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Psoriasis is a chronic inflammatory skin disease. Emerging evidence shows that

neurogenic inflammation, induced by nociceptive neurons and T helper 17 cell (Th17)

responses, has a fundamental role in maintaining the changes in the immune system due

to psoriasis. Nociceptive neurons, specific primary sensory nerves, have a multi-faceted

role in detecting noxious stimuli, maintaining homeostasis, and regulating the immunity

responses in the skin. Therefore, it is critical to understand the connections and

interplay between the nociceptive neurons and the immune system in psoriasis. Here,

we review works on the altered innervation that occurs in psoriasis. We examine how

these distinct sensory neurons and their signal transducers participate in regulating

inflammation. Numerous clinical studies report the dysfunction of nociceptive neurons in

psoriasis. We discuss the mechanism behind the inconsistent activation of nociceptive

neurons. Moreover, we review how neuropeptides, involved in regulating Th17 responses

and the role of nociceptive neurons, regulate immunity in psoriasis. Understanding

how nociceptive neurons regulate immune responses enhances our knowledge of the

neuroimmunity involved in the pathogenesis of psoriasis and may form the basis for new

approaches to treat it.
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INTRODUCTION

Skin is a highly sensitive organ that is abundantly innervated by primary sensory nerve endings
whose cell bodies are located within the dorsal root ganglia (DRG) and the cranial sensory ganglia
(1). The skin contains specific sensory neurons, called nociceptive neurons, that respond to a wide
range of noxious stimuli. These stimuli include extreme mechanical stimuli, chemical irritants,
and harmful temperature stimuli, which are all capable of causing tissue injury (2). Nociceptive
neurons transmit action potentials that induce the pain sensation and trigger the withdrawal reflex
(3). Nociceptive neurons also release neuropeptides from peripheral nerve terminals that directly
modulate local immune responses (4).

Psoriasis is a chronic inflammatory skin disease characterized by hyperproliferation of the
basal epidermal cells, which results in erythematosquamous plaques (5). Clinical reports show
spontaneous improvement of psoriatic skin lesions after central or peripheral nerve damage (6),
indicating that the nervous system may play an essential role in the development of psoriasis.
Moreover, several clinical studies have shown that patients with psoriasis, who suffered insomnia,
depression, and anxiety, pointed to these stressors as the main causes of exacerbation of their
psoriasis (7–9).

Here we will identify the change in innervation that occurs in patients with psoriasis. We
will review the ways nociceptive neurons sense the local environment in skin tissue and then
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evaluate the dysfunction of peripheral sensory neurons in
psoriasis. We will also discuss how the neuropeptides that are
released by neurons contribute to the regulation of Th17 immune
responses as well as examine the role of nociceptive neurons
in a psoriatic mouse model. A proper understanding of the
role that nociceptive neurons play in shaping the course of
psoriasis could have profound implications for our knowledge
of psoriasis pathogenesis and may improve our ability to treat
the condition.

NOCICEPTIVE NEURONS SENSE THE
TISSUE MICROENVIRONMENT

Similar to the immune system, the peripheral nervous
system can detect stimuli directly from the local immune
microenvironment. These stimulations can induce excessive
excitement and even cause action potentials in nociceptive nerve
fibers that evoke pain and/or itching and hyperalgesia. These
sensations are produced through various receptors and ion
channels, such as transient receptor potential (TRP) channels
and inflammatory factor receptors, which are located in free
nerve fiber endings.

The TRP channel family, the largest group of noxious stimulus
detectors, are Ca2+ permeable channels that play a key role
in pain sensation (10). In this review, we will focus on and
thoroughly investigate two of the TRP channel subfamilies,
transient receptor potential cation channel subfamily V, member
1 (TRPV1) and transient receptor potential cation channel
subfamily A, member 1 (TRPA1). TRPV1 is a non-selective,
ligand-gated, cationic (mainly Ca2+) channel responsive to
noxious thermal stimuli in the temperature range above 43◦C.
In contrast to TRPV1, TRPA1 is a non-selective, ligand-gated,
Ca2+ channel that responds to noxious cold stimuli below 17◦C
(11). TRPA1 is almost exclusively found in TRPV1-expressing
populations of sensory neurons (12). Numerous studies have
found that there is cross-sensitization and cross-desensitization
between TRPV1 and TRPA1 channels (13–15). Recently, it
has been reported that a membrane adapter protein called
Tmem100might form a heteromeric channel construct, playing a
fundamental regulatory role in TRPV1-TRPA1 interaction (16).

TRPV1 and TRPA1 sensitization occurs through amechanism
involving multiple protein kinases, such as protein kinases C and
A (PKC and PKA, respectively) and Ca2+/calmodulin dependent
kinase II (CAMKII) (17). Elevated PKC, PKA, or CaMKII
activity is associated with sensitization and activation in the
nociceptive neurons (18, 19). Numerous studies have reported
that inflammation mediators can induce inconsistent activation
of nociceptive neurons through G protein-coupled receptors
(GPCRs) or receptor tyrosine kinases (RTKs) via cAMP/PKA,
PLC/PKC, and CaMKII second messenger-signaling pathways
(17, 20). These include cytokines [tumor necrosis factor (TNF)],
interleukins (IL-1b, IL-6, IL-17A), chemokines, neuropeptides
[calcitonin gene-related peptide (CGRP), substance P (SP), and
Vasoactive intestinal peptide (VIP)] (21–27). These phenomena
provide a treatment target for alleviating skin discomfort and
regulating the immune response which will be discussed below.

INNERVATION IN PSORIASIS

The expression of TRP channels (TRPV1, TRPA1) is elevated in
psoriatic skin (28, 29). TRP channels are also expressed on non-
neuronal cells (30) and, at present, clinical studies targeting the
change of nociceptive neurons in psoriasis are still unavailable.
Therefore, we have settled for a review of the variation of the
primary sensory nerve system.

Altered Quantity of Nerve Fibers in
Psoriasis
Numerous studies have shown that, for every measurable aspect,
innervation in psoriatic lesions is higher than in non-psoriatic
skin, including the total number of nerve fibers (31), density
(31–33), total length (34), and the proportion of nerve fiber
penetration into the epidermis (35). However, other investigators
have reported conflicting results. It has been reported that protein
gene product 9.5 (PGP9.5)-positive nerve endings are completely
absent in long-established psoriatic lesions (36). The number
of PGP9.5+ epidermal immunoreactive nerve fibers was also
decreased in highly inflamed psoriatic skin areas (37). These
differences may be due to variations in the progression of
psoriasis and the duration of time the lesion has been present on
the skin.

Nerve ending density is regulated by neurotrophins and
other factors of nerve reduction. Nerve growth factor (NGF)
and the epidermal growth factor, amphiregulin, facilitates the
outgrowth of nerve endings (38, 39), while semaphorin-3A acts
as a negative regulator of nerve fiber growth (40). The altered
innervation in psoriatic lesions is due to changes in the balance
of expression of nerve growth regulators. Related studies have
reported that, in psoriatic lesions, the expression of semaphorin-
3A is decreased (31, 33, 41) and the expression of amphiregulin
(35, 41), NGF (33, 34, 41), tropomyosin receptor kinase A (TrkA)
(35, 41), and P75 neurotrophic factor receptors (p75NTR) (42)
are enhanced. It was also confirmed, in a psoriasis-like mouse
model, that anti-neurotrophins treatment can reduce innervation
in and significantly relieve psoriasis-like lesions, suggesting that
neurotrophins participate in the pathogenesis of psoriasis by
regulating the growth of nerve fibers (43).

Neuropeptide Content in Psoriasis
In the skin, neuropeptides are mainly synthesized and secreted
by C fibers, however, a small part of Aδ fibers and autonomic
nerve fibers can express neuropeptides (44, 45). Neuropeptides
can also be released by keratinocytes, microvascular endothelial
cells, Merkel cells, fibroblasts, and leukocytes under certain
physiological conditions (46). Several immunohistochemical
studies have demonstrated a change in the expression of
neuropeptides in psoriasis. It has been reported that the number
of peptide-containing nerve fibers in psoriatic epidermal tissue is
elevated as compared to non-psoriatic nerve tissue. The number
of SP+ nerve fibers increased by six, and the number of CGRP+

nerve fibers doubled (33, 47). Increased NGF is responsible for
these elevations (48). It has been confirmed that the content
of CGRP and SP in psoriatic lesions in psoriasis is elevated
(35), accompanied by an increased expression of their receptors
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(41, 49). Moreover, the content of neuropeptides in the plasma of
patients with psoriasis is also elevated, which corresponds with
the psoriasis area and severity index (PASI) scores (50, 51).

However, there are conflicting reports that the quantity of
peptidergic nerve fibers are significantly decreased in psoriatic
lesions (37). It was recently reported that in imiquimod (IMQ)-
induced psoriasis-like lesions, there was an increase in the density
of non-peptidergic nerve fibers while the density of peptidergic
nerve fibers decreased (43). We can speculate that the IMQ-
induced psoriasis-like mouse model is similar to the advanced
stage of psoriasis, while the decrease in peptidergic nerve fibers
is caused by neuropeptides release.

Abnormal Nociceptive Neurons Function in
Psoriasis
Nociceptive neurons play a role in generating pain and pruritus
sensations. Abnormal function of these neurons can cause
unpleasant skin symptoms in patients. It was found that nearly
90% of patients with psoriasis suffered skin symptoms, including
pruritus, discomfort, and hyperalgesia (52). Pruritus is the most
common symptom of psoriasis with about 64 to 84% of patients
complaining of itching (28). Nearly half (43.6%) of patients
experience pain in the lesion area, accompanied by a decreased
pressure pain threshold, especially in the scalp and palm areas
(53). Similarly, they had lower cold pain thresholds (54).
Furthermore, patients with psoriasis who regularly experienced
a decreased cold sensation threshold but an increased thermal
threshold also had an increased sensitivity to temperature change
(55). Moreover, there was a tendency for the pressure and pain
thresholds to be decreased in the non-lesion areas of patients
with psoriasis (53, 54). The results of these studies show that,
in psoriasis, nociceptive neurons fail to consistently transmit
sensory signals in lesion as well as non-lesion areas.

Mild systemic inflammation may contribute to the abnormal
nociceptor function that is observed in psoriasis (56). The
improved PASI scores as well as an improvement in pain
intensity are observed after systemic therapy (57), which
indicates that abnormalities in sensory function are related
to the course of the condition rather than to organismic
malformations of the nervous fibers. It is mentioned above
that the increased inflammatory factors observed in psoriasis
can induce abnormalities in the sensitivity of nociceptive
neurons. Research has confirmed that, compared to healthy
controls and non-itchy or non-pain lesions, pruritic psoriatic
skin contains elevated gene transcription levels of IL-17, IL-23,
and IL-31 (28) and hyperalgesia psoriatic skin has higher
expression levels of IL-33 (53). IL-17, IL-31, and IL-33 are
all important inflammatory factors in the pathogenesis of
psoriasis (58). Animal experiments have confirmed that IL-33
can induce dysfunction in sensory nerves (59). Furthermore,
increased IL-33 can trigger endothelin-1 (ET-1)-induced
secretion of prostaglandin E2 (PGE2) and activate TRP channels
in psoriatic lesions, resulting in hyperalgesia (60). Recently,
biological treatments targeting psoriatic pro-inflammatory
factors have been shown to significantly alleviate symptoms of
skin discomfort. For example, treatment with secukinumab and

ixekizumab, a monoclonal antibody that selectively neutralizes
IL-17A, resulted in a reduction of psoriasis-related scalp pain
and itching (61, 62). Additionally, apremilast, an oral small
molecule phosphodiesterase-4 inhibitor that elevates cAMP
levels in immune cells, downregulates the production of pro-
inflammatory mediators, such as TNF-α, IL-17, and IL-23 and
increases the production of anti-inflammatory mediators (63).
Apremilast also provides rapid and sustained improvement
of pruritus and discomfort and pain of the skin (64). These
studies support the speculation that the abnormal nociceptive
neuronal function found in psoriasis maybe a result of increased
pro-inflammatory factors.

Excessive innervation in psoriatic lesions is considered
another important cause of itching and hyperalgesia. It was
reported that there is a clinical correlation between skin
sensitivity and increased nerve fiber density (65). The number
of PGP9.5+ nerve fibers in psoriatic lesions is positively
correlated with pruritus intensity (VAS score) (66). Furthermore,
animal experiments show that decreased nerve innervation is
accompanied by pruritus alleviation in mice (43). Elevated
NGF levels, also contribute to pruritus and hyperalgesia. It was
reported that itching in psoriatic lesions is accompanied by an
elevation in NGF levels (67). Moreover, local injection of NGF in
human skin can directly lead to a reduction in both thermal/cold
pain thresholds and mechanical/electrical pain thresholds (68).
Apart from prompting the growth of nerve fibers, NGF also
can directly induce increased axonal excitability of sensory nerve
fibers leading to hyperalgesia (69).

NOCICEPTIVE NEURONS REGULATE
IMMUNE RESPONSE IN PSORIASIS

TRP channels are often co-expressed with the neuropeptides
CGRP, SP, and VIP. The TRPA1/TRPV1-evoked release of
neuropeptides can cause neurogenic inflammation (11, 70).
Here we will focus on the regulation of neuropeptides on
Th17 immune responses, which play an important role in the
inflammatory pathology observed in psoriasis (71, 72).

Neuropeptides Prompt Th17 Immune
Responses
Functional neuropeptide receptors, such as NK1R (73), RAMP
(74), vasoactive intestinal polypeptide receptor 1 (VPAC1), and
VPAC2 (75) are expressed on T cells.

In the presence of TGF-β, SP can prompt Th17 cell
differentiation through mediation by NK1R (76, 77). Moreover,
SP and HK-1, mediated through NK1R, can prompt Th17 to
produce IL-17 (78). NK1R expression on Th17 cells can in turn be
upregulated by IL-17A, indicating a positive loop between IL-17A
and SP (79). It has recently been confirmed that NK1R signaling
is necessary to sustain Th17 cell survival and to maintain efficient
immune function (73). CGRP has the same function. By binding
to RAMP1 on Th17, CGRP directly upregulates IL-17 production
and the expression of IL-23R (80). It has been confirmed in vivo
that, IL-17 production is significantly suppressed in T cells from
T cell-specific RAMP1-deficient mice (80).
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VIP also plays a role in Th17 differentiation and function
through its two receptors, VPAC1 and VPAC2. However, the
role of VIP is still under debate. In vitro, VIP-VPAC1 axis
signals can bias the CD4T cell response toward a Th17-
rich inflammatory type response, in the presence of TGF-β
(81). Furthermore, during the onset of Th17 differentiation,
VIP prompts the upregulation of the STAT3 gene interaction
with the VPAC1 receptor. Moreover, through the VPAC1
and VPAC2 receptors, VIP modulates the upregulation of the
transcription factors RAR-related orphan receptor C (RORC),
RAR-related orphan receptor A (RORA), and IL-17A genes
(75). However, several animal experiments have resulted in
conflicting conclusions. In a collagen-induced arthritis (CIA)
mouse model (82), a non-obese diabetic (NOD) mouse model
(83), and an experimental autoimmune encephalomyelitis (EAE)
mouse model (84), VIP suppressed the Th17/Th1-type response.
There exists an interesting phenomenon that, based on the same
EAEmousemodel, two studies selectively knockout (KO)VPAC1
or VPAC2, with conflicting conclusions. In the mice that lacked
the VPAC2 receptor, there was an exacerbation of EAE-type
clinical, histopathological, and immunological symptoms as well
as increased inflammatory Th1/Th17 responses (85). Mice that
lacked the VPAC1 gene exhibited a resistance to the development
of EAE through the prevention of CNS chemokine upregulation
and inflammatory cells infiltration (86). These studies showed
that VIP-VPAC1 can enhance Th17 differentiation in vitro, while
VIP-VPAC2 signals may suppress Th17 responses. Furthermore,
the complicated immune environment may interfere with the
role of the VIP-VPAC signal in Th17 responses.

Differentiation of Th17 is controlled by T cell receptor (TCR)
activation/co-simulation and a distinct set of cytokines, IL-6
and IL-23, participate in terminal differentiation of Th17 cells
to help them attain full functionality (87). Numerous studies
show that antigen-presenting cells (APC), including monocytes,
dendritic cells (DCs), Langerhans cells (LCs), and endothelial
cells, express functional neuropeptide receptors, such as RAMP,
NKRs, VPAC1, VPAC2, making it possible for neuropeptides to
bias APC-induced immune responses (88–90). Tachykinins (SP
and HK-1) can enhance the generation of Th17 cells by elevating
expression of IL-1b, IL-6, and IL-23 on monocytes (79, 91). It
has been confirmed in vivo that, SP-NK1R signals can augment
the acquisition of MHC II on bone marrow-derived dendritic
cells, which then affect Th17 cell infiltration and activity (92). VIP
and pituitary adenylate cyclase activating polypeptides (PACAP)
have the same effect. In vitro exposure of LCs to PACAP and
VIP have been found to bias LC antigen presentation toward
Th17 cell responses. Furthermore, it was found that, after the
application of a contact sensitizer, intradermally administered
VIP or PACAP are able to enhance the production of IL-17A
from drained lymph node CD4+ T cells (93). CGRP is also a
Th17 response modifier by way of its actions on APC. CGRP
stimulates endothelial cells to produce IL-6, which skews the
outcome of the presentation of antigens by LC toward a Th17
response (94). These studies show that the neuropeptides, CGRP,
SP, VIP, and PACAP, play an important role in regulating Th17
responses through corresponding receptors that are expressed on
APC and Th17 cells.

It has recently been highlighted that the interaction between
nociceptive neurons and Th17 responses is involved in psoriasis-
like inflammation and Candida albicans (C. albicans) infections.
After detection of C. albicans, TRPV1+ nociceptive neurons
drive IL-23 production by releasing CGRP from dermal
CD301b+ DCs. CGRP then evokes dermal γδT cells to produce
IL-17, which results in protection from C. albicans (95). In
a recent study using a transgenic experimental mouse model,
it was found that peripheral TRPV1+ neuron activation, by
isolated stimulation, is able to trigger psoriasis-like dermatitis
and type 17 inflammation by local TCR γδ T cells, which
can be blocked by botulinum neurotoxin A (BoNT/A) (96).
Moreover, onabotulinumtoxinA can significantly decrease PASI
and physician global assessment (PGA) scores in patients
with psoriasis (97). Both BoNT/A and onabotulinumtoxinA
are botulinum toxins (Botox) that can block neuronal vesicle
release (98), demonstrating the efficacy of nerve-targeting
treatments in psoriasis. This research suggests that TRPV1+

nociceptive neurons play a crucial role in the Th17 immune
response via the release of neuropeptides from free terminals
in psoriasis.

TRPV1+/TRPA1+ Nociceptive Neurons
Regulate Immunity in a Psoriatic Mouse
Model
Pharmacological ablation of TRPV1+ fibers result in
significantly alleviated psoriasis-like lesions accompanied
by decreased expression of IL-23, IL-17, and IL-22 and
decreased recruitment of inflammatory cells in the murine
model of psoriasiform skin inflammation (99). It was further
confirmed that key inflammatory factors in psoriatic and
epidermal hyperplasia are significantly reduced in TRPV1 KO
mice (100).

It is mentioned above that there is cross-regulation of
function between TRPV1 and TRPA1. In recent years, the
role of TRPA1 in psoriasis has been explored. Kemény et al.
reported that TRPA1 KO or TRPA1 antagonists (A967079)
treatment can both significantly enhance psoriasis dermatitis
and increase hind paw scratching, suggesting that TRPA1
plays a protective role in psoriasis (101). However, Zhou
et al. hold the opposite opinion that, compared with wild-
type (WT) mice, IMQ-induced psoriasiform dermatitis and
Th17-related cytokine expression is significantly reduced in
TRPA1 KO mice. The authors attribute this contradictory
result to the fact that Zhou used a different protocol than
Kemény. Zhou used an original experimental protocol
that required a relatively higher dose of IMQ, while
Kemény used the Finn chamber, which is characterized as
a “localized model.” It is confirmed that high doses of IMQ
induce splenomegaly, increased plasma concentration of
inflammatory cytokines, and body weight loss indicating
systemic inflammatory reactions in mice, which can be avoid
in the Finn chamber application (102). As a result, we can
speculate that the immune mediation function of TRPA1+

nociceptive neurons may be influenced by the systemic
immune environment.
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FIGURE 1 | The vicious circular pathway between nociceptive neurons and Th17 immune responses in psoriatic lesions. Neuropeptides (CGRP, SP, VIP) prompt the

release of IL-6 and IL-23 and bias antigen presentation for Th17 cell responses. Neuropeptides also prompt Th cells to release IL-17, IL-31, and IL-33. Increased

cytokines can sensitize TRPV1 and TRPA1 channels through GPCRs via secondary messenger-signaling pathways, the cAMP/PKA and PLC/PKC pathways,

following Ca2+ elevation. An elevated Ca2+ concentrate prompts the release of neuropeptides, which forms a vicious circle pathway between nociceptive neurons and

the local immune system. Sensitized TRPV1 and TRPA1 channels result in pruritus, pain, and hyperalgesia experienced by patients with psoriasis.

CONCLUSION

The primary emphasis of this review has been on examining
the role of the nervous system, especially nociceptive neurons,
in the pathogenesis of psoriasis (Figure 1). Numerous studies
have reported increased innervation of primary sensory nerve
fibers and elevated gene expression of TRP channels in psoriasis.
However, the dynamic changes of nociceptive neurons in
psoriatic lesions are still not fully understood. Moreover, further
research is needed to illuminate the role of TRPA1+ nociceptive
neurons in psoriatic immune responses. The vicious circular
pathway between nociceptive neurons and Th17 responses is
responsible for pruritus, pain, and hyperalgesia experienced by
patients with psoriasis. The effective targeting of this pathway
is the reason anti-IL-17 therapy proved most effective in
reducing pruritus, while traditional immune system suppressants
(methotrexate and retinoids) failed (103). This review also
provides a theoretical basis for the formulation of promising

nerve-targeting treatments for psoriasis in the future. However,
further clinical trials are still needed to understand the
effectiveness of Botox. It will be beneficial for future studies to
continue to explore the synergy between nociceptive neurons and
the immune system in psoriasis, which could result in improved
patient outcomes.
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