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Abstract: Radio Frequency Identification (RFID) technology has been widely used in indoor
location tracking, especially serving human beings, due to its advantage of low cost, non-contact
communication, resistance to hostile environments and so forth. Over the years, many indoor location
tracking methods have been proposed. However, tracking mobile RFID readers in real-time has been
a daunting task, especially for achieving high localization accuracy. In this paper, we propose a new
Mobile RFID (M-RFID)-based Localization approach for Indoor Human Tracking, named MRLIHT.
Based on the M-RFID model where RFID readers are equipped on the moving objects (human beings)
and RFID tags are fixed deployed in the monitoring area, MRLIHT implements the real-time indoor
location tracking effectively and economically. First, based on the readings of multiple tags detected
by an RFID reader simultaneously, MRLIHT generates the response regions of tags to the reader.
Next, MRLIHT determines the potential location region of the reader where two algorithms are
devised. Finally, MRLIHT estimates the location of the reader by dividing the potential location
region of the reader into finer-grained grids. The experimental results demonstrate that the proposed
MRLIHT performs well in both accuracy and scalability.

Keywords: RFID; mobile reader; fixed tag; indoor localization; human tracking

1. Introduction

Radio Frequency Identification (RFID) [1–3] is a technique of automatic identification using
radio frequency transmission. RFID technology is widely used in many real-world applications,
e.g., real-time tracking, activity recognition, etc, and impacts almost all aspects of people’s daily
life. An RFID system consists of readers and tags, where readers communicate with tags through
radio signals. RFID tags are categorized as either active or passive. Active tags are powered by
on-board batteries and broadcast their signals continuously, while passive tags are powered by the
electromagnetic energy transmitted from RFID readers. Since the maturely developed GPS-based
localization systems do not perform well for indoor location tracking applications, RFID-based
localization technologies have become popular in several indoor tracking schemes. In this paper,
we aim to propose an effective RFID-based localization approach for indoor human tracking, which
can be pervasively used in the large-scale and high-accurate tracking applications.

Over the years, many RFID-based indoor human/object tracking methods have been proposed.
They can be categorized as fixed RFID (F-RFID) model based and mobile RFID (M-RFID) model based
tracking, whereas in the F-RFID (i.e., fixed RFID) model, RFID readers are pre-deployed at some fixed
points in the monitoring area and RFID tags are attached on the moving objects, while in M-RFID
(i.e., mobile RFID) model, RFID readers are equipped on the moving objects and RFID tags are fixed
deployed at some points in the monitoring area. Generally, the two models are used for different
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application scenarios. In large-scale monitoring applications, since the cost of RFID readers are very
high, the deployment of fixed readers are generally sparse, which results that the location information
of moving individuals (mobile tags) are discontinuous. In other words, there are phenomena of
location information missing. To tackle this issue, some existing works estimate the missing location
information based on the pre-defined motion model. Nevertheless, in most cases, the motion of
individuals is arbitrary and cannot be predicted. On the other hand, to alleviate the sparseness of RFID
readers, some existing works use the reference tags to instead replacing more readers. However, the
localization accuracy is unsatisfactory (incurring meters of localization errors). In addition, to estimate
the locations of moving human/objects based on the F-RFID model, the positions of fixed readers
which are stored in the external storage medium (e.g., databases or files) are needed. The location
information requirements incur extra query costs, and thereby reduces the tracking efficiency.

Therefore, in this paper, we propose a new Mobile RFID (M-RFID) based Localization approach
for Indoor Human Tracking (MRLIHT). By deploying a large number of fixed and passive RFID tags in
the monitoring area, the locations of moving individuals equipped with RFID readers are determined
in real-time. The advantages that we adopt the M-RFID model and passive tags are as follows.

• Lower costs. Compared with active tags, the light-weight and small-volume passive tags without
on-board batteries have longer lifetime and lower costs. Moreover, there is almost no maintenance
cost [4]. On the other hand, in the scenario of human indoor location tracking, the RFID
readers are held by human beings and can be reused many times, which are economical in
a long-term perspective.

• Smaller localization errors. First, the sensing range of passive tags is smaller than that of active
tags. During object localization, the candidate locations of an individual filtered by passive tags
are more fine-grained, and thus the localization accuracy is improved. Second, by deploying
passive tags intensively to cover the whole monitoring area, the location of a moving individual
can be estimated continuously based on the location information of multiple tags received by
the reader equipped on the moving object. Then the problem of location information missing
introduced earlier can be effectively solved.

• Avoiding extra queries. With M-RFID model, RFID tags are fixed deployed in the monitoring
area, rather than attaching on the moving individuals. Hence, the location information of passive
tags can be written in their own memories and read by RFID readers directly. Therefore, the extra
queries for location information are avoided.

For an individual, MRLIHT estimates its location by generating the response regions of tags
detected by the reader attached to the individual first. Secondly, potential location region of the
individual (reader) is determined based on those response regions. Finally, the final location of the
individual is estimated with high accuracy and efficiency. The major contributions made in this paper
are summarized as follows.

• We point out the pitfalls of existing works for large-scale and high-accurate tracking tasks.
Accordingly, we develop an M-RFID based localization approach for indoor human tracking,
named MRLIHT, to support high-quality moving humans tracking.

• By considering the influence of environmental noises, we extend the response region of an RFID
tag to an RFID reader from a circle to a circular, which improves the localization accuracy.

• In MRLIHT, there is no pre-defined motion model for moving individuals, which are more suitable
for real-world applications.

• For the fixed passive tags, the location information is written in their own memories directly.
The RFID readers can obtain the location information of surrounding tags without extra query,
which improves the location estimation efficiency.

• Finally, extensive experiments are conducted to evaluate the performance of the
proposed approach.
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The organization of the remaining paper is as follows. Section 2 discusses the related work.
Section 3 presents the problem definition. Section 4 introduces the proposed MRLIHT system and
Section 5 shows the experimental results. Finally, Section 6 concludes the paper.

2. Related Work

With the rapid development of big data [5], the idea of indoor location tracking based on RFID
technology is widely used in many real applications. The traditional RFID-based indoor location
tracking approaches can be classified into two classes: fixed RFID (F-RFID) based tracking and mobile
RFID (M-RFID) based tracking.

Most of the existing works [6–8] are proposed for F-RFID model. In work [6], a localization
framework, named LADNMARC, is proposed, where an indoor moving object is located based on
the signal strengths received by nearby RFID readers. To improve the positioning accuracy while
saving cost, LADNMARC proposes reference tags to instead replacing more readers. However,
the deployment of RFID readers and reference tags are very strict in LADNMARC. RADAR [7]
builds a signal propagation model by considering the impact of walls in indoor environments. It
determines the location of an indoor object by combining the signal propagation model with empirical
measurements. An indoor tracking method for navigating visually impaired people is proposed
in [8]. The solution takes the signal strengths received by RFID readers as an observation vector, and
determines the location of a user based on the Bayesian Decision Theory. The methods introduced
above are active-tag-based systems, where the basic idea of location tracking is to make use of the
signal strengths received by RFID readers and broadcast by active tags. However, since the sensing
range of active tags is up to hundreds of meters, the localization error is large.

In addition, some works make use of passive tags to locate indoor objects based on the F-RFID
model. PinIt [9] is a fine-grained RFID localization scheme proposed for nonline-of-sight scenarios.
BackPos [10] is another fine-grained backscatter positioning technique based on the detected phase
model. To reduce the labor and time cost of location fingerprinting, a cost-effective neighborhood
graph-based localization system is proposed in [11]. However, all approaches mentioned above are
mainly used for locating the static RFID tags and do not perform well in tracking the moving objects.
In [12], an RFID data cleaning approach that supports location query is proposed. It estimates the
location of moving objects based on Bayesian inference and taking advantage of duplicate readings.
Since the Received Signal Strength Indicator (RSSI), which is widely adopted in active-tag-based
tracking methods, is not available for passive tags, PassTrack [4] proposes a reader detection model
based on the reading rates of passive tags. Then the location of a moving object is estimated based
on the reader detection model. The work [13] studies the problem of cleaning RFID data streams
for object tracking. To tracking objects in mobile environments, a probabilistic inference model is
proposed. However, all the passive-tag-based indoor tracking algorithms introduced above need to be
assigned a motion model to moving objects. In practice, the movement of indoor objects are generally
arbitrary and unpredictable. OTrack [14] is proposed to track the luggage attached with tags in the
airport based on the temporal correlation among the communications between the RFID readers and
tags. However, such a scheme usually requires specific application scenarios. Tagoram [15] achieves
the goal of tracking mobile RFID tags in real-time by leveraging the phase value of the backscattered
signal, which suffering the problem of multipath reflections. MobiTagbot [16] constructs a holography
to locate RFID tags using antenna movements and frequency hopping. However, MobiTagbot is
time-consuming for large-scale monitoring areas and impractical for real-time localization.

By comparison, the M-RFID based indoor tracking method is few. In [17], the authors propose
to use relatively fixed tags to locate a moving human/object with a mobile reader. Considering the
location uncertainty of the moving objects, the work proposes a probabilistic model to locate the
moving objects. However, the algorithm is also based on the assumption that the motion model of
moving objects is known, which limits its applications. In work [18], the proposed data cleaning
approach for mobile RFID data streams is capable of large tracking and monitoring environments.
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The rationale of the proposed approach is similar to those methods based on the F-RFID model and only
considers the case of a single reader. The works [19,20] use the memory of passive tags to encode and
store the information of moving objects. Then the proposed algorithms estimate the locations of moving
objects through creating an information-gradience. However, the approaches are time-consuming and
not capable of real-time localization. In work [21], a phase-based localization algorithm is proposed to
locate a device moving equipped with a UHF RFID reader.UHF (Ultra High Frequency) RFID reader is
a kind of RFID reader where the frequency range is from 300 MHz to 1 GHzIn this work, the mobile
device is supposed to move along a known path (e.g., x-coordinate) and its location at an assigned
temporal can be estimated by using the phase differences between the RFID reader and reference tags
besides the path. Moreover, the moving speed of the mobile device and its location on other coordinates
(e.g., y-coordinate and z-coordinate) are also needed, which is difficult to obtain in practice. Some
works, e.g., STPP [22] and TagSort [23] propose the concept of relative localization. They determine
the order (or relative location) of fixed tags by exploring the change of phase information of tags when
a moving reader approaches or moves away. However, the proposed methods focus on obtaining the
order of tags rather than the absolute location of tags. Moreover, they are proposed for positioning
the static objects which are not competent for the moving objects. On the other hand, there are some
works are suitable for both F-RFID and M-RFID, e.g., k-nearest-neighbor-based localization [24,25]
and multilateration-based localization [26], but their localization accuracy are needed to be improved.
In this paper, we propose a new approach based on the M-RFID model to tracking indoor humans
with high-accuracy and in real-time.

3. Problem Statement

Suppose there are n RFID tags T = {T1, T2, · · · , Tn} and m RFID readersR = {R1, R2, · · · , Rm}
in the monitoring area, where the RFID tags are deployed at some fixed points and RFID readers are
handheld or equipped on the moving individuals. The main goal of this work is to determine the
locations of moving individuals in real-time. In the following, we first formally define some terms
used throughout the paper.

Definition 1. A reading, denoted by D = (Rid, Tid, Tloc, Time, Count), is a data tuple with information
of an RFID tag by an RFID reader, where Rid and Tid are the unique identifications of the reader and tag
respectively, Tloc is the location of the tag, Time is a unit time point and Count is the number of times the tag
detected by the reader in unit time.

In this paper, we use 2D coordinate to denote the location of an RFID tag (or an RFID reader),
i.e., the location of an RFID tag Tj (or an RFID reader Ri) can be denoted by Tj.loc =

(
Tj.X, Tj.Y

)
(or

Ri.loc = (Ri.X, Ri.Y)). Moreover, it is notable that, in the F-RFID model, the reading of a tag by a
reader is usually denoted by a triple (Rid, Tid, Time) without the information about tag location and
the number of detection times. It is because, with the F-RFID model, RFID tags dynamically move
with the moving objects (human beings), while the memories of RFID tags are limited and unavailable
for being written frequently. By comparison, in M-RFID model, the RFID tags are fixed and thus their
locations can be written into their own memories once only. In addition, since RFID readings are of low
quality, the read frequency of RFID readers is high. Hence, an RFID tag can be detected multiple times
by an RFID reader in unit time. To save storage space and reduce the data complexity, we aggregate
multiple readings of a tag by an RFID reader in unit time into a single reading by adding the Count
attribute (as introduced in Definition 1).

Example 1. Figure 1 is the plan of a large-scale indoor exhibition area where many spots can be visited.
To tracking visitors accurately, a large number of RFID passive tags are intensively deployed in the monitoring
area (denoted by the red circle in the figure) and RFID readers are equipped on the moving objects (i.e., the
visitors). Note that with the development of hardware, the portable and small RFID reader has been widely used
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in many real applications. Specifically, the distribution of tags detected by reader R3 at time t1 is shown in the
right subfigure where ten tags, i.e., T1 ∼ T10, are detected by R3 simultaneously. Suppose the reading of a tag
(e.g., T4) by reader R3 at time t1 is D3,4 = (R3, T4, (2, 8) , t1, 7). It means that at time t1, tag T4 is detected
seven times by reader R3.

R3

T1

T2
T3

T4

T5

T6

T7

T8 T9

T10

A

DB

C

F

E

R2

R1

R3
R4

R5

R6

Figure 1. The plan of a large-scale indoor exhibition area.

As introduced earlier, the passive RFID tags are powered by the energy from RFID readers instead
of on-board batteries. An RFID reader emits an electromagnetic energy field of a few feet, and any
RFID tag in the vicinity may receive the energy and response its information.

Definition 2. With the M-RFID model, when a fixed tag responds to a moving reader, the region where the
reader may locate in is the Response Region (RR) of the tag to the reader.

Moreover, a reader may detect multiple tags simultaneously due to the intensive deployment of
tags and large sensing range of the reader.

Definition 3. The Potential Location Region (PLR) of a reader is the overlap region of tag response regions
which are generated by the tags detected by the reader simultaneously.

On the other hand, even though an RFID tag locates in the sensing range of an RFID reader, it
may not respond to the reader successfully, as the energy gathered by the tag may not enough to
respond. In other words, an RFID tag is detected by an RFID reader with a certain probability, rather
than definitive.

Definition 4. The reading rate of an RFID tag by an RFID reader, denoted by τ, is the probability of the tag is
detected by the reader.

Since the Received Signal Strengths Indicator (RSSI) measurement which usually adopted in
active-tag-based systems, is not available for passive tags, we aim to leverage the reading rate to obtain
the location information of moving objects (persons). To achieve this goal, we propose an M-RFID
based Indoor Location Tracking (MRLIHT) system. At time t, given the readings of tags by each reader,
MRLIHT aims to tackle the following issues:

• Generating the response region of each tag detected by a reader simultaneously.
• Determining the potential location region (PLR) for each RFID reader.
• Estimating the location of each RFID reader (i.e., moving object) precisely.

Finally, the locations of moving persons at each time point are returned with high-accuracy and
in real-time.
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4. MRLIHT System

In this section, we introduce the proposed MRLIHT which consists of three components: RR
generation, PLR determination and location estimation to tackle the issues mentioned above.

4.1. RR Generation

As introduced earlier, we use the reading rate of a passive tag by a reader to determine the location
of an indoor moving individual. Specifically, there are two ways to estimate the reading rate.

One way is to use the response count in a fixed number of interrogation cycles sent from the
reader. In this work, we estimate the reading rate of a tag Ti by a reader Ri as

τij =
Countij

Ci
, (1)

where Countij is the number of times tag Tj detected by reader Ri and Ci is the total number of
interrogation times of reader Ri in unit time. For example, if a reader receives responses from a tag in
30 out of 100 interrogation times in unit time (e.g., 1 second), then the reading rate of the tag by the
reader is 0.3.

Another way is to estimate the reading rate of a tag by a reader based on the reader detection
model, where the reading rate is estimated by a function about the distance between the tag and the
reader. In this work, we adopt the Sigmoid model to quantify the reading rate with distance proposed
in [4], because the reader detection model is more accurate than the traditional 3-state model [12].
For an RFID tag Tj, the reading rate of Tj by an RFID reader Ri is shown below

τij
(
lij
)
=

1

1 + eai lij+bi
, (ai > 0, bi > 0) . (2)

In Equation (2), ai and bi are the parameters of reader Ri and can be learned from the readings
of the detected tags by the reader Ri. The variate lij is the distance between the reader Ri and tag Tj.
Since the reading rate of tag Tj by reader Ri can be obtained through the readings of Tj by Ri based on
Equation (1), the distance lij between Ri and Tj in Equation (2) can be computed below

lij =
1
ai

[
ln

(
1
τij
− 1

)
− bi

]
. (3)

As introduced earlier, the locations of readers and tags are denoted by the points with 2D

coordinate. The Euclidean distance between Ri and Tj is lij =
√(

Ri.X− Tj.X
)2

+
(

Ri.Y− Tj.Y
)2.

Then we have (
Ri.X− Tj.X

)2
+
(

Ri.Y− Tj.Y
)2

= l2
ij, (4)

where lij can be computed based on Equation (3), the location of tag Tj, i.e., Tj.loc =
(
Tj.X, Tj.Y

)
is known and the location of reader Ri, i.e., Ri.loc = (Ri.X, Ri.Y) is the goal we aim to determine.
From Equation (4), we can know that the region where reader Ri may locate in, i.e., the response region
(RR) of tag Tj to reader Ri, is the circle with center

(
Tj.X, Tj.Y

)
and radius lij.

In addition, due to the influence of environmental noises and the antenna direction settings of the
reader, the reading rate of a tag by a reader has certain errors. Based on the theory of radio propagation,
for the same source (i.e., reader), the error of signal strength (denoted by ε) received by various
receivers (i.e., tags) follow the same statistical law, i.e., the Gaussian error model ε ∼ N

(
µ, σ2) [27].

Therefore, in this paper, we suppose that the error of Ri’s reading rate follows the Gaussian distribution
with mean 0 and variance σ2

i , i.e., εi ∼ N
(
0, σ2

i
)
, where the mean is 0 as we believe that the methods

do not make errors on purpose and the variance σ2
i can be estimated based on the readings of the tags

by the reader. Therefore, given a confidence value 1− α, we have
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p
(
−N (1− α/2) <

∣∣∣∣ εi
σi

∣∣∣∣ < N (1− α/2)
)
= 1− α.

Adding the error εi on the reading rate τij, the range of reading rate of tag Tj by reader Ri is(
τij − σi N (1− α/2) , τij + σi N (1− α/2)

)
. (5)

Combining Equation (5) with Equation (3), the range of distance between reader Ri and tag Tj is
li ∈ [lmin, lmax], where

lmin =
1
ai

[
ln

(
1

τij + σi N (1− α/2)
− 1

)
− bi

]
,

lmax =
1
ai

[
ln

(
1

τij − σi N (1− α/2)
− 1

)
− bi

]
.

Finally, the response region (RR) of tag Tj to reader Ri becomes a circular region with center(
Tj.X, Tj.Y

)
and radius lmin and lmax.

Example 2. For the reader R3 and tag T4 mentioned in Example 1, suppose the reading rate of T4 by R3 is
τ3,4 = 0.8, the variance σ3 of error ε3 is σ3 = 0.1 and the confidence value is 1− α = 0.9. Moreover, let the
parameters of reader detection model are a3 = 9, 843 and b3 = −16.2015. We can compute that lmin = 1.379
and lmax = 1.584. Then the response region of tag T4 to reader R3 is shown in Figure 2a.

lmax

lmin

T4

R3

R3

R3

lmax

lmin

(a) (b)

Figure 2. (a) The response region of tag T4 to reader R3 and (b) the Potential Location Region (PLR) of
reader R3.

4.2. PLR Generation

Thus far, given an RFID reader Ri and an RFID tag Tj detected by Ri, we can obtain the RR
(response region) of Tj to Ri. Next, we aim to determine the potential location region (PLR) of a reader
by employing the RRs of tags detected by the reader simultaneously.

4.2.1. Exact Solution

Based on Definition 3, the PLR (potential location region) of Ri is derived by taking the overlap of
RRs of multiple tags detected by Ri simultaneously.

Example 3. (Example 2 Continued) The PLR of reader R3 derived by the RRs of three tags it detected
simultaneously is shown in Figure 2b (the polygon surrounded by the blue curve). Since it is difficult to
show the intersection of RRs of ten tags detected by reader R3 simultaneously, we only show the PLR of R3
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derived by RRs of three tags it detected simultaneously. Moreover, Note that in practice, a reader may detect a
large number of tags simultaneously due to the intensive deployment of passive tags.

Algorithm 1 shows the pseudo-code of the exact solution of PLR (potential location region)
generation. As shown, for each reader Ri, we need to compute the RR (response region) of each
tag Tj detected by Ri simultaneously, and taking the overlap of multiple RRs to generate the PLR
of Ri. Since a tag may also be detected by multiple readers, the time complexity of the exact PLR
generation solution is O (mn) where m and n are the numbers of readers and tags in the monitoring
area, respectively.

Algorithm 1: PLRGenExact(T ,R, D, ai, bi, α).
Input : The tag set T = {T1, T2, · · · , Tn}, the reader setR = {R1, R2, · · · , Rm}, the reading

set D, and parameters ai, bi and α
Output : The PLR of each reader

1 foreach Reader Ri ∈ R do
2 PLRi = W //W indicates the whole monitoring region
3 foreach Tag Tj detected by Ri do
4 // computing the reading rate of Tj by Ri based on Equation (1)

5 τij =
Countij

Ci

6 // computing lmin and lmax

7 lmin = 1
ai

[
ln
(

1
τij+σi N(1−α/2) − 1

)
− bi

]
8 lmax = 1

ai

[
ln
(

1
τij−σi N(1−α/2) − 1

)
− bi

]
9 //generating the RR of Tj by Ri

10 RRi = Circular(Tj.loc, [lmin, lmax])

11 // the PLR of reader Ri is the overlap of multiple tags detected by Ri
12 PLRi = PLRi

⋂
RRi

13 return PLRi

4.2.2. Approximate Solution

The exact solution may be inefficient for large-scale tracking applications where there are hundreds
of thousands or millions of passive tags deployed in the monitoring area. Under this scenario, a large
number (dozens or even hundreds) of tags may be detected by a reader simultaneously. As a result,
the time complexity of PLR generation is extremely high by taking the overlap of multiple detected
tags. Moreover, due to the intensive deployment, some RFID tags are close to each other, which results
that the RRs of these tags are almost the same. To avoid redundant computation, we further propose
an approximate solution to generate the PLR for each reader. The approximate solution consists of
two steps: (1) tag group generation and (2) PLR determination. Next, we introduce each step in detail.

First, we divide the RFID tags into tag groups defined below.

Definition 5. Tag Group. A tag group G contains a collection of tags satisfying that

(i) ∀Tj ∈ G, ∃Tk ∈ G, d
(
Tj, Tk

)
≤ δd where d

(
Tj, Tk

)
is the distance between Tj and Tk and δd is the

distance threshold.
(ii) |G| ≥ δs where |G| is the size of the tag group, i.e., the number of tags contained in G, and δs is the

size threshold.

Note that we use the distance threshold δd to control the extension ability of a tag group, i.e., more
tags may be included in a tag group with a greater δd. On the other hand, we use the size threshold δs
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to avoid that sparse tags which have big distance are included into a tag group under the scenario of
great δd.

Algorithm 2 shows the pseudo-code of the tag group generation, where the specific steps are
as follows:

(s1) Initializing a candidate tag group G and generating a seed list (denoted by S) which is the
copy of tag set T (Line2-3).

(s2) Selecting a tag Tj randomly as seed and removing it from the seed list S (Lines 5 and 6).
(s3) Computing the distance between each tag Tk ∈ T and the seed Tj (Line 9). Adding Tk into

the candidate tag group G and removing Tk from the tag set T , if the distance is smaller than the given
distance threshold δd. Otherwise, removing Tk from the seed list S (Line 10-14).

(s4) Repeating steps (s2) and (s3) until the seed list is empty, which means the distances between
the remaining tags in the tag set and any tag in the candidate tag group G are greater than δd.

(s5) Adding the candidate tag group into the set of tag groups G (Line 15).
(s6) Repeating steps (s1)–(s5) until the tag set is empty, i.e., all tags are classified into a certain

tag group.
(s7) Determining each size of the candidate tag group. If the size is greater than the give size

threshold δs, it is a real tag group. Otherwise, remove the candidate tag group from S (Line 16–18).
Finally, returning the set of tag group G.

Algorithm 2: TagGroupGen(T , δd, δs).
Input : The tag set T = {T1, T2, · · · , Tn}, the distance threshold δd and the size threshold δs
Output : The collection of tag groups G = {G1, G2, · · · , Gn′}

1 while T is not empty do
2 G = Φ //initial a candidate tag group
3 S = T = {T1, T2, · · · , Tn} //a copy of tag set
4 while S is not empty do
5 Tj = RandomSelect(S) //randomly select a tag from S
6 S .remove(Tj)
7 foreach Tk ∈ T do
8 //compute the distance between tag Tj and Tk

9 d
(
Tj, Tk

)
=
√(

Tj.X− Tk.X
)2

+
(
Tj.Y− Tk.Y

)2

10 if d
(
Tj, Tk

)
≤ δd then

11 G.add(Tk)
12 T .remove(Tk)

13 else
14 S .remove(Tk)

15 G.add(G)

16 foreach G ∈ G do
17 if |G| < δs then
18 G.remove(G)

19 return G

The time complexity of tag group generation is O
(
n2) and O (n) in the worst case where each

tag is considered as a tag group and in the best case where all RFID tags are considered as a tag
group, respectively. Thus the average time complexity of tag group generation is O (nlogn). Moreover,
since our work is proposed based on the M-RFID model where RFID tags are fixed deployed in the
monitoring area, the tag group generation only needs to conduct one time. On the other hand, it
is notable that an RFID tag may not belong to any tag group. For such tags, they are considered
independent and used to PLR determination with aggregated tags (to be introduced later) together.
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After dividing tags into tag groups, we use the aggregated tags (generated based on the tag
groups) to determine the PLR for each reader.

Definition 6. Aggregated Tag. For a tag group G, the aggregated tag Ta is the representation of G. Moreover,
the reading of Ta by a reader Ri at a certain time point is computed based on the readings of tags by Ri.

Given an RFID reader Ri, suppose the tag set detected by Ri simultaneously (i.e., at a certain time
point t), is Ti =

{
T1, T2, · · · , Tq

}
. We first determine each tag Tj ∈ Ti belonging to which tag group.

Then we generate the aggregate tags of corresponding tag groups used for Ri’s PLR generation. Since
RFID tags are fixed, it is easy to locate tag Tj ∈ Ti belongs to which tag group by building an inverted
index. Specifically, during the tag group generation, we build an inverted index for each tag Tj to
record the tag belongs to which tag group. The structure of the inverted index is shown in Figure 3.
Note that as mentioned earlier, an RFID tag may not belong to any tag group. Accordingly, in the
inverted index, the tag points to ‘Null’ if it does not belongs to a tag group. Next, we introduce how to
generate an aggregate tag for each tag group used for Ri’s PLR generation.

T1 T2 T3 T4 ... Tn

G1 G2 Null ... Gn'

RFID Tags

Tag Groups

Figure 3. The structure of the inverted index for Radio Frequency Identification (RFID) tags.

Suppose the tags detected by Ri simultaneously belongs to w tag groups Gi = {G1, G2, · · ·Gw}
where Gk =

{
Tk,1, Tk,2, · · · , Tk,q′

}
(Tk,j ∈ Ti and q′ ≤ q) and the reading of Tk,j by Ri is

Dk,j =
(

Ridk,j, Tidk,j, Tlock,j, Timek,j, Countk,j

)
. We aim to obtain the reading of the aggregated tag

corresponding to the tag group Gk ∈ Gi, denoted by Ta,k = (Rida,k, Tida,k, Tloca,k, Timea,k, Counta,k).
Since any tag Ti ∈ Ti is detected by reader Ri at a certain time point t, we have Rida,k = Ri,

Timea,k = t. In addition, we assign a unique ID for Ta,k based on an independent number system.
Next, we need to determine the location of the aggregated tag Tloca,k and the number of detection
times Counta,k. In real applications, the distance between an RFID tag Tj and a reader Ri is smaller, the
reading rate of Tj by Ri is higher, and thereby the location of the Tj (used for determining the location
of Ri) is more important. Therefore, we compute Tloca,k and Counta,k by the weighted average of
corresponding information of various tags, as shown below.

Tloca,k.X =
∑ wk,j × Tk,j.X

∑ wk,j
(6)

Tloca,k.Y =
∑ wk,j × Tk,j.Y

∑ wk,j
(7)

Counta,k =
∑ wk,j × Countk,j

∑ wk,j
(8)

wk,j =
Countk,j

∑ Coutk,j
(9)

The pseudo-code of aggregated tag generation is shown in Algorithm 3.
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Algorithm 3: AggregatedTagGen(Ri, Ti)

Input : A reader Ri, the tag set Ti =
{

T1, T2, · · · , Tq
}

detected by Ri simultaneously, the tag
groups G

Output : The aggregated tags
{

Ta,1, Ta,2, · · · , Ta,q′
}

1 //the set of tag group of each Tj ∈ Ti belongs to
2 Gi = Φ
3 foreach Tag Tj ∈ Ti do
4 if Tj points to tag group Gk in the inverted index then
5 Gk.add(Tj)
6 Gi.add(Gk)

7 foreach Tag group Gk ∈ Gi do
8 //generate the reading of aggregated tag corresponding to Gk
9 Ta,k = (Rida,k, Tida,k, Tloca,k, Timea,k, Counta,k)

10 Tloca,k.X =
∑ wk,j×Tk,j .X

∑ wk,j

11 Tloca,k.Y =
∑ wk,j×Tk,j .Y

∑ wk,j

12 Counta,k =
∑ wk,j×Countk,j

∑ wk,j

13 wk,j =
Countk,j
∑ Coutk,j

14 return
{

Ta,k
}

Example 4. (Example 1 Continued) We map the distribution of ten tags detected by R3 simultaneously at time
t1 into a 2D coordinate system, as shown in Figure 4a. Additionally, the readings of tags by R3 is shown in
Table 1. The tag groups generated based on Algorithm 2 with δd = 35 cm and δs = 3 is shown in Figure 4b.
Note that the candidate tag group G3 is removed since its size is smaller than the threshold δs. Finally, based on
Algorithm 3, the readings of corresponding aggregated tags are shown in Table 2.

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

R3
R3

T1

T2
T3

T4

T5

T6

T7

T8 T9

T10

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

R3

G1

G2

G3

(a) (b)

Figure 4. (a) Distribution of tags detected by R3 and (b) readings of tags by reader R3.

Table 1. Readings of tags by reader R3.

Observations

(R3, T1, (2, 3) , t1, 5) (R3, T6, (3, 10) , t1, 6)
(R3, T2, (4, 3) , t1, 6) (R3, T7, (4, 9) , t1, 10)
(R3, T3, (5, 4) , t1, 9) (R3, T8, (5, 8) , t1, 20)
(R3, T4, (2, 8) , t1, 7) (R3, T9, (8, 10) , t1, 8)
(R3, T5, (3, 7) , t1, 9) (R3, T10, (9, 7) , t1, 9)
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Table 2. Readings of aggregated tags by reader R3.

Observations

(R3, Ta,1, (3.95, 3.25) , t1, 7)
(R3, Ta,2, (3.83, 8.25) , t1, 13)

After aggregated tag generation, we can determine the PLR for each reader based on the
aggregated tags. The pseudo-code is shown in Algorithm 4, where for each reader Ri ∈ R, we first
generate the readings of aggregated tags based on the readings of tags detected by Ri simultaneously
(Line 3). Note that the tags which do not belong to any tag group are also used for PLR determination.
Thus the tag list T ′ is generated by combining such independent tags and aggregated tags together to
determine the PLR of Ri (Line 5). Afterwards, the PLR of Ri is determined by intersecting the RR of
each tag in the tag list T ′, where the procedure is the same as the exact solution (Line 7-16). Suppose
n tags are divided into n′ tag groups. Then the time complexity of approximate solution becomes
O (mn′) which is much smaller than the exact solution since n′ � n. Note that the computational cost
of tag group generation is not included since it can be pre-computed once the tag deployment finished.

Algorithm 4: PLRGenApproximate(T ,R, D, ai, bi, α)
Input : The tag set T = {T1, T2, · · · , Tn}, the reader setR = {R1, R2, · · · , Rm} and the

reading set D
Output : The PLR of each reader

1 foreach Reader Ri ∈ R do
2 //generate the aggregated tags

3

{
Ta,1, Ta,2, · · · , Ta,q′

}
= AggregatedTagGen(Ri, Ti)

4 //Combining the aggregated tags and the independent tags which do not belong to any
tag group

5 T ′i =
{

Ta,1, Ta,2, · · · , Ta,q′ , T1, T2, · · · , Tq′′
}

6 PLRi = W //W indicates the whole monitoring region
7 foreach Tag Tj ∈ T

′
i do

8 // computing the reading rate of Tj by Ri based on the readings of Ri and Equation (1)

9 τij =
Countij

Ci

10 // computing lmin and lmax

11 lmin = 1
ai

[
ln
(

1
τij+σi N(1−α/2) − 1

)
− bi

]
12 lmax = 1

ai

[
ln
(

1
τij−σi N(1−α/2) − 1

)
− bi

]
13 //generating the RR of Tj by Ri
14 RRi = Circular(Tj.loc, [lmin, lmax])

15 // the PLR of reader Ri is the overlap of multiple tags detected by Ri
16 PLRi = PLRi

⋂
RRi

17 return PLRi

4.3. Location Estimation

Thus far, for each reader, we get its possible locations. In this section, we aim to estimate the
precise location for each reader.

We propose a location estimation algorithm based on the grid. Given a reader Ri which detects q
tags, i.e., Ti =

(
T1, T2, · · · , Tq

)
, at a certain time point t, we first divide its PLR into grids where the

grid granularity can be specified by users. Then each grid is considered as a location and denoted by
its center point. Next, for each grid gk, we compute the Root Mean Square Error (RMSE) of the reading
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rate of tags detected by Ri simultaneously, by supposing that reader Ri locates at gk. Specifically, the

RMSE of reading rate is denoted by sk =

√
1
q ∑Tj∈Ti

(
τ
′
ij − τij

)2
, where τ

′
ij and τij are the reading rates

computed based on Equations (1) and (2) respectively. Finally, we select the grid where the RMSE
of reading rate is the smallest as the precise location of reader Ri, because a smaller RMSE means
that the grid is closer to the real location of the reader. The pseudo-code of the algorithm is shown in
Algorithm 5.

Algorithm 5: LocationEstimation(R, {PLRi})
Input : The reader setR = {R1, R2, · · · , Rm}, the PLR of each reader PLRi
Output : The precise location of each reader, i.e., Ri.loc

1 foreach Reader Ri ∈ R do
2 //divide the PLR of Ri into grids
3 g = {g1, g2, · · · }
4 skmin = ∞
5 foreach grid gk ∈ g do
6 //compute the RMSE of reading rate of tags detected by reader Ri simultaneously
7 sk = 0
8 foreach tag Tj ∈ Ti do

9 τ
′
ij =

Countij
Ci

10 τij =
1

1+eai lij+bi
, (ai > 0, bi > 0)

11 sk = sk +
(

τ
′
ij − τij

)2

12 sk =
√

sk
q

13 if sk < skmin then
14 Ri.loc = gk
15 skmin = sk

16 return {Ri.loc}

5. Experiments

This section reports the experimental study of the MRLIHT approach. All the experiments are
performed on a PC with 3.4 GHz CPU and 16GB RAM.

5.1. Experimental Settings

To evaluate the performance of the proposed MRLIHT, we use the Tossim [28] which is a
TinyOS [29] simulator, to simulate an application of indoor exhibition where the size of the visiting
area is a 150 m × 150 m rectangular region with the grid. The Visitors (equipped with RFID readers)
can move in the visiting area arbitrarily. The RFID tags are deployed on the floor of the visiting area
randomly and intensively (liking the deployment shown in Figure 1 introduced in Example 1). Since in
our M-RFID model, the RFID tags are fixed deployed in the visiting area, the location of each tag is
known and written in its own memory. In the testbed, the type of RFID reader is supposed to be
LJYZN-107 with power 915MHz and the radio range is about 10 m. The RFID tags are the labels
conforming to the standard of EPC CLASSI G2. The reading rate of tags by readers is generated based
on the reader detection model where the parameters are ai = 3.6423 and bi = −7.5897. In addition,
we add a random term in a range of [0, 0.1] on the reading rate to simulate the noise in the real
application environment.

We adopt the average Euclidean distance between the real locations and estimated locations of
RFID readers to measure the accuracy of various location tracking methods. Moreover, we implement
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two existing RSS-based indoor location tracking methods, i.e., nearest-neighbor (NN) [24,25] and
multilateration (ML) [26] and a newest phase-based mobile reader localization (shorted by PHL)
method proposed in [21]. It is notable that in [21], the proposed localization algorithm focuses on
determining the location of a mobile RFID reader at a certain axis (e.g., x-axis) while assuming that
the position on the other axis (e.g., y-axis) is known and the mobile reader moves along the certain
axis. We suppose the assumption limits its application. Thus, in the experiments, we use the phase
differences of the tags detected by the mobile reader to replace the RSS, and employ the multilateration
to determine the final location of the moving individuals (readers). Finally, we repeat each test 100
times, where in each test we randomly plan a trajectory for each visitor, and the average results are
reported to obtain reliable experimental results.

5.2. Selection of Parameters

Recall that the parameters δd and δs are the distance threshold and size threshold used in tag
group generation introduced in Section 4.2.2. Figure 5 reports the distance deviation of MRLIHT-A
by varying δd and δs under the scenarios where 50, 100, 200, 500 tags can be detected by a reader
simultaneously. As shown in Figure 5a, with 50 tags can be detected by a reader simultaneously, the
lowest distance deviation (3.973 cm) is achieved with δd = 20 cm and δs = 3. Since the tags are fixed
deployment in the monitoring area, we can collect the test readings before the real applications and
learn the best δd and δs based on the test data. In the following experiments, we set the default number
of tags that can be detected by a reader simultaneously as 50 until a special illustration.
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5.3. Comparison between our Proposed Approaches

In this section, we compare the performance of the proposed MRLIHT based on the exact and
approximate PLR generation, respectively, by varying the variance σ of reading rate error ε and
grid size.

5.3.1. Varying the Variance σ of ε

As shown in Figure 6, with an increase of σ, the distance deviations between the estimated
locations and ground truths based on both MRLIHT-E and MRLIHT-A decrease. Based on Equation (5),
a large σ derives a large RR of a tag to a reader, and thereby derives a large PLR of the reader. Therefore,
we can get a more precise location by checking more grids during final location estimation with a
larger PLR, while we need to take more time.
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Figure 6. Varying σ with δd = 20 cm, δs = 3, grid_size = 60 cm.

On the other hand, we can observe that the accuracy of location estimation based on MRLIHT-A
is slightly higher than that of MRLIHT-E, because in MRLIHT-E, we determine the PLR of a reader by
using all tags it detected simultaneously without aggregating those tags into aggregated tags. Moreover,
with extensive experiments, the difference between the distance deviation based on MRLIHT-E and
the distance deviation based on MRLIHT-A is most 10 cm, which verifies that MRLIHT-A performs
well in location tracking. However, the time cost of MRLIHT-A is much lower than that of MRLIHT-E.
Since the time cost of MRLIHT-E is one order of magnitude higher than MRLIHT-A (as observed in
Figure 6b), we present its time cost by using another ordinate.

5.3.2. Varying the Grid Size

Figure 7 reports the accuracy of location tracking by varying the grid size. Since during location
estimation, we consider a grid as a location point, the time cost decrease with the increase of grid
size (as shown in Figure 7b) while the accuracy is deteriorated. As shown in Figure 7a, the distance
deviations are 4.009 cm and 24.355 cm with grid sizes 10 cm and 60 cm, respectively. We set the default
grid size as 60 cm to trade off the positioning accuracy and efficiency.
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Figure 7. Varying grid size with δd = 20 cm, δs = 3 and σ = 0.1.

5.4. Comparison with Existing Methods

In the following experiments, we compare the proposed MRLIHT with existing methods to show
that MRLIHT outperforms the state-of-the-art methods.

5.4.1. Varying the Number of Tags Detected by a Reader Simultanesously

Since we estimate the location of moving individuals (readers) based on the readings of tags
detected by the reader simultaneously, Figure 8 shows the performance of various methods by varying
the number of tags detected by a reader simultaneously. It can be observed from Figure 8a that the
lowest distance deviation is achieved by the proposed MRLIHT. The reason is that we consider the
uncertainty of the reading rate of a tag by a reader and first extend the candidate locations of a reader
into a PLR rather than some certain points. On the other hand, by refining each grid, the positioning
accuracy is further improved. Moreover, in NN and ML, the distance between an RFID reader and
tags it detected is computed based on the reading rate model whose parameters are learned based
on the historical data. During the parameter learning, it inevitably derives some deviations (due
to the uncertainty of the reading rate). As a result, the localization algorithms (i.e., NN and ML)
without considering this uncertainty derive a large localization deviation. By comparison, in PHL,
since the phases are directly collected from reference tags, the distances (between an RFID reader and
tags it detected) estimated based on those phases contain relatively small deviations. Therefore, the
localization accuracy of PHL is higher than those of NN and ML, but it is lower than our proposed
approaches obviously.
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Figure 8. Varying the number of tags detected simultaneously with δd = 20 cm, δs = 3,
grid_size = 60 cm.
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As shown in Figure 8b, with the increase of the number of tags, it is not surprising that the time
cost rises. The time costs of existing methods NN, ML and PHL (introduced in Section 5.1) are lower
than those of MRLIHT-A and MRLIHT-E, but their localization accuracies are also lower. We can
observe that the time costs of ML and PHL are close to each other, because both of them estimate the
locations of indoor humans based on the multilateration. The main difference between ML and PHL is
that the distance between an individual (reader) and a tag is computed based on the RSS and phase
difference, respectively. Moreover, we observe that the time costs of the proposed approaches increase
approximately linearly, which verifies that they also have good scalability. For example, the time cost
of MRLIHT-A is 0.85163 ms with 100 tags can be detected by a reader simultaneously, which means
we can execute 6300 times of location estimation in a second. On the other hand, we can observe
that the time costs of MRLIHT-A are 0.00809 ms and 0.2514 ms with 50 and 300 tags can be detected
simultaneously, respectively. When the tag deployment is intensive, the efficiency of the proposed
MRLIHT decreases. Thus in real applications, we should avoid too-intensive tag deployment with a
certain accuracy guarantee.

5.4.2. Varying the Number of Readers

Figure 9 reports the evaluation of the scalability in terms of accuracy and efficiency by varying
the number of readers. As shown in Figure 9a, the accuracy remains stable with the increase of the
count of readers. However, the accuracy of the proposed MRLIHT is higher than the existing methods,
obviously. For the time costs, as shown in Figure 9b, all methods increase linearly with the increase of
the number of readers. The time costs of MRLIHT-A and MRLIHT-E are 47.5284 ms and 694.6388 ms
with 1000 readers, respectively. In other words, we can estimate the locations of 20,000 and 1500
readers in one second based on MRLIHT-A and MRLIHT-E, respectively. Therefore, MRLIHT-A is
more suitable for the large-scale monitoring applications without much accuracy sacrifice.
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Figure 9. Varying the number of readers with δd = 20 cm, δs = 3, grid_size = 60 cm.

6. Conclusions

In this paper, we have studied the indoor human tracking problem. Accordingly, we propose a
novel M-RFID based localization approach for indoor human tracking, named MRLIHT. In MRLIHT,
RFID tags are fixed deployed in the monitoring area intensively, and RFID readers are equipped on the
moving objects (i.e., individuals) we targeting to locate. To improve the localization accuracy, we add
a random disturbance term which reflects the uncertainty of the readings by an RFID reader on the
reading rate. As a result, the response region of an RFID tag to the reader is extended from a circle to a
circular, which enriches the candidate positions of the reader. Moreover, in MRLIHT, the individuals
can move in the monitoring area arbitrarily without a pre-defined motion model, which is more
applicable in the real world. In time cost, since the locations of RFID tags are fixed and can be written
in their own memories, the location information of RFID tags (which are used for location tracking)
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can be obtained by RFID readers directly. Therefore, the extra queries for tag locations are saved, and
thereby the location estimation efficiency is improved. Finally, the extensive experimental results show
that the proposed MRLIHT has higher location estimation accuracy than the state-of-the-art methods.
Moreover, it is able to accommodate large-scale monitoring applications with good scalability.
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