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Abstract

I. Background: Vertebrate epithelial cells typically express a specific set of keratins. In teleosts,
keratins are also present in a variety of mesenchymal cells, which usually express vimentin.
Significantly, our previous studies revealed that virtually all known teleost keratins evolved
independently from those present in terrestrial vertebrates. To further elucidate the evolutionary
scenario that led to the large variety of keratins and their complex expression patterns in present
day teleosts, we have investigated their presence in bichir, sturgeon and gar.

2. Results: We have discovered a novel group of type | keratins with members in all three of these
ancient ray-finned fish, but apparently no counterparts are present in any other vertebrate class so
far investigated, including the modern teleost fish. From sturgeon and gar we sequenced one and
from bichir two members of this novel keratin group. By complementary keratin blot-binding assays
and peptide mass fingerprinting using MALDI-TOF mass spectrometry, in sturgeon we were able
to assign the sequence to a prominent protein spot, present exclusively in a two-dimensionally
separated cytoskeletal preparation of skin, thus identifying it as an epidermally expressed type |
keratin. In contrast to the other keratins we have so far sequenced from bichir, sturgeon and gar,
these new sequences occupy a rather basal position within the phylogenetic tree of type | keratins,
in a close vicinity to the keratins we previously cloned from river lamprey.

3. Conclusion: Thus, this new K14 group seem to belong to a very ancient keratin branch, whose
functional role has still to be further elucidated. Furthermore, the exclusive presence of this keratin
group in bichir, sturgeon and gar points to the close phylogenetic relationship of these ray- finned
fish, an issue still under debate among taxonomists.

Background from typel/Il heterodimers. The keratins are members of
In vertebrates the cytoskeleton of epithelial cell types is  the large multigene family of intermediate filament pro-
typically reinforced by a specific set of type I and type I teins (IFproteins) of which they form by far the most com-
keratins that assemble into 10 nm thick filaments formed  plex group. In human, 53 of the hitherto nearly 70
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identified IF protein genes code for keratins [1-4] that are
expressed in tissue and developmental specific patterns.
Without including human hair and nail forming keratins,
the number of keratin genes found in teleost fish is com-
parably high, but in contrast to human and other tetrap-
ods, teleost fish possess a large excess of type I keratin
genes [5-7]. By analysing the molecular evolution of kerat-
ins, as well as the evolution of their expression patterns in
lower vertebrates, we want to further elucidate the sce-
nario and probable evolutionary forces that led to this
extraordinary variety of keratins in vertebrates.

Our investigations of the keratin systems in lamprey,
shark, trout, zebrafish, carp, goldfish and lungfish have so
far revealed that type I and type II keratins are apparently
present in all classes of vertebrates and that the various
keratins can generally be subdivided into the "E" keratins,
expressed in epidermal keratinocytes and other stratified
epithelia, and those appearing in cells forming simple epi-
thelia, thus named "S" keratins [8-19]. Nevertheless, our
data based on cDNA sequence analysis, followed by thor-
ough phylogenetic analyses [13-18] as well as the studies
based on the recently available genome data from man
and teleost fish [1,2,5-7], strongly support the view of
largely independent origins of the keratin genes found in
fish and man. According to our present data, solely the
typical "S" keratin pair K8 and K18 can at least be found
in all gnathostomian vertebrate groups, indicating the
unique and general importance of these "ancient" kerat-
ins. In contrast to other vertebrates investigated so far, in
modern teleost fish keratins, including K8 and K18, in
addition to their typical IF epithelial appearance show a
widespread IF occurrence in mesenchymally derived cells
and tissues, such as fibroblasts, chondrocytes and blood
vessel endothelia (for review see [11]). The latter in the
non-teleost vertebrates usually do not express keratins but
the type III IF protein vimentin [20-26]. To further trace
the origin of the different "E" and "S" keratins as well as
the evolution of the mesenchymal keratin expression in
teleosts, we have investigated the keratin systems in a
bichir, a sturgeon and a gar that are believed to represent
the most ancient groups of the extant ray-finned fish. In
the course of these studies, from all three species we
obtained sequences that apparently belong to a novel
branch of type I keratins, without counterparts in any
other vertebrate group investigated so far, including the
teleost fish. Here we present and discuss their sequences
as well as their phylogenetically relationships to the other
members of the type I keratin subfamily, which may also
provide clues to the early evolution of ray-finned fish. The
latter is still strongly debated among taxonomists,
whether on the basis of molecular or morphological data
(for an overview see [27]).

http://www.frontiersinzoology.com/content/4/1/16

Results and discussion

Novel type | keratin sequences from bichir, sturgeon and
gar

Only recently we have discovered that a rather ancient and
distant group of keratin-related sequences, the extracellu-
larly secreted thread keratins TKa and TKy, are not only
present in hagfish (the assumedly most ancient vertebrate
group), but also in lamprey, teleosts and amphibians.
This provided major clues relating to keratin evolution in
vertebrates, but also pointed to a more general role of this
previously considered highly specific IF protein group in
vertebrates [28]. By combination of RT-PCR experiments
and cDNA library screening (for details see Methods),
from sturgeon and gar we have now isolated one and from
bichir two cDNA sequences that, according to our phylo-
genetic analysis, code for members of another novel kera-
tin group (Fig. 1, Table 1). The 1858 bp long cDNA clone
we isolated from the sturgeon cDNA library (abakl4;
[EMBL: AJ493259]) contains the complete coding
sequence for a type I keratin of 46759Da (431 amino
acids) and a calculated pl of 5.1, which we now term
AbaK14 (from Acipenser baeri keratin). However, the cor-
responding sequences we have so far obtained from bichir
and gar are still incomplete. A 1369 bp long clone
(pseK14a; [EMBL: AM419452]) isolated from the bichir
c¢DNA library encodes a type 1 keratin that we term
PseK14a (Polypterus senegalus keratin). It still lacks a por-
tion of its head encoding sequence in addition to its 5'
UTR. By RT-PCR using degenerate primers, from bichir we
additionally recovered a 908 bp long cDNA sequence
(pseK14b; [EMBL: AM419453]), comprising almost the
complete rod encoding segment of a second K14 counter-
part in this species (PseK14b). In addition, we found five
further incomplete cDNA clones that apparently encode
different variants of PseK14a (not shown here). The latter
only slightly vary in DNA sequence, from 0.1 - 3.1%
(amino acid variance of 0.4 - 4.9%). In a similar way we
were also able to amplify a cDNA fragment encoding the
rod domain of a K14 counterpart in gar, which we term
LocK14 (from Lepisosteus oculatus keratin). By RACE-PCR
we additionally recovered its tail encoding sequence and
3" UTR. Its assembled sequence (lockl4; [EMBL:
AM419454]) overall comprises 1207 bp, but still lacks the
complete head encoding segment in addition to the sec-
tion coding for the first seven residues of the rod domain.

Subsequent mining of the available genome and EST data-
bases for K14 counterparts in other vertebrates such as tel-
eosts, amphibians, birds and mammals, so far has not yet
yielded any matches, suggesting that this keratin group
may only be present in the ancient groups of ray- finned
fish. We only found two matches encoding K14 of
another sturgeon, notably Acipenser transmontanus (white
sturgeon; [EMBL: DR975435, DR975694]), which both
stem from a skin-derived cDNA library.
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Sequence comparison of K14 from bichir, sturgeon and gar. Multiple alignment of the keratin 14 (K14) sequences we
obtained from bichir, sturgeon and gar. Thick black lines mark the four helical subdomains (coils |A to 2B), which are typical
for the central rod domain of all known IF-proteins. Asterisks indicate identical amino acids; double dots indicate a high and
single dots a lower degree of amino acid conservation. Pse, Polypterus senegalus (bichir); Aba, Acipenser baeri (sturgeon); Loc,
Lepisosteus oculatus (gar). Note that only AbaK 14 comprises the complete amino acid sequence. From PseK 14a at least a sec-
tion and from LocK 14 the complete head sequence is still missing. From PseK14b we still have to recover both, the complete
head and tail sequence.
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Table I: Properties of the isolated cDNA clones encoding K14 from bichir, sturgeon and gar.

cDNA clone Keratin EMBL accession number  Size of cDNA (bp) Number of encoded amino acids Mr (Da) pl
abaK 14 AbaK 14 AJ493259 1858 431 467594 5.1
pseK[4a PseK14a AM419452 1369 3630 - -
pseK14b PseK |4b AM419453 908 3022 - -
locK 14 LocK 14 AM419454 1207 3513 - -

Pse, Polypterus senegalus (bichir); Aba, Acipenser baeri (sturgeon); Loc, Lepisosteus oculatus (gar); V) a portion of the head domain is still missing; 2 head
and tail domain are still missing; 3 complete head domain is still missing; 4 as predicted from the cDNA sequence.

Biochemical identification of KI4 in sturgeon

To analyse the general set of keratins expressed in stur-
geon, we extracted the cytoskeletal proteins from different
tissues, including skin, liver, intestine, stomach and gill,
separated them by 2D-PAGE and subsequently analysed
the patterns by CKBB assays and immunoblotting (results
for skin, stomach and intestine are shown in Fig. 2). The
major spots were additionally analysed by peptide mass
fingerprinting (PMF) to reveal similarities between identi-
fied keratin spots and to assign them to the sequences we
obtained from the sturgeon by cDNA library screening. In
the course of these investigations we were clearly able to

a 8 b o c 8 i
g
v - H
e e lls lle ey
Tl -
S ¥ o w
Is Is
: v: e (K14) € — ' .
e -
g - A
A
a' b o
lle e s lle s
‘"-— o *'Tee - /
“
a” b" c"

. ?"_E' »\%'f&gf’

Figure 2

Biochemical identification of K14 in sturgeon. 2D-
PAGE of cytoskeletal proteins extracted from sturgeon skin
(2), stomach (b) and intestine (c). Isoelectric focusing (IEF)
was used in the first dimension, in the second dimension we
applied SDS-PAGE. Bovine serum albumin (B) and rabbit o-
actin (A) were added to the samples as marker proteins. E,
epidermal keratins; S, simple keratins. (a-c) Coomassie Blue
stained gels, showing the polypeptide patterns, which were
subsequently used for complementary keratin blot-binding
(CKBB) assays. (a'-c') CKBB test employing biotinylated
human keratin K18, thereby identifying type Il keratins (Il).
(a"-c") CKBB assay using biotinylated human keratin K8
which identifies type | keratins (l). Note that the K14 spot is
not present as a major component in intestine or stomach
and that both tissues express a mixture of E and S keratins.

assign a single protein spot to the amino acid sequence
derived from the cloned abaki4 cDNA sequence. The
matching spot was solely found as a major component in
the cytoskeletal preparation of skin (Fig. 2a), in which it
was firmly identified as a type I keratin in the CKBB assay
(Fig. 2a"). It showed a positive reaction with the anti-
trout-keratin antiserum GPpoly (data not shown), which
we previously introduced as a general keratin marker in
fish [8,10-15,19]. The two-dimensional position of this
protein spot fits the theoretical values calculated from the
sequence of AbaK14 (see above and Table 1). Peptide
mass fingerprint (PMF) analysis of this protein yielded 29
matching peptide masses for AbaK14, of which 26 were
specific for AbaK14 in comparison to the other six type I
keratins we so far sequenced from sturgeon. Overall
amino acid sequence coverage for AbaK14 was 61%.

Molecular evolution of keratins — the ancient origin of K14
To infer the phylogenetic relationships of the novel K14
group to the other currently known type I keratins, by dif-
ferent methods we thoroughly analysed a comprehensive
data set of 118 polypeptides, including the type I keratins
from lancelet, lamprey, shark, bichir, sturgeon, gar,
zebrafish, trout, Xenopus, lungfish and man (for further
details see Methods; the available accession numbers of
the employed sequences are listed in Fig. 3). Most of the
fish sequences stem from our own data, notably those
from lamprey, shark, bichir, sturgeon, gar, trout and lung-
fish in addition to K8 and K18 from zebrafish [13-
18,23,29,30]. We rooted the trees with the type I keratin
sequences available from the lancelets, which are believed
to represent the most ancient group of living chordates
[31]. In general we received the same basal tree topology
when applying Neighbor Joining (NJ), Maximum Likeli-
hood (ML) or Bayesian (B) methods for our phylogenetic
analysis. The phylogenetic tree shown in Fig. 4 is based on
Bayesian inference and clearly shows that the K14
sequences form a separate and basal branch within the
type I keratins, phylogenetically close to the sequences we
obtained from the river lamprey. They even branch off
prior to the twig formed by the gnathostomian K18
sequences, that apparently emerged before the separation
of cartilaginous and bony fish [13-15]. This ancestral ori-
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gin of the K14 twig together with the assumedly exclusive
presence of K14 in ancient ray-finned fish (see above)
raises the question as to the complementary binding part-
ner(s) of this keratin group. So far, analysis of bichir and
sturgeon has not revealed a group of type II keratins occu-
pying a similar basal position equivalent to the K14
sequences in the type I keratin tree [8,29,30]. Moreover,
the suggested restriction of K14 sequences to bichir, stur-
geon and gar indicates the close phylogenetic relationship
of these fish groups, an issue still under debate among tax-
onomists. Based on recent molecular data it can be con-
cluded that sturgeons, gars and bowfin together may form

http://www.frontiersinzoology.com/content/4/1/16

a sister group to the teleost fish and that bichirs represent
the most ancient group of ray-finned fish (for review see
[27]). Since our current studies do not contribute to the
resolution of this problem, the keratin system in bowfin
should be investigated, which might shed more light on
this issue.

Furthermore, the phylogenetic tree illustrated in Fig. 4
suggests that most of the type I keratins from ray-finned
fish evolved independently from those present in lung-
fish, frog or man and that very early in actinopterygian
evolution a gene duplication gave rise to at least two dif-

Name Accession Species Name Accession Species
AbaK10 AJ493255 Acipenser baeri Omy-K10 AJ272372 Oncorhynchus mykiss
AbaK11 AJ483256 Omy-K11 AJ272371
AbaK12 AJ493257 Omy-K12 AJ427868
AbaK13 AJ483258 Omy-K13 AJ427867
AbaK14 AJ493259 Omy-K18 Y14289
AbaK15 AJ493260 Pae-K12 AJ785786 Protopterus aethiopicus
AbaK18 AJ493261 Pae-K13 AJ785787
BfllF1 AF108192 Branchiostoma floridae Pae-K14 AJ785788
BlaE1 AJ010294 Branchiostoma lanceolatum Pae-K15 AJ785789
BlaK1 AJ245426 Pae-K16 AJ785790
BlaY1 AJ245428 Pae-K17 AJ785791
DreKeyt1 AF084461 Danio rerio Pae-K18 AJ785792
DreKzfCKI AF197880 Pae-K19 AJ785793
DreK11 BC075874 Pae-K20 AJ785799
DreK12 BC044144 Pae-K21 AJ785785
DreK13 BC076059 PseK10 AM419450 Polypterus senegalus
DreK14 BC076485 PseK11 AM419451
DreK18 AJ493269 PseK14a AM419452
DreK18a(K15) BC066541 PseK14b AM419453
DreK18b(K16) BC078359 PseK18a AM419448
DreK17a BC115108 PseK18b AM419449
DreK17b BC092718 Sst-K10 AJ623268 Scyliorhinus stellaris
DreK19 BC097213 Sst-K18 Y14647
DreK20 AL645755 Xla-K18 BC054993 Xenopus laevis
DreK21 BC115321 XlaKK18(endoB.1) BC072305
DreK22 BX248511 XlaK18(endoB) Y00230
HsaKa9 X75015 Homo sapiens XlaKrt18-prov BC054993
HsaKa10 X14487 XlaK18b BC106430
HsaKa12 D78367 Xla-K1C0 (XL51) Y00968
HsaKa13 X14640 Xla-K1C1 (XK81A1) X04804
HsaKa14 BC042437 Xla-KMGC88905 BC055996
HsaKa15 X07696 Xla-K1C4 (XK81B2) M18155/ X04807
HsaKa16 AF061812 Xla-K1C5 M11032
HsaKa17 Z19574 Xla-KXAKa AB045600
HsaKa18 X12881 Xla-KXAKb AB045601
HsaKa19 Y00503 Xla-KXAKc AB086829
HsaKa20 X73501 XlaKMGC83069 BCO070682
HsaKa23 AF102848 XlaKMGC84118 BC074309
HsaKa24 AKO000268 XlaKMGC84388 BC093567
HsaKa25 Y16787 XlaKMGC53311 BC042927
HsaKa26 X90761 XlakBC081253 BC081253
HsaKa27 AJB33621 XlaKBC108476 BC108476
HsaKa28 Y16789 XlaKkBC074154 BC074154
HsaKa29 Y16790 XlaKxlk2 AB218824
HsaKa30 Y16791 XlaKrt16-prov BC077649
HsaKa31 Y16792 XlaKI BC084340
HsaKa32 Y16793 XlaKBC097543 BC097543
HsaKa33 Y16793 XlaKrt1-2-prov BC045031
HsaKa35 BK004054 XtrK18 BC061366 Xenopus tropicalis
HsaKa36 BK004055 XtrK18b BJO72726/Dr860147
HsaKa38 AJ564204 XtrKENSXETG00000017467 ENSXETG00000017467
HsaKa39 AJ564205 XtrKENSXETG00000012482 ENSXETG00000012482*
HsaKa40 AJ564206 XtrkENSXETG00000020532 ENSXETG00000020532*
HsaKa41 AJ564207 XtrKxlk2 BC081376
LocK10 AM419763 Lepisosteus oculatus XtrKrt13-prov BC087788
LocK12 AM419764 XtrkBC074628 BC074628
LocK14 AM419454 XtrkKMGC76282 BC061624
Lfl-K10 AJ308116 Lampetra fluviatilis XtrKCR760313 CR760313
Lfl-K11 AJ308117
Lfl-K18 AJ308118
Figure 3

Accession numbers. EMBL accession numbers of the type | keratin sequences we used for phylogenetic inference. *For
three Xenopus tropicalis type | keratin sequences the Ensembl database gene IDs are given.
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Figure 4

Molecular evolution of type | keratins. Phylogenetic tree based on Bayesian inference, illustrating the relationships of the
K14 sequences from bichir, sturgeon and gar to the other type | keratins known from vertebrates. The tree was rooted with
the lancelet type | keratin sequences. It clearly shows that the K14 sequences form a separate branch (boxed in violet) close to
the sequences we cloned from the river lamprey. They even branch off prior to the twig formed by the gnathostomian K18
sequences (boxed in green) that apparently emerged before the separation of cartilaginous and bony fish. The tree, further-
more, suggests that most of the ray-finned fish type | keratins (boxed in blue) evolved independently from those present in
lungfish, frog or man and that early in actinopterygian evolution gene duplications already gave rise to at least two different
type | keratin groups with members in both, ancient and modern ray-finned fish. Importantly, within the tetrapod lineage the
Bayesian analysis revealed four highly supported keratin subgroups, each with members in both, frog and man (encircled by

dotted lines and coloured orange). Bar, 0.1 substitutions per site.
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ferent type I keratin branches, each with members in both
ancient and modern ray- finned fish (see the boxed ray-
fins twig in Fig. 4). Compared to our recent analyses [14-
18,28], we have now included additional type I keratin
sequences from zebrafish and Xenopus; therefore, in this
study the K18 branch shows a more complex branching
pattern, not allowing a clear identification of the authen-
tic K18 counterparts in the different vertebrates solely on
the basis of their position in the tree. However, our previ-
ous identification of K18 in shark, bichir, sturgeon, trout
and zebrafish was additionally based on its typical occur-
rence in simple epithelia, such as liver hepatocytes or
intestinal mucosal epithelium, corresponding to the situ-
ation in man and other tetrapods [10,12-16,19,29]. Nev-
ertheless, these "functional K18 counterparts" identified
in the different vertebrate groups have to be considered as
paralogous protein sequences. The branching pattern of
the K18 twig supports the suggestion that early as well as
more recent duplication events led to the various K18
related genes. Future analysis of their expression patterns
may provide further clues for possible functions of these
K18 relatives.

Compared to the evolution of type II keratins, the phylo-
genetic tree of type I keratins appears rather complex and
several nodes cannot be resolved. Moreover, in teleosts
the number of detected type I keratin genes virtually tri-
ples the number of those coding for type II keratins [5-7],
in contrast to the almost equal number of type I and type
I keratin genes detected in the tetrapod genomes. How-
ever, when including the hair- and nail-forming keratins
the total number of keratin genes in tetrapods is clearly
higher than in teleost fish [1-4]. A group of two sequences,
one from zebrafish, the other from Xenopus, also occupy a
rather basal position in the type I keratin tree, directly
branching off between the K14 and K18 twig. But it has to
be taken into consideration that both sequences stem
from genomic DNA sequencing and may only represent
non-active "relics" of ancient keratin genes. From the cur-
rent Bayesian phylogenetic analysis (but not from our NJ
and ML analysis) another phenomenon emerged for the
first time: There are now four highly supported keratin
subgroups in the tetrapod twig, each with members in
both, frog and man (in Fig. 4 encircled by dotted lines).
Moreover, the tree topology indicates that the human hair
keratins may have emerged prior to these radiation events.

Conclusion

The type I and type II keratins represent the two most
complex and abundant groups of intermediate filament
(IF) proteins among vertebrates and their structure, func-
tion and extraordinary variety cannot be completely
understood without phylogenetic considerations. There-
fore, we investigated the keratin systems in more ancient
representatives of the vertebrate lineage. In particular, the

http://www.frontiersinzoology.com/content/4/1/16

keratins present in skin may play an important role in the
transition of vertebrates from water- to land- living ani-
mals. Here we present a novel group of epidermal type I
keratins, which we termed keratin 14 and so far have only
found them in the basal groups of living ray-finned fish,
notably bichir, sturgeon and gar. Our phylogenetic analy-
sis revealed a rather basal position of this keratin group in
the tree of type I keratin evolution. The keratin 14 group
even emerged prior to the gnathostomian K18 sequences,
which together with its binding partner K8 and with the
exception of the recently discovered thread keratins in tel-
eosts and amphibians, was hitherto considered as most
ancient group of gnathostomian keratins. Future analyses
will hopefully shed more light on the expression and
functional role of K14 in the fish epidermis and clarify the
identity of its type II keratin binding partner.

Methods

Preparation of tissues and cytoskeletal proteins
Sturgeons (Acipenser baeri) were purchased from a local
hatching farm (Fischzucht Rhonforelle, Gersfeld, Ger-
many), and gars (Lepisosteus oculatus) from a local pet
shop (Fauna Exotica, Mainz-Kostheim, Germany). The
bichirs (Polypterus senegalus) were a gift from Dr. Latz
(Institute of Zoology, University of Mainz). Within the
scope of this study we employed one specimen for each
species. Animals were killed by cutting the neck or the tail
artery after MS 222 narcosis (0.5 g/l). For further proce-
dures, the tissues were excised and used immediately or
snap frozen according to [8]. Cytoskeletal proteins were
extracted as described in [8].

Electrophoresis, inmunoblotting, CKBB, PMF and
immunofluorescence microscopy

Two-dimensional polyacrylamide gel electrophoresis
(2D-PAGE), complementary keratin blot-binding (CKBB)
assays, Western blotting and indirect immunofluores-
cence microscopy were essentially performed as described
in [8]. For immunoblotting we used 10% milk powder as
the blocking reagent and the antibody incubations were
performed overnight at 8°C. Peptide mass fingerprinting
(PMF) using matrix-assisted laserdesorption/ionization
time-of-flight mass spectrometry (MALDI-TOF MS) was
performed as described in [16,18]. The mass tolerance for
matching fragments was set to < 100 ppm.

Preparation of RNA

Total RNA from bichir was extracted according to a proto-
col modified from [32], including a GTC extraction and
subsequent sedimentation of RNA by ultracentrifugation
through a dense cushion of caesium chloride (detailed
protocol given in [8]). For purification of sturgeon RNA
we applied a protocol that included consecutive steps of
guanidinium thiocyanate (GTC) homogenizations, acidic
phenol/chloroform extractions and precipitations. The
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final RNA precipitation was accomplished with 8 M LiCl.
Gar RNA was prepared using the GeneMATRIX Universal
RNA Purification Kit purchased from Roboklon (Ger-
many) according to the suppliers' instructions. Isolation
of mRNA was generally performed with the "PolyATract®-
mRNA isolation system" from Promega.

RT-PCR analyses

Applying 0.5 to 1.0 pg of total RNA, RT-PCR was per-
formed either using the Superscript II reverse transcriptase
from Invitrogen (RT for 1 h at 42°C), followed by stand-
ard PCR (Taq Polymerase, Invitrogen) or the QIA-
GEN®OneStep RT-PCR Kit (RT for 0.5 h at 50°C). PCR was
done for 30-35 cycles and primer specific annealing tem-
peratures. We used different combinations of degenerate,
IF-specific primers, as previously described [8] (notably
primer numbers P4, P5, P8, P9, P10). 3' RACE-PCR was
accomplished using an oligodT-19mer as downstream
and sequence-specific oligos as upstream primers. For gel
extraction of PCR products we employed the QIAquick
Gel Extraction Kit (Qiagen) or the GeneMATRIX DNA
Purification Kit AGAROSE-OUT (Roboklon). Cloning of
the isolated DNA fragments was accomplished either with
the TOPO-TA Cloning Kit (Invitrogen), the StrataClone™
PCR Cloning Kit (Stratagene) or the pGEM-T Easy vector
kit (Promega). All kits were used according to the instruc-
tion manual. Primers were synthesized by Roth and
Sigma-Ark, respectively. Nucleotide sequencing was per-
formed on both strands using the Taq Dye Deoxy Termi-
nator system. The subsequent gel run was done by
commercial services (Genterprise, Germany).

cDNA library construction and screening

According to the supplier's instructions we constructed A-
phage ¢DNA libraries (ZAP-Express®, Stratagene) from
sturgeon and bichir, respectively, in each case using 5 pg
of mRNA purified from a mixture of tissues, including
skin, eyes, brain and internal organs. Clones were isolated
using the fish keratin-specific antiserum GPpoly [8] and
digoxygenin-labeled cDNA probes derived from obtained
RT-PCR fragments. Digoxygenin labeling was either per-
formed using the DIG-High Prime Kit from Roche,
according to the instruction manual or by standard PCR,
using digoxygenin labeled nucleotides from Roche.

Sequence analyses and phylogenetic inference

For database searches, we employed the Basic Local Align-
ment Search Tool (BLAST [33]) of the National Center for
Biotechnology Information (NCBI) and of the Ensembl
Genome Browser. The multiple sequence alignments were
performed with ClustalX version 1.8 [34] using default
gap penalties. When necessary, the alignment was edited
by hand. The final alignment was analysed by Neighbor
Joining (NJ), Maximum Likelihood (ML) and Bayesian
methods (B). All analyses were conducted under the

http://www.frontiersinzoology.com/content/4/1/16

Jones-Taylor-Thornton substitution model of amino acid
evolution (JIT [35]). Furthermore, the model applied for
the ML and Bayesian analyses included observed amino
acid frequencies (F), estimated proportion of invariant
sites (I), and estimation of among-site rate variation for
the remaining sites according to a gamma distribution (G)
that was set to four rate categories. For the NJ analysis we
used the programs PROTDIST and NEIGHBOR of the
Phylogeny Inference Package (PHYLIP, version 3.6 b
[36]). The reliability of the tree topology was then tested
by bootstrap analysis [37] with 100 replications, using the
PHYLIP programs seqboot, protdist, neighbor and con-
sensus. The ML analysis was conducted with the PHYLIP-
like interface PHYML [38]. For bootstrapping we gener-
ated 100 pseudo data sets. The Bayesian inference analysis
was performed with MRBAYES 3.1 [39] with the frequen-
cies fixed to the Jones frequencies. In each of the two par-
allel runs four Markov chains (one hot and three cold
chains) were run simultaneously for 3,000,000 genera-
tions, starting with random trees. Sampling from the trees
was set to every 10th generation. Under these conditions
the average value for the deviation of split frequencies
reached a value < 0.01. The burn-in was set to 115000,
based on the stationary phase. All consensus trees were
drawn using TREEVIEW version 1.6.6 [40].
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