underscored that in integrated scenarios, trainees would be able
to tailor the study of clinical differential diagnoses to those epidemiologically relevant as
available in the local archives. This is in line with the contemporary understanding that the
unfolding age of artificial intelligence-augmented radiology may enable precision medicine
but also precision medical education, fitting trainee-oriented instruction to individual
needs [28,29]. Of note is that case-based analyses of relevant differential diagnoses, also
referred to as the bottom-up strategy, has been shown to be more effective in comparison
to its top-down counterpart (i.e., first, learning diagnostic processes and then practicing),
it is in line with adult learning theories, and, importantly;, it is also the preferred method
used by students and trainees [30]. In summary, case-based radiology learning using our
CBIR systems integrated to the PACS may aid medical educators to overcome the burden
of preparing laborious training cases while immediately linking metadata generated in real
clinical scenarios, and provide specific healthcare facility-relevant experience of commonly
encountered similar cases.

Similarly, for research purposes, it is noteworthy that medical image scientists would
usually browse large-scale medical imaging repositories at different—not necessarily
diagnostic—levels. Text-based limited search engines cause higher browsing-related time
as they force the researcher to implement empirical repository exploration approaches,
repeatedly revising and improving query commands until obtaining content-relevant im-
ages. Moreover, complementary visual image content- and text-based searches may supply
research with the ability to navigate similar cases within a keyword-prioritized or keyword-
restricted search context. This searching strategy may allow unprecedented content-based
similarity analyses within the boundaries of a particular diagnosis, aiding on, for instance,
the study of visual features characterizing different stages or variations of a particular



Diagnostics 2021, 11, 1470

14 of 17

disease [5]. In clinically integrated scenarios, researchers may also take advantage of the
implicit (non-textual) information stored in images, mining together image content with its
accompanying metadata, just as routinely produced in the clinical context. In the era of
big data, such novel research settings may advance medical knowledge by empowering
the ability to link visual features with radiological reports, electronic healthcare records,
and patients” outcomes. For otherwise similar cases (i.e., imaging cases with equivalent
radiology descriptions and diagnosis), novel research opportunities may be introduced
to identify imaging biomarkers that inversely associate with adverse clinical events. This
patient-centered approach is in line with the current efforts of providing patient-centered,
personalized medicine for value-based healthcare [31,32].

For real-time clinical decision support and diagnostic purposes, it is well known the
problem-solving potential of having a repository with medical image cases for consultation.
Yet, such potential is generally frustrated by the laborious and time-consuming task of
navigating textbooks or imaging repositories for that purpose in a fast-paced clinical envi-
ronment. Such time-constrained setting, e.g., that of current radiology practices, would
benefit by having the means to access automatic, independent medical inter-consultations
according to medical image content with similar cases available in local archives. For clini-
cal decision support, it has been proposed that typical computer-aided diagnosis systems
usually value the probability of disease types, which may not be suitable for imaging spe-
cialists whose training was based on reading many images, whereas providing reference
images that are perceptually similar could supplement numerical outputs and better fit
imaging specialists’ clinical image reading processes. Indeed, it has been underscored
that a CBIR system may further aid diagnosis, particularly in cases for which the diag-
nosis greatly depends on visual features, aligning with evidence-based radiology [33-35]
and case-based reasoning [30,36] frameworks. In agreement with this, some CBIR sys-
tems have recently received FDA clearance for machine learning-driven diagnosis [37,38].
SYNAPSE automatically segments potential lung cancer lesions and retrieves similar cases,
whereas another system [39] retrieves nodular and diffuse opacities in lung CT imaging
examinations. Recent studies have investigated the application perspectives into radiology,
reporting that by integrating pixel-based and metadata-based image feature analyses, CBIR
systems may lead to significant practical advances impacting permeation and integration
of these methods into clinical and imaging workflow [40].

3.3. Integration into PACS and Electronic Patient Records, and Anonymizer Service

Particularly in radiology, it has been highlighted that integration with DICOM-based
PACS networks is needed to provide functionality in a seamless manner and reach a
wider audience of users [41]. It should be realized that a PACS is a rich data source as it
stores radiological data generated on a daily basis for clinical purposes, yet this gigantic
collection of past radiological cases is rarely used as a searchable repository to enrich
ongoing diagnostic capability or solve future diagnostic matters. It is well known that,
since the early days of the PACS, radiologists highly regarded the introduction of this
system into their workflow as it allowed for image manipulation but also eased retrieval
and comparison [42]. Our system may take the retrieval and comparison potential of the
PACS one step further into the direction radiologists value for clinical purposes. Because
integration is such an important feature, we developed a highly interoperable system to ease
integration with any system adhered to international interoperable standards. Furthermore,
we designed the repository of the CBIR system with an automatic anonymizer service in
order to adhere with international standards on patients’ data privacy policy and to ease
multicenter collaboration. The need for multicenter or international collaboration may be
foreseen considering that the performance of the CBIR system improves with the size of its
imaging repository.
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3.4. Acceptance of This Technology in the Clinical Domain

One important matter in image retrieval research is the evaluation of the behavior
of the retrieval system by end users. This is not an easy task, taking into account that
one of the most relevant factors for acceptance of this technology in the clinical domain is
the perceptual similarity of the retrieved images, which is judged by imaging specialists
partially on the basis of subjective factors and may showcase low interobserver agreement;
however, it has been recently shown that perceptual or subjective similarity is a solid
concept, which can be reliably measured and evaluated [37]. Hence, further research is
needed to study the hypothesis that the system that we developed performs adequately for
acceptance in the clinical domain. Furthermore, with an extension of the imaging repository
to different set of clinical images, it is also warranted to evaluate whether particular image
search engines may need to be developed and used for particular anatomical regions or
imaging modalities [43].

3.5. Limitations of the Proposed System

One of the main limitations of our system is its dependency on two types of grounded
datasets. Although the proposed approach is unsupervised in the ranking phase, the
representational framework requires tagged data for the training phase. Accordingly, it can
be considered a hybrid approach, with a supervised representation learning phase and a
ranking phase based on an unsupervised query engine. Both Ce-Net and Xception require
grounded images. In the case of Ce-Net, medical images with their respective masks are
required. These masks could be expensive to obtain and could eventually limit the ability
to incorporate new medical exams into the system. The Xception requires diagnosis labels.
In addition, a tiny volume of tagged data involves the risk of overfitting. To avoid these
drawbacks, data augmentation and semi-supervised learning techniques are recommended
since they would facilitate the training of the representation learning framework.

4. Conclusions

We developed a deep learning-based CBIR system and a first-of-its-kind intelligent
visual browser that interactively displays on a similarity map a set of imaging examina-
tions with similar visual content, making it possible to search for and efficiently navigate
through a large-scale medical imaging repository, even if it has been set with incomplete
and curated metadata. The system was fashioned with an anonymizer service and de-
signed to be fully interoperable according to international standards in order to stimulate
its integration within healthcare systems and its adoption for medical education, research,
and care. Professionals of the healthcare sector, by means of a self-administered ques-
tionnaire, underscored that this CBIR system and intelligent interactive visual browser
would be highly useful for these purposes. Further studies are warranted to complete a
comprehensive assessment of the performance of the system through case description and
protocolized evaluations by medical imaging specialists.
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