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Abstract

Motivation: The use of experimental information has been demonstrated to increase the success rate of computa-
tional macromolecular docking. Many methods use information to post-filter the simulation output while others
drive the simulation based on experimental restraints, which can become problematic for more complex scenarios
such as multiple binding interfaces.

Results: We present a novel method for including interface information into protein docking simulations within the
LightDock framework. Prior to the simulation, irrelevant regions from the receptor are excluded for sampling (filter
of initial swarms) and initial ligand poses are pre-oriented based on ligand input information. We demonstrate the
applicability of this approach on the new 55 cases of the Protein–Protein Docking Benchmark 5, using different
amounts of information. Even with incomplete or incorrect information, a significant improvement in performance
is obtained compared to blind ab initio docking.

Availability and implementation: The software is supported and freely available from https://github.com/brianjime
nez/lightdock and analysis data from https://github.com/brianjimenez/lightdock_bm5.

Contact: b.jimenezgarcia@uu.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Computational tools are essential to predict and describe three-
dimensional (3D) interactions between biomolecules. In particular,
integrative approaches, i.e. data- or information-driven, are broadly
used in order to combine experimental data with docking simula-
tions (Jiménez-Garcı́a et al., 2013; Quignot et al., 2018; Rodrigues
and Bonvin, 2014; Russel et al., 2012; De Vries et al., 2010, 2015).
In the context of molecular docking, there are still two main chal-
lenges: (i) searching the conformational space, especially in the case
of highly flexible molecules, and (ii) evaluating and selecting near-
native poses out of the generated conformers, which is usually
referred to as scoring.

LightDock (Jiménez-Garcı́a et al., 2018) is a multiscale flexible
framework for the 3D determination of binary protein complexes
based on the Glowworm Swarm Optimization (GSO) (Krishnanand
and Ghose, 2009) algorithm that systematically optimizes the gener-
ated docking poses towards those energetically more favourable at
every simulation step.

Introducing restraints or biases in docking is a powerful mechan-
ism to drive the simulation towards poses that satisfy those
restraints (Dominguez et al., 2003). Here we describe and bench-
mark an updated implementation of LightDock that now supports
the use of information to drive or bias the docking simulation by fil-
tering out swarms, pre-orienting ligand poses based on the available
information and biasing the scoring energy upon satisfied residue
contact restraints.

The results on the benchmark demonstrate a high performance of
LightDock when used in combination with additional information. We
also explore different scenarios with less accurate or incorrect informa-
tion to show the versatility and robustness of our approach.

2 Materials and methods

Due to the nature of the LightDock framework, information about
interfacial residues can be applied at different levels depending on the
availability of information for the receptor, the ligand or both. On the
receptor side, we filter out initial swarms that are not in the proximity
of the defined restraints (Supplementary Material S1), with the collat-
eral advantage of reducing considerably the computation time. On the
ligand side, we orient initial poses based on randomly selected
receptor-ligand restraint pairs (Supplementary Material S2). Steps S1
and S2 are only performed at the initial setup stage of the simulation.

Finally, we bias the scoring according to the percentage of satis-
fied residue contact restraints (Supplementary Material S3) at every
simulation step. The biasing of specific residues could be disabled if
they are defined as passive by the user (only S1 and S2 steps at the
setup stage will therefore apply).

3 Results

The latest release of LightDock (0.7.0) (Jimenez et al., 2019), which
now supports the use of information to drive the docking in the format

VC The Author(s) 2019. Published by Oxford University Press. 950

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 36(3), 2020, 950–952

doi: 10.1093/bioinformatics/btz642

Advance Access Publication Date: 16 August 2019

Applications Note

http://orcid.org/0000-0002-6588-624X
http://orcid.org/0000-0001-7369-1322
https://github.com/brianjimenez/lightdock
https://github.com/brianjimenez/lightdock
https://github.com/brianjimenez/lightdock_bm5
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz642#supplementary-data
Deleted Text: &hx2009;
Deleted Text: De Vries et<?A3B2 show $146#?>al., 2010, 2015; 
Deleted Text: ; Jim&hx00E9;nez-Garc&hx00ED;a et<?A3B2 show $146#?>al., 2013; <xref ref-type=
Deleted Text: Quignot <italic>et<?A3B2 show $146#?>al.</italic>, 2018
Deleted Text: ; 
Deleted Text: 1
Deleted Text: 2
Deleted Text: &hx2009;
Deleted Text: 2 Methods
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz642#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz642#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz642#supplementary-data
https://academic.oup.com/


of residue restraints, was tested on the 55 unbound new entries of the
Protein Docking Benchmark version 5 (Vreven et al., 2015), which rep-
resents an unbiased dataset where no software/scoring functions were
trained in, and includes 16 antibody-antigen complexes. We defined
various scenarios to demonstrate its versatility and robustness as
follows:

1. TI: True interface, defined as those residues at 3.9Å distance (as

also defined in LIGPLOT (Wallace et al., 1995) by default) from

the partner molecule. This is an ideal case where a fully accurate

definition of interface residues is available, but no specific con-

tacts are defined.

2. TI50: We defined two different artificial interfaces with half of

the TI residues and equal number of non-interfacial residues

forming a contiguous patch as described in Supplementary

Material S4. Results are reported as averaged success rates of

both runs (using each of the designed interfaces).

3. TI25: In the same way as in TI50, we defined four different sets

of restraints with one fourth of the original TI and three times

more false positive residues forming a contiguous patch

(Supplementary Material S4). Results are reported as averaged

success rates of the four docking calculations (each one using a

different artificially designed interface).

4. TIREC: Only the TI from the receptor is considered as restraints.

5. TIREC-50: As in TI50, but only considering the receptor interface

residues.

6. TIREC-25: As in TI25, but only considering the receptor interface

residues.

7. TISINGLE: Only one receptor-ligand residue pair, making a real

contact, is used as residue restraints.

8. TIONE: Only one residue on the receptor, the same one as

defined in TISINGLE, is considered as restraint, without any infor-

mation on the ligand side.

While several docking algorithms allow the use of information as a
posteriori filter, LightDock incorporates this data a priori. If residue
restraints are provided, irrelevant sampling regions are excluded by fil-
tering the initial swarms and pre-orienting the initial poses (glow-
worms). This method not only represents a more efficient way as
compared to post-docking approaches but also leads to a higher success
rate. To test this hypothesis, we have filtered the BLIND predictions
(BLINDfiltered) according to an accurate description of the interface
(residue restraints as used in TI). As shown in Supplementary Figure
S2, post-filtering results in a clear improvement of the performance
compared to ab initio docking. Nevertheless, when using this informa-
tion prior the docking (TI), the success rate considerably increases
reaching a maximum of 98.2% for the Top50 (54 of 55 cases) com-
pared to a moderate 40% in BLINDfiltered.

Figure 1 shows the results for the eight scenarios described above
together with ab initio docking, which is included as a baseline for
comparison purposes. The scoring function used in these LightDock
simulations is DFIRE (Zhou and Zhou, 2009). When no prior infor-
mation about the binding site is used for the docking calculations
(BLIND), the predictive performance of LightDock lags behind any
of the other scenarios tested in this work, with a moderate 14.5 and
23.6% success rates for Top10 and Top100 respectively.
Interestingly, with the gradual use of information in the form of resi-
due contact restraints, we find a boost in the performance up to a

Fig. 1. Performance of LightDock for the nine different scenarios. BLIND: Ab initio docking. TIREC: Only receptor contribution to the true interface. TI: All the residues from

the true interface. TISINGLE: A single residue pair from the true interface. TIREC-50: Half of the TIREC and equal number of non-interfacial residues. TI50: Half of the TI and

equal number of non-interfacial residues. TIONE: Only one residue on the receptor, as defined in TISINGLE, is considered as restraint (i.e. no information on the ligand side).

TIREC-25: One fourth of the TIREC and three times more non-interfacial residues. TI25: One fourth of the TI and three times more non-interfacial residues. True interface resi-

dues are calculated at a cutoff distance of 3.9 Å. Results are presented according to the CAPRI quality criteria (Lensink and Wodak, 2010) and the success rate is defined as the

percentage of cases with at least one non-incorrect model within a given Top N (N¼1, 5, 10, 20, 50, 100)
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92.7% for the Top10 when an accurate description of the interface
(TI) is used. This represents an ideal case and illustrates how dock-
ing approaches can enormously benefit from integrating experimen-
tal data in their calculations. Unfortunately, structural experimental
techniques rarely describe interfaces in a very accurate manner and
the data produced is usually incomplete and/or incorrect, fact that
heavily affect the performance of modelling approaches as previous-
ly discussed in Rodrigues and Bonvin (2014).

To account for inaccurate or incorrect data, we have designed
artificial interfaces with false positive residues (Supplementary
Material S4). When only 50% of the original TI is used (TI50) or
25% (TI25), which represents 50 and 75% of non-interfacial resi-
dues, LightDock performance in Top10 is of 72.7 and 46.4% re-
spectively. In the case of TI50, Top100 performance compares to TI
(94.6% versus 98.2%). This indicates that even when the informa-
tion used to restrain the docking simulations in LightDock is incom-
plete and partially wrong, the protocol seems robust enough and
still yields correct solutions for most of the cases (52 out of 55).
However, the scoring becomes problematic compared to TI as the
Top1 success rate drops from 65.5 to 33.6%.

In the scenario where only the contribution of the receptor is
taken into account (TIREC), a substantial success rate of 67.3% is
obtained for the Top100. This scenario is especially interesting since
it directly applies, for example, to antibody-antigen docking where
no information about the epitope is known so the docking is per-
formed exploring the whole surface of the antigen while for the anti-
body the HV loops are provided (Supplementary Fig. S3).
Moreover, when false positives are included in the TIREC scenario
(50% in TIREC-50, 75% in TIREC-25) the performance drops, but
Top100 is still higher (46.3 and 28.2%) than BLIND (23.6%).

Finally, we push the limits of the algorithm defining only one
residue restraint on the receptor molecule (this would mimic one
mutation data point for example). This effectively means that, as in
TISINGLE, only the ten closest swarms to the restraint will be gener-
ated, each of them containing randomly oriented glowworm poses
(200 by default). In this scenario, restricting the sampling area helps
the identification of near-native models as the performance is signifi-
cantly higher than BLIND (Fig. 1). Remarkably, when we include a
residue on the ligand molecule (TISINGLE), which is used in the pre-
orienting step (Supplementary Material S2), LightDock predicts and
scores a near-native solution in the Top1 for 69% of the cases. From
the different tested scenarios, it seems reasonable to state that our
protocol enormously benefits from the additional data in form of
residue restraints, even when it is incomplete and/or partially
incorrect.

4 Conclusion

The new version of LightDock offers a powerful tool for modelling
protein–protein complexes with high accuracy when good quality
information about interfaces is available. Next to enabling the in-
corporation of data from mutagenesis and/or bioinformatics predic-
tions, for example, this strategy might also be convenient in
scenarios such as limiting the sampling to the solvent accessible

loops of a transmembrane protein, or the CDR loops of an antibody.
Moreover, when incorrect and/or incomplete data are used to re-
straint the simulation, LightDock is still robust enough to yield valu-
able predictions. While other FFT-based methods do support a
posteriori filtering, the pre-filtering of swarms in LightDock does
lead to a reduction of the computation time and a higher perform-
ance, which could be used to ensure a denser sampling around the
binding region.
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