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Burkholderia phenoliruptrix strain AC1100 (ATCC 53867) degrades a variety of recalcitrant xenobiotics, including 2,4,5-
trichlorophenoxyacetate. The molecular mechanism of 2,4,5-trichlorophenoxyacetate degradation has been extensively studied.
Here we present a 7.8-Mb assembly of the genome sequence of this 2,4,5-trichlorophenoxyacetate-degrading strain, which may
provide useful information related to the degradation of chlorinated aromatic compounds.
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Strains of the genus Burkholderia occupy a wide range of eco-
logical niches and have versatile properties of bioremediation,

biocontrol, and plant growth promotion (1). The herbicide 2,4,5-
trichlorophenoxyacetic acid (2,4,5-T), a suspected carcinogen, is a
component of Agent Orange that was used in the Vietnam War
and created long-term health problems (2, 3). Burkholderia phe-
noliruptrix AC1100 (ATCC 53867) (formerly Pseudomonas cepa-
cia AC1100 and Burkholderia cepacia AC1100) was the first pure
culture that used 2,4,5-trichlorophenoxyacetate as a sole source of
carbon and energy (4–6). Three gene clusters, tftAB, tftCD, and
tftEFGH, are involved in converting 2,4,5-trichlorophenoxyacetate to
3-oxoadipate in B. phenoliruptrix AC1100 (6–10). An IS element ad-
jacent to the tftAB gene cluster provides the promoter for tftAB. The
2,4,5-trichlorophenoxyacetate-degrading ability is unstable due to
the loss of the promoter created by the IS element (6, 11, 12). Thus,
2,4,5-trichlorophenoxyacetate is usually used as the sole carbon and
energy source to cultivate B. phenoliruptrix AC1100 to preserve its
ability for 2,4,5-trichlorophenoxyacetate degradation. Here, we
present the genome sequence of B. phenoliruptrix AC1100, provid-
ing genomic contents for the biodegradation of 2,4,5-trichloro-
phenoxyacetate and other chlorinated aromatic compounds.

The genome sequence of B. phenoliruptrix AC1100 was ob-
tained using the Illumina HiSeq 2000 system (100-bp paired-end
sequencing). The reads were de novo assembled with Velvet soft-
ware to 286 contigs (�500 bp), providing 44-fold coverage (13).
The contig N50 was 81,158 bp, and the largest contig was
305,883 bp. Gene prediction and genome annotation were per-
formed using of the RAST autoannotation server and NCBI
PAPPC pipeline (14, 15). The tRNA genes were predicted using
tRNAscan software (16). The gene function and classification
were performed using the KEGG and Clusters of orthologous
Groups (COG) databases (17).

The draft genome sequence of strain AC1100 comprises
7,811,030 bp, with a G�C content of 63.1%. There are 7,443 pre-
dicted protein coding sequences (CDS) (877 bp average length,
83.5% coding density). The genome of strain AC1100 has 1 rRNA

operon and 52 tRNA loci. There are 493 subsystems represented in
the genome sequence (2,844 CDS in total), and the metabolic
network of AC1100 (determined by the RAST server) was recon-
structed (14). We have predicted a rich set of genes (189 CDS)
responsible for the degradation of aromatic compounds and 176
CDS for stress responses. Operons of tftAB, tftCD, and tftEFGH
were found located on three contigs, and characteristics of the
sequence are different from the core genome, indicating that
they might belong to mobile regions of the genome (4–6). The
genes for the degradation of catechol (catechol 1,2-dioxygenase),
benzoate (benzoate 1,2-dioxygenase and benzoate-4-monooxy-
genase), toluene (toluene 4-monooxygenase), and the 3-oxo-
adipate pathway, homogentisate pathway, and central meta-
cleavage pathway were predicted. The bacterium may have
powerful degradation potentials for aromatic compounds. The
genomic information of strain AC1100 will provide new insights
into the genetic versatility of Burkholderia species and the metab-
olism of complex aromatic compounds.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession number ASXI00000000. The version described
in this paper is the first version, ASXI01000000.
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