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Abstract
HIV-1 integrates its proviral DNA genome into the host genome, presenting barriers for

virus eradication. Several new gene-editing technologies have emerged that could poten-

tially be used to damage integrated proviral DNA. In this study, we use transcription acti-

vator-like effector nucleases (TALENs) to target a highly conserved sequence in the

transactivation response element (TAR) of the HIV-1 proviral DNA. We demonstrated that

TALENs cleave a DNA template with the HIV-1 proviral target site in vitro. A GFP reporter,

under control of HIV-1 TAR, was efficiently inactivated by mutations introduced by trans-

fection of TALEN plasmids. When infected cells containing the full-length integrated HIV-1

proviral DNA were transfected with TALENs, the TAR region accumulated indels. When

one of these mutants was tested, the mutated HIV-1 proviral DNA was incapable of pro-

ducing detectable Gag expression. TALEN variants engineered for degenerate recogni-

tion of select nucleotide positions also cleaved proviral DNA in vitro and the full-length

integrated proviral DNA genome in living cells. These results suggest a possible design

strategy for the therapeutic considerations of incomplete target sequence conservation

and acquired resistance mutations. We have established a new strategy for damaging

integrated HIV proviral DNA that may have future potential for HIV-1 proviral DNA

eradication.

Introduction
Human Immunodeficiency Virus (HIV), the causative agent of Acquired Immunodeficiency
Syndrome (AIDS), is a pathogenic retrovirus that integrates a proviral DNA copy of its genome
into the genome of host cells. Three decades of research and development have produced many
antiretroviral (ARV) drugs that, when combined in Highly Active Antiretroviral Therapy
(HAART) can reduce the plasma viral load in infected patients, and even shut down viral pro-
duction [1]. But even with chronic HAART treatment, an integrated copy of proviral HIV
DNA remains in latent cells, which can re-establish viral production and cause a rebound, pro-
ducing plasma viremia [2].
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The persistent latent HIV reservoir is a major barrier to HIV treatment [3]. The most prom-
inent current strategy to address HIV latency is, while under HAART therapy, to reactivate la-
tently infected cells so that they can be targeted by the immune system [2,4–6]. A major
problem with this approach is that specific reactivation of only latent cells has not been
achieved and nonspecific reactivation of T-cells can lead to a cytokine storm [7]. Furthermore,
even replacing the immune system does not guarantee a cure.

An approach to eradicate or damage the integrated HIV proviral DNA is needed. One
promising new approach is genome editing with engineered nucleases (GEEN). There are four
main technologies used for GEEN: (1) meganucleases; (2) zinc finger nucleases (ZFN); (3) tran-
scription activator-like effector nucleases (TALENs); and (4) clustered regulatory interspaced
short palindromic repeat (CRISPR)/Cas-based RNA-guided DNA endonucleases. These tech-
nologies catalyze double strand breaks in genomic DNA that are thought to be repaired in cells
by endogenous nonhomologous end joining (NHEJ). These repairs often produce mistake in-
sertions or deletions, introducing indels into the targeted DNA, thus mutating the genomic
DNA.

Others have tested Tre recombinase, zinc finger nucleases, and CRISPR/Cas-9 in attempts
to target the integrated HIV-1 proviral DNA in cells [8–13]. One potential limitation of these
GEEN approaches is that the HIV-1 proviral DNA displays few long stretches with highly con-
served nucleotides, thus GEEN treatment may be prone to HIV-1 escape mutations.

We explored using the TALEN based technology to mutate and thus inactivate the HIV-1
proviral DNA because TALENs are the only GEEN where the targeting construct can encode
specific degeneracy for the DNA recognition site, thus can be engineered to potentially inhibit
escape mutations [14]. TALENs also are reported to have very high damage efficiencies of
>50% achieved in several systems [15–20]. TALENs have flexibility in the target sequences,
whereas meganucleases and ZFNs have a more limited breadth [21–24]. TALENs have high
specificity achieved in some systems evaluated by exome sequencing with limited off-target ed-
iting and toxicity [25,26]. ZFNs have reported off-target editing sites, as well as CRISPR/Cas
where sites with multiple base pairs that differ from the guide RNA can be edited [23,27,28].
The use of TALENs for treating HIV latency has been recently suggested [29,30]. Further sup-
port for using this approach to treat HIV come from a recent report where TALENs were effec-
tively used to disable the episomal Hepatitis B Virus (HBV) genome and reduce viral load in
cells and animals [31,32].

Herein, we have engineered a custom TALEN pair of HIV Targeted-TALENs (HT-TA-
LENs) to specifically target a highly conserved region of the HIV-1 genome. We also built and
tested a NS-TALEN designed with some degenerate recognition to accommodate escape muta-
tions in regions where viral genome mutations have been previously observed. We report that
both TALEN pairs can be used to damage the integrated HIV-1 proviral DNA in cultured cells
infected with HIV-1. To our knowledge, this is the first demonstration that the full-length inte-
grated HIV-1 proviral DNA can be mutated and protein expression negatively affected by in-
troduction of TALENs, and thus inactivated in cells. This suggests a new promising alternative
approach for treating viral latency.

Materials and Methods

Bioinformatics analysis of HIV-1 genome
HIV-1 Sub-type B DNA sequences for the complete genome and the 5’LTR, 5’LTR(R), 5’LTR
(U3), 5’LTR(U5), GAGPOL, RRE, RT, TAR, ENV regions of the genome were downloaded
from the Los Alamos HIV Sequence Database (http://www.hiv.lanl.gov/) and converted into
comma-delimitated files using a custom script. The files were then loaded, aligned with
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ClustalO [33], and positional conservation was calculated with Microsoft Excel. Regions with
stretches of bases that held the most positional conservation were selected as potential target
regions. The strongest target region, encompassing TAR, was obtained from analysis of the 226
sequences encompassing the HIVB5LTR. The 5’HT-TALEN and 5’ NS-TALEN binding sites
encompass nucleotide positions 459–478 (HIV-1 HXB2 accession number K03455), while the
3’HT-TALEN binding site encompasses nucleotide positions 499–515 (HIV-1 HXB2 accession
number K03455).

Design and construction of TALEN plasmids
A FASTA file for the HIV-1 Sub-type B 5’LTR HXB2 DNA sequence (accession number
K03455) was input into the ZiFiT Webtool (http://zifit.partners.org/ZiFiT/) to retrieve a sche-
matic for building TALEN constructs using the REAL Assembly Kit [34–36]. Plasmid DNA
constructs for the HT-TALENs were built using the Joung Lab REAL Assembly TALEN kit
(AddGene), following the REAL Assembly method as described [36]. Identity of correct
HT-TALEN DNA clones was confirmed by sequence analysis (Beckman Coulter Genomics).

In vitro transcription/translation of HT- and NS-TALENs and cleavage
reactions
The target template DNA to be used in cleavage reactions was synthesized by Polymerase
Chain Reaction (PCR) (HotStarTaq Plus Master Mix, Qiagen) using forward primer U3Bam-
HI75F (CAGCTGGATCCTGATTGGCAG) and reverse primer GagSalI804Rev
(GGGTGCGAGAGCGTCGACGACGG) to amplify a 747 bp product from plai.2 proviral
DNA[37](NIH AIDS Reagent Program, catalog no. 2532). To generate a mutant target tem-
plate, overlap extension of two PCR products was performed, followed by a PCR using a for-
ward primer (U3BamHI75F) and a reverse primer (GagSalI804Rev). PCR product 1 (520 bp)
was generated using plai.2 (a full-length HIV proviral DNA) as a template, U3BamHIFor and a
randomized reverse primer (Random5’siteRev: CAGGCTCNNATCTGGTCNNNCNA). PCR
product 2 (355 bp) was generated using plai.2 as a template, a randomized forward primer
(Random5’siteFor: CTCTNGNNNGACCAGATNNGAGC), and GagSalI804Rev. The generat-
ed insert was ligated into SalI/BamHI digested pGEX6P3 (GE Healthcare Sciences).

In vitro transcription/translation reactions were performed using the TnT Quick Coupled
Transcription/Translation System (Promega). Reactions consisted of 500 ng of each HT-TA-
LEN pair DNA plasmid, 20 μL of TNT T7 Quick Master Mix, 0.5 μL Methionine (1 mM),
500ng target template DNA, and 2.5 μL H20. The reactions were incubated at 30°C for 2 hours.
Aliquots were analyzed by Western blot and to the remaining reaction (20μL) was added to
100 μL of cleavage reaction buffer [18,38]. The samples were then incubated for an additional
3 hours at 30°C followed by Rnase A (20 μg) treatment for 15 minutes. DNA from the samples
was purified (Wizard SV Gel and PCR Clean-Up System,) and ethanol precipitated to concen-
trate the samples. Concentrated samples were then run on a 1% 1XTAE agarose gel to visualize
the target template and cleaved product DNAs. Image J software was used to quantify bands to
determine cleavage efficiency [39]. These experiments were repeated 2–3 times.

Cell culture and transfection
HeLa-tat-III/LTR/d1EGFP cells [40] were maintained in Dulbecco's modified Eagle's medium
(DMEM) supplemented with 10% Fetal Bovine Serum (Fisher Scientific), 1% penicillin and
streptomycin (Sigma) and 1mg/mL G418 (Fisher Scientific). HeLa/LAV cells [41,42] and
pEAK Rapid cells (derived from HEK293 cells, Edge Biosystems) were maintained in Dulbec-
co's modified Eagle's medium (DMEM) supplemented with 10% Fetal Bovine Serum (Fisher
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Scientific), and 1% penicillin and streptomycin (Sigma). Transient transfections of both HeLa-
tat-III/LTR/d1EGFP and HeLa/LAV cells was performed using the Trans-IT HeLa-MONSTER
transfection kit (Mirus). Transient transfection of pEAK Rapid cells was performed using the
Trans-IT 2020 transfection kit (Mirus). Cells were harvested 48 hours post-transfection.

Flow cytometry
Cytotoxicity was determined for transiently transfected HeLa/LAV (pRSET.mCherry expres-
sion vector, HT-TALEN pair, NS-TALEN pair) samples in addition to control samples. Sam-
ples were harvested for Annexin V staining 72 hours post-transfection (FITC Annexin V
Apoptosis Detection Kit, BD). Each sample-type was performed in triplicate. Wells were trypsi-
nized (0.25% Trypsin), resuspended in 1 mL of phosphate buffered saline (PBS), and then cen-
trifuged at 156 x g for 5 minutes. Samples were then gently resuspended in 1 mL HEPES buffer
and centrifuged at 156 x g. for 5 minutes. Samples were gently resuspended in 50 μL HEPES
buffer and 3 μL Annexin V was added to each sample, excluding the negative controls. Samples
were incubated on ice for 20 minutes in the dark. Samples were centrifuged at 156 x g for 5 min-
utes, followed by a 1mL ice cold HEPES buffer wash. Samples were resuspended in a 4% para-
formaldehyde solution and incubated at room temperature in the dark for 3 hours. Samples
were centrifuged at 156 x g for 5 minutes. Samples were then washed in 1 mL PBS and then
gently resuspended in 300μL PBS to prepare them for flow analysis.

TALEN efficiency was determined by number of mCherry/Green Fluorescent Protein
(GFP) vs. mCherry-only positive cells recorded 72 hours post-transfection in transiently trans-
fected HeLa-tat-III/LTR/d1EGFP cells (pRSET.mCherry expression vector, co-transfected
HT-TALEN pair and pRSET.mCherry expression vector, cotransfected NS-TALEN pair and
pRSET.mCherry expression vector). Each sample-type was performed in triplicate. Wells were
trypsinized (0.25% Trypsin), resuspended in 1 mL PBS, and then centrifuged at 156 x g for
5 minutes. Samples were fixed in 4% paraformaldehyde, washed once with PBS and then resus-
pended in 500 μL PBS prior to flow analysis.

Flow cytometry data was acquired using a FACSCalibur Flow cytometer (Becton Dickin-
son). The blue laser (488nm) was used for detecting GFP while the red laser (635nm) was used
for mCherry. 10,000 events were acquired for each sample. Flow cytometry analysis was per-
formed using FlowJo (Tree Star) software. Non-fluorescent samples were used to determine
thresholds. mCherry-positive only samples and GFP-positive only samples were used to set
gating thresholds. Dose-response curves were generated by counting cells using different
mCherry thresholds. Statistical analysis for cytotoxicity experiments was performed using
Analysis of Variance (ANOVA) and statistical differences in slopes from TALEN dose-
response curves were determined with a one-tailed t-test.

Protein analysis
Cells were washed and lysed in PBS. One-half of the cell lysate was used for genomic DNA pu-
rification (see below), while the other half was combined with 2X Sodium Dodecyl sulfate
(SDS) protein buffer for protein analysis. The protein samples were freeze/thawed three times,
boiled at 95°C for 5 minutes, then loaded onto a 4–12% Bis-tris protein gel (Nupage, Life Tech-
nologies). Proteins in the gel were transferred onto a PVDF membrane (Immobilon-P, Milli-
pore), blocked with 5% milk/PBS, and then probed with select primary antibodies. Primary
antibodies used included: mouse anti-actin, mouse anti-Flag-HRP conjugate (SLBD 9930,
Sigma Aldrich), mouse anti-capsid [43], and rabbit anti-Flag (A1113, Santa Cruz). Secondary
antibodies used included: Goat anti-rabbit HRP and Rabbit anti-mouse HRP conjugates (GE
Life Sciences). Proteins were visualized using chemiluminescence (Super Signal West Pico
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Chemiluminescent Substrate, Thermo Scientific) on an Automated Biospectrum Imaging Sys-
tem (UVP). All Western analyses were repeated 2–3 times

Genomic DNA analysis
Genomic DNA was purified from cell lysates using a PureLink Genomic DNA kit (Life Tech-
nologies). PCRs (HotStar High Fidelity Polymerase kit, Qiagen) were performed on the puri-
fied genomic DNA to produce products for cloning and for T7 assays. For cloning purposes,
primers pBSNY5For (GGCATGCTCGAGCTCAGATGCTGCATAT) and pBSNY5Rev
(CATGCCTCTAGAAGTGGGTTCCCTAGC) were used with the genomic DNA to produce a
114 bp insert for the XhoI/XbaI digested pBlueScript II SK(-) vector. Clones produced were se-
quenced with M13Reverse primer.

Construction of mutated HIV proviral plasmid
To engineer a mutant HIV-1 proviral DNA based on a sequence identified as a genomic edit
induced by TALEN cleavage, overlap extension of two PCR products was performed, followed
by a PCR using a forward primer (pLAI.28For) and a reverse primer (pLAI.2888Rev). PCR
product 1 (7–553) was generated using plai.2 (a full-length HIV proviral DNA) as a template,
pLAI.28For and a mutagenic reverse primer (pLai.2Mut1Rev) containing a deletion of 13 nu-
cleotides (positions 531 to 543). PCR product 2 (517–888) was generated using plai.2 as a tem-
plate, a mutagenic forward primer (pLai.2Mut1For), and plai.2888Rev. The generated insert
was ligated into XbaI/ClaI digested plai.2. The mutated region contained within the full length
HIV proviral DNA plasmid was confirmed via DNA sequencing.

Results

Selection of TALEN target sites and design of TALENs
The first step in designing TALEN pairs was identifying a highly conserved target region of the
HIV-1 proviral DNA genome that would not be as prone to mutation and therefore less likely
to produce TALEN resistant HIV strains. HIV-1 subtype B DNA sequences from the Los Ala-
mos HIV sequence database were aligned by region and nucleotide conservation was deter-
mined. Of the alignments performed, the HIV Long Terminal Repeat (LTR) region (226 DNA
sequences) contained nucleotide stretches of the highest conservation [33,44]. These regions
encompassed the trans-activation response element (TAR) of the 5' LTR (Fig 1).

Basic Local Alignment Search Tool (BLAST) analysis searching for these sequences in the
GRCh38 assembly showed no identical sequences in the human genome [45]. The most similar
positions were a matched stretch of 17/20 nt to an intergenic region in chromosome 13
(NC_000013) for the 5’HT-TALEN, and the next closest were regions with stretches of 14/20
nt identify, two intergenic and one in the coding region of the Glypican 6 gene. For the 3’
HT-TALEN, the most similar match was a stretch of 16/20 nt, matched to an intergenic region
in chromosome 11 (NC_000011) and no other stretches with more than 13/22 nt
were observed.

Most positions targeted by these TALENs were completely conserved (Fig 1D) and both
sites are also completely conserved in laboratory strain NL4-3, but not in all subtype B strains.
Mutations that disrupt the TAR stem, in different regions have been shown to abolish viral
production, reflecting the high level of sequence conservation [46]. We selected the highly con-
served TAR region because this target should be less likely to mutate and produce viable
TALEN-resistant escape mutants. Fortuitously, the TALE binding sites in the 5’ LTR were
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nearly identical in the 3' LTRs. This enables us to potentially damage each site with the same
set of TALENs.

Even though we used a bioinformatic analysis to select highly conserved sites as TALEN tar-
gets, in reality no sites in HIV-1 are completely conserved. For positions such as the 6th, 9th and
20th positions in the 5’HT-TALEN binding site, these residues are only 67–95% conserved,
whereas the remainder of the TALEN binding site is>98% conserved (Fig 1D). HIV with es-
cape mutations can produce resistance to ARV drugs, which may limit the potential use of
GEEN for targeting integrated proviral DNAs derived from reverse transcription. The TALEN
gene editing technology has the advantage over other GEEN technologies in that a NS repeat
variable di-residue (RVD) variant encodes degenerate nucleotide recognition. This can be used

Fig 1. HIV-1 genome conservation analysis to select TALEN sites. A. Schematic diagram of HIV-1 genome adapted from the Los Alamos National
Laboratory HIV website [44]. Bolded boxes are regions with HT-TALEN DNA targets, one of which is shown in B. B. 5’ LTR DNA TALEN target sequence.
The TALE binding targets are indicated by black lines. The endonuclease target site sequence is in lower case font and indicated by grey lines. C. TAR RNA
with partial 5’ TALE binding site in upper-case font and endonuclease target site in lower-case font. D. HIV-1 DNA sequences (274,874 total) from the Los
Alamos HIV Sequence Database were aligned with ClustalΩ to determine conservation which is presented in a position specific-scoring matrix [33,44]. The
nucleotide frequency for the most conserved regions were chosen as TALEN target sequences found in the TAR coding region (B) of the LTRs (226
sequences) (A).

doi:10.1371/journal.pone.0125652.g001
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to design custom TALENs that encode predicted potential degenerate positions [14,47]. Thus,
TALENs can be engineered to tolerate predicted escape mutants.

In addition to the 5’ TALEN that is designed to recognize the canonical 5’ TALE binding
site, we also designed another 5’ TALEN construct with NS-TALE monomers positioned to
recognize the three more poorly conserved positions in the 5’ TALE binding site. We tested
whether or not this is a feasible approach for addressing the degenerate positions (Fig 2A). To
differentiate the TALEN pairs in this text, based on the 5’ TALEN recognition sequence, we
will designate the pair containing the canonical 5’ TALEN as HT-TALENS and the other pair
containing the 5’NS-TALEN as the NS-TALENs. The NS-TALENs were used to test whether
or not it was feasible to cleave the wild type and different triple mutant target templates con-
taining predicted escape mutations.

TALEN pairs cleave the HIV-1 target DNA in vitro
Using the REAL assembly kit, we constructed recombinant plasmids that encoded the 5’ and
3’HT-TALEN and the 5’ NS-TALEN proteins recognizing the cognate target LTR sequences
[48]. The architecture of the repeats and their recognition sequence are shown in Fig 2A. Ex-
pression of the Flag epitope-tagged TALENs was verified by in vitro transcription/translation
reactions and Western blot analysis with a Flag antibody (Fig 2B, S1 File). TALEN protein ex-
pression of the expected molecular mass was observed in samples containing the TALEN plas-
mids, but not in extracts lacking the plasmids. The 3’HT-TALEN was expressed as a120 kDa
protein while the 5’HT-TALEN and the 5’ NS-TALEN were expressed as 111 kDa proteins.
No smaller sized bands were observed, indicating that these proteins are not unstable in vitro
(S1 File). A higher molecular mass non-specific immunoreactive band was observed in all in
vitro transcription/translation samples regardless of TALEN plasmid presence.

The endonuclease activity of the TALEN pairs was tested on a 747 base pair HIV-1 proviral
DNA PCR product fragment containing the TALEN target sites, as well as HIV-1 proviral
DNA PCR product fragments that contained predicted mutations at the 6th, 9th and 20th posi-
tions of the 5’ TALE binding site (Fig 2C). This DNA was used as a target template to detect
TALEN endonuclease activity in cleavage reactions containing the HT-TALEN or the
NS-TALEN pair proteins produced by in vitro transcription/translation reactions. The HIV-1
DNA target template was cleaved into fragments of the expected sizes when incubated with ei-
ther TALEN pair, but not when incubated with control extracts lacking the TALEN proteins.
We conclude that both TALEN protein pairs cleave the HIV-1 DNA fragment specifically at
the target cleavage site. We observed a cleavage efficiency of approximately 42% for both
TALEN pairs.

We also tested TALEN DNA target templates containing mutations in the 5’ TALE binding
site. Four mutant template with substitutions at three sites (6th, 9th and 20th) in the 5’ TALE
binding site were analyzed. The mutant DNA target templates encoded the 2nd most common
nucleotide for each position. We observed that both the HT-TALEN and NS-TALEN pairs
cleave all mutant sequences in vitro with similar efficiencies (Fig 2C). Cleavage of the mutant
templates by the HT-TALENs can be explained by some degenerate recognition by some
monomers in HT-TALENs or by the fact that the template and TALEN expression may be
higher than that of cells, both of which are addressed in the discussion. Nevertheless, the
NS-TALENs can cleave wild type and mutant HIV-1 DNA templates.

TALEN pairs damage target DNA in live cells
We next determined whether the TALEN protein pairs could cleave the TALEN target site in
living cultured cells. HeLa-tat-III/LTR/d1EGFP cells stably express a construct containing the
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Fig 2. HT-TALENs and NS-TALENs cleave an HIV-1 DNA fragment in vitro. A. Schematic diagram representing HT-TALENs and NS-TALENs bound to
their cognate DNA target sequence (thick lines). Relative locations of the Fok1 endonuclease, Flag epitope tag, and nuclear localization sequence (NLS) are
indicated. Asterisks and grey boxes designate where a “NS” coding TALE repeat was used in the 5’ NS-TALEN construction. B. Western blot of in vitro
transcription/translation reactions containing no expression plasmids, each TALEN alone, the HT-TALEN pair, or the NS-TALEN pair. C. Gel electrophoresis
analysis of in vitro cleavage reactions containing no TALEN plasmids, the HT-TALEN pair, or the NS-TALEN pair. The HIV-1 target DNA fragment size is 747
bp, with expected on-target cleavage products of approximately 430 bp and 317 bp. Quantification of cleavage was performed using ImageJ software and is
shown below the gel image. D. The HIV-1 target DNA fragment from (C) was mutated in the 5’ TALE binding site to create a set of triple mutant templates
(Mut1-Mut4). The sequences of Mut1-Mut4 are depicted in bold, lowercase font and mutated positions are indicated by asterisks. Cleavage reactions
containing either the HT-TALEN or NS-TALEN pairs incubated with the HIV-1 target templates were size fractionated by electrophoresis and quantified by
densitometry with ImageJ [39].

doi:10.1371/journal.pone.0125652.g002
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HIV-1 5’ LTR (containing the HT-TALEN target site) fused upstream of a d1EGFP coding re-
gion (Fig 3A) [40]. GFP is constitutively expressed in these cells and expression is driven by the
HIV-1 5’ LTR. These cells were transiently co-transfected with constructs for each TALEN pair
and cell lysates were analyzed by Western blot. Expression of the ectopic proteins of the ex-
pected molecular masses was observed; however, the NS-TALENs exhibited lower expression
(Fig 3B, S2 File).

Our next goal was to test if the TALEN pairs damaged the HIV-1 TAR element in cells
using loss of GFP expression as a read out detected by flow cytometry. In addition to non-
transfected controls, HeLa-tat-III/LTR/d1EGFP cells were either transfected with pRSET.
mCherry alone or pRSET.mCherry co-transfected with constructs for each TALEN pair (S3, S4
and S5 Files). Transfection of either of the TALEN pairs should result in damage to the HIV-1
LTR, thereby reducing GFP expression. We analyzed the transfected cell population that con-
tains pRSET.mCherry using flow cytometry to determine the levels of GFP expression 72
hours post-transfection. A significant difference in the mCherry-only cell populations was de-
pendent on the presence of either TALEN pair compared to the pRSET.mCherry control. The
cleavage efficiency is estimated at approximately 30% for both HT-TALEN and
NS-TALEN pairs.

We examined if the effect of TALENs on GFP reporter expression was dose-dependent by
analyzing the flow cytometry data varying the gating threshold for red fluorescence. The
HT-TALEN and NS-TALEN pairs both showed a generally linear dose dependent increase in
editing efficiency that was significantly different than control cells (Fig 3C; p< 10–6). Although
it appeared that the NS-TALENs might have a higher editing efficiency, this was not statistical-
ly significant. Notably, these plots did not show saturation of editing efficiency, suggesting that
higher TALEN expression would increase editing of the proviral DNA. An editing efficiency of
55–60% was observed for the cells expressing the highest levels of TALEN pairs.

To determine if the targeted region in the LTR contained mutations, the TALEN target re-
gion was amplified from DNA isolated from transfected and control non-transfected cells by
PCR using primers flanking the target site. Resulting PCR products were subcloned into the
pBluescript II SK (-) plasmid and several clones were sequenced. Clones having both deletions
and insertions, as well as clones with just deletions were observed. Deletion sizes ranged from 6
to 22 bp in the target region (Fig 3D). Insertion sizes ranged from 1 to 13 bp in the target re-
gion. No mutations were observed in 12 sequenced clones of cells transfected with the control
pRSET.mCherry vector, while 8 of 29 had mutations for the HT-TALENs, and 2 of 23 were ob-
served for NS-TALENs. This experiment supports the conclusion that HT-TALENs and
NS-TALENs can cleave the HIV-1 target DNA site in live cells.

TALEN pairs damage the integrated complete HIV-1 genome
We determined if the TALEN pairs could edit the full-length integrated HIV-1 proviral DNA
in HIV-infected cells. HeLa/LAV cells harbor integrated HIV-1 proviral DNA (Fig 4A) and
produce active virus (Fig 4A) [41]. HeLa/LAV cells were separately transiently transfected with
either TALEN construct pair and harvested 48 hours post-transfection. Expression of both ec-
topic TALEN protein pairs was apparent in harvested cell extracts (Fig 4B, S6 File).

We considered that transfection of TALEN constructs may result in cytotoxicity. Therefore,
transfection experiments were used to assess cytotoxicity measured by Annexin V staining (Fig
4C, S7, S8 and S9 Files). Triplicate samples analyzed by flow cytometry revealed no significant
difference in the number of Annexin V positive cells (p< 0.01) when transfected TALENs
were compared to control. We conclude that the TALENs are not significantly cytotoxic to
these cells.
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Fig 3. HT-TALEN and NS-TALEN targeting of an HIV-1 LTR in cell culture. A. Schematic diagram of DNA
GFP reporter to be targeted by HT-TALENs and NS-TALENs. The target DNA contains the 5’ LTR of HIV-1
fused upstream of the coding region of d1EGFP. B. Western blot analysis of HeLa-tat-III/LTR/d1EGFP cells
transfected with either the HT-TALEN pair or NS-TALEN pair. The blot was probed with anti-Flag and anti-
Actin as a loading control. C. Dose-response plot based on quantification of flow cytometry analysis of GFP
reporter expression. Transiently transfected HeLa-tat-III/LTR/d1EGFP samples were analyzed for GFP and
mCherry expression. Cells with mCherry contained the transfected plasmids. Cells containing the functional
HIV-1 LTR fused d1EGFP reporter expressed GFP. Samples were done in triplicate. Those samples not
expressing GFP, only mCherry were compared. Standard deviations from triplicate samples are smaller than
the symbols and not shown. Statistically significant differences between slopes for TALEN treatment and
control indicated is by a * (p<0.000001); NS-TALEN and HT-TALENs were not significantly different
(p<0.08). D. Sequences of genomic clones containing mutated target regions. Upper-case bolded font
indicates designated 5’ TALE and 3’ TALE binding sites. Inserted nucleotides are in lower-case italicized font.
A deletion is represented by dashes. Lengths of the insertions (+) and deletions (-) are at the right of
each sequence.

doi:10.1371/journal.pone.0125652.g003
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Fig 4. TALEN targeting of integrated complete HIV-1 proviral DNA in cell culture. A. Schematic diagram
of the complete HIV-1 proviral DNA to be targeted by the HT-TALEN pair or the NS-TALEN pair. The target
region is found in both the 5’ and 3’LTRs. The host genome is indicated in grey. B. Western blot analysis of
HeLa/LAV cells transfected with a HT-TALEN plasmid pair or the NS-TALEN pair. The blot was probed with
anti-Flag and anti-Actin as a loading control. C. Bar graph showing quantitation of flow cytometry analysis of
cytotoxicity. Transiently transfected HeLa/LAV cells were analyzed by flow cytometry (n = 3) to identify
Annexin V positive cells. Standard deviations are indicated by error bars with no statistical significance (NS)
p>0.05 in cytotoxicity between the control and the TALEN pairs. D. Sequences of clones containing mutated
target regions represented as in Fig 3. E. A schematic of the 5’ target region of wild type plai.2 HIV-1 proviral
DNA and the mutated plai.2 HIV-1 proviral DNA. The mutated proviral DNA was designed based on the
sequence from HeLa/LAV clone HL-16 (Fig 4D). The Gag coding region (containing capsid) is indicated.
Western blot analysis of cell lysates harvested from pEAK Rapid cells transfected with mutant or wild type
plai.2 proviral DNA. The blot was probed with anti-Capsid qingto detect Gag production and anti-Actin as a
loading control.

doi:10.1371/journal.pone.0125652.g004
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Specific editing of the integrated HIV proviral DNA was assessed by amplifying the
TALEN target sites from purified genomic DNA, sub-cloning the resulting PCR product into
the pBluescript II SK (-) vector, and DNA sequencing of individual clones. Eleven of the 50 se-
quenced clones contained mutations. Indels were detected with some clones containing both
insertions and deletions. Deletion sizes ranged from 6 to 33 bp while insertion sizes ranged
from 1 to 6 bp (Fig 4D). This editing profile is typical of that observed in other studies using
TALENs, e.g. [20,49,50]. This experiment demonstrates that cleavage by the TALEN pairs in-
duced mutagenesis of the integrated HIV-1 proviral DNA genome. On the basis of these ex-
periments, we conclude that the TALEN pairs can edit integrated HIV-1 proviral DNA in
live cells.

The target region in the LTR of HIV-1 is highly conserved and mutations in this region
abolish viral production [46]. To assess if mutations resulting from TALEN cleavage of HIV-
1 proviral DNA abrogate or limit virus production, a sequence from one of the clones (Fig
4D; HL16) was subcloned into a construct for expression of the full-length HIV-1 proviral
DNA. We chose HL16 because it has an indel that deletes the critical stem-loop region of
TAR, typical for the majority of other indels we observed. Constructs for the wild type plai.2
and mutant plai.2 HIV-1 full-length proviral DNA were transfected into pEAK Rapid cells
(Fig 4E). As an indicator of viral fitness, we examined expression of a key structural virus
poly-protein, Gag. Western blot analysis of cell lysates was performed and a Gag band was
observed in samples from cells transfected with wild type plai.2 HIV proviral DNA, but not
in cells transfected with the mutant HIV-1 plai.2 proviral DNA (Fig 4E, S10 File). Western
blot analysis with a loading control antibody to Actin shows similar Actin levels in each sam-
ple. This experiment indicates that at least one of the indels introduced by the TALEN pairs
can drastically reduce expression of a key viral poly-protein that is necessary for virion pro-
duction. It is possible that expression is eliminated, but this is not conclusive because of the
sensitivity of this assay.

Discussion
Even with chronic HAART therapy, HIV-1 persists due to latent cell reservoirs containing
integrated HIV-1 proviral DNA. These reservoirs can remain inactive for years, not express-
ing viral proteins or producing infectious virus [3]. Upon activation, previously latent HIV-1
infected memory CD4+ T cells and other cell types, which are not targeted by HAART
therapy, can reseed viral infection [51,52]. Upon cessation of HAART therapy, viremia is re-
established in approximately 50 days [53]. In order to eradicate HIV-1 infection, the cells
with integrated HIV-1 proviral DNA must be removed or the integrated proviral DNA
damaged.

To address viral latency, GEEN technologies are becoming an attractive approach that
could be used in combination with HAART therapy [29–31,54]. Tre recombinase and zinc fin-
ger nuclease were both previously used to edit an integrated copy of HIV-1 proviral DNA and
CRISPR/CAS has been used to remove a GFP reporter flanked by the HIV-1 LTRs [9,12,55].
TALENs have not been used to target the HIV proviral DNA, but were previously used to tar-
get the episomal HBV and can reduce viremia in cells and animal models [56].

In this paper, we have used the TALEN technology to target the HIV-1 LTR in vitro and in
living cells. We demonstrate that HT-TALENs can cleave a HIV DNA fragment in vitro and
that the HIV-1 LTR is edited in living cells with a ~30% efficiency and a 55% efficiency for cells
expressing high levels of HT-TALENs. Furthermore, we show that NS-TALEN variants can
recognize wild type and triple mutant sequences providing a strategy for using GEEN to toler-
ate potential escape mutations.
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Target selection
Recent reviews discussing the use of a GEEN strategy to target the HIV proviral DNA have sug-
gested targeting the coding region of HIV [29,31]. In considering the possibility of escape mu-
tations, we and others performed bioinformatic analyses to select the region of HIV-1 with the
highest conserved nucleotide stretches [11,12]. The region with the highest conservation en-
compassed the TAR region in the LTR [11,12]. One concern with targeting this region was that
it might not be accessible due to histone and DNA modification, and DNA packaging. Howev-
er, we did observe TALEN mediated editing of the TAR site. Improved TALEN delivery sys-
tems may increase TALEN editing efficiency in individual cells, resulting in both TALEN
target sites in the 5’ and 3’HIV proviral LTRs being cleaved. This in turn could potentially re-
sult in the deletion of the majority of the ~9.6 kb HIV-1 proviral DNA. Large deletions of up to
18 kb have previously been observed with TALENs targeting two local genomic sites
[15,57,58]. We did not assay for this deletion because the HIV-1 proviral insertion site in
HeLa/LAV cells is currently unknown.

While the TALEN target in the TAR region is not known to be methylated, two CpG islands
flanking the transcription start site are close and could affect TALEN binding and cleavage of
latent HIV-1 proviral DNA [59]. One of the advantages of using TALENs is that new tools are
rapidly becoming available. If methylation is an issue, TALEN variants have been developed to
bind methylated cytosines. These TALENs contain RVD regions mutated from “NX” to “N”,
which allows recognition of 5-methylated cytosine [60].

Types of DNA repair
The repair of genome editing technologies is thought to occur by low fidelity non-homologous
end joining (NHEJ). In editing of the HIV-1 LTR, we observed small insertions, short deletions,
and deletions with insertions. Since DNA Pol μ or λ, are part of this pathway, these polymerases
can generate inserts in a template independent manner [61–64], thus may be responsible for the
short inserts we observed (2–6 bp) in three clones; this is an editing signature for classical NHEJ
[65]. Short deletions of 6–13 bp were observed and are likely due to the exonuclease activity of
either Artemis in the classical NHEJ pathway (C-NHEJ), or Exonuclease 1 in the alternative
NHEJ pathway (A-NHEJ). Overexpression of Exonuclease I was recently shown to increase
TALEN-induced mutation efficiency 30%, suggesting that both NHEJ pathways may be in-
volved in editing of TALEN induced double strand breaks. Cells using only the A-NHEJ path-
way (generated by XRCC4 or Ku80 nulls that block the C-NHEJ pathway) typically yield small
deletions of 4–25 bp, similar to that we observed with our TALEN pairs [66,67]. The clones hav-
ing an insertion with deletion are typically observed in other TALEN studies and may represent
multiple editing events (e.g.[15,68]). It is noteworthy that improper repair of the targeted TAR
region, such as introduction of inserts, deletions, and indels, could negatively affect multiple
steps of the viral replication cycle. The 5’ untranslated region (UTR) of the 5’LTR is packed with
a variety of RNA regulatory elements with functions that are dependent on proper folding
[69,70]. Insertions and deletions, depending on size, could exert severe effects on the ability of
the transcribed RNA to achieve necessary secondary structures crucial for transcription.

Escape mutations
One of the major limitations of treating HIV-1 with ARVs is that drug resistance mutations
can arise de novo and become transmitted. Since HIV-1 reverse transcriptase is error-prone,
mutations could appear in the TALEN binding sites. Based on mutations rates, each HIV-1
proviral DNA is expected to have ~1–3 mutations, thus the mutational landscape in an infected
individual is likely to have every possible mutation [71,72]. Polymorphisms in the TALE
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binding sites may reduce the efficiency of TALEN mutagenesis, thus TALENs could be prone
to development of HIV-1 resistance mutations [73]. This is why we used a bioinformatic analy-
sis to select highly conserved sites as targets. Nevertheless, these target sites are not completely
conserved, even at the clade level. One strategy we explored was introducing NS RVDs in
TALE repeats that enable degenerate recognition of all nucleotides at these select variable target
site positions [14,47]. This option to encode degenerate recognition is not yet available in other
GEEN technologies, and thus is an advantage of using TALENs.

We built a 5’NS-TALEN construct having three monomers containing NS RVDs for the
positions with less than 98% sequence conservation (Fig 1D). Testing this construct in vitro
showed that like the HT-TALENs, the NS-TALENs also cleaved the canonical target template.
The NS-TALENs also cleaved the four mutant templates tested as expected. However, we were
surprised that the HT-TALENs also cleaved our mutant templates. There are two likely expla-
nations for this: (1) the components are more concentrated in this in vitro cleavage assay than
in living cells, thus driving saturation of the binding site with non-optimal recognition; or (2)
that the HT-TALENs have some degenerate recognition.

We favor both explanations. The HT-TALENs encode some degenerate recognition. This
may be because the NG repeat variable domains (RVD) in HT- TALENs designed to bind T
nucleotides also bind C nucleotides [14]. All of our mutant templates have a T/C substitution
in the 9th position and Mut2 and Mut4 have T/C substitution in the 20th position. Thus, this
recognition could explain why we observe cleavage of mutant templates by the HT-TALENs.
In hindsight, we recognize that this degeneracy should be taken into account in genome analy-
sis to design TALENs to avoid erroneous off-target site cleavage. We suggest that in selected
TALEN targeting sites, that this degeneracy is used a priori to BLAST the genome for potential
off-target sites. This was not a problem in our application, but could be misconstrued as non-
specific off-target cleaves.

Based on the ability of the NS-TALEN pair to cleave integrated HIV-1 proviral DNA in cell
culture, we suggest that this may be an approach to address non-conserved target site positions
in integrated HIV-1 proviral DNA. Furthermore, this provides a strategy to address TALEN-
resistant HIV-1 strains that may arise by selection, which is important for future use of GEEN
technologies in a therapeutic application. Our flow cytometry experiments suggest that the in-
clusion of NS monomers does not increase cytotoxicity. However, there is delicate balance
where introduction of degeneracies could lead to off-target editing in other sites of the human
genome, thus this trade-off will need to be evaluated at a more stringent level in
future experimentation.

Off-target sites present major potential hazards for GEEN. This can result in mutation of im-
portant genes such as tumor suppressors, and induction of cytotoxic responses. The Ousterout
et al. study examined cells treated with TALENs targeting the dystrophin gene and detected no
off-target edited sites in the exome, as determined by next-generation sequencing [25]. This is
supported by another study finding little off-target editing in the exome when targeting 15 differ-
ent loci [26]. The HIV-1 sequence targeted by our TALEN pairs was selected for its dissimilarities
with human genome sequences. Further experimentation will be required to address off-target
editing and whether TALENs are the best technology to target integrated HIV-1 proviral DNA.

Potential for HIV-1 therapy with TALENs
Further experimentation will be necessary before TALENs can be considered for therapy. The
next three major steps for moving HT-TALENs toward testing in humans are to increase the
efficiency of editing, develop a better delivery vehicle, and test safety and efficacy in HIV-
infection animal models. We did observe an overall editing efficiency of ~30% and higher
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efficiency of 55–60% for the cells expressing high levels of HT-TALENs and NS-TALENs.
There have been some major advancements since the original TALENs were constructed at the
beginning of these experiments: (1) non-RVD Platinum TALENs; (2) SunnyTALENs; (3)
GoldyTALENs; and (4) several versions of obligate Fok1 heterodimers, Fok1 Sharkey muta-
tions, and variable N- and C-terminal TALE repeat lengths [16,18,58,74–78]. Combinations of
these HT-TALEN variants are expected to drastically enhance editing efficiency. Furthermore,
moving the genes under control of a viral promoter to drive high expression is likely to increase
editing efficiency as our dose-response plot showed linearity and no saturation, even at 60% ed-
iting efficiency, suggesting that higher TALEN expression will result in more editing.

Improved TALEN delivery systems may increase TALEN editing efficiency in individual
cells, and is necessary for in vivo delivery. One of the most promising approaches is recombi-
nant high-capacity adenoviral vectors with bicistronic constructs encoding TALEN pairs. Ade-
noviruses have been previously successfully used for TALEN delivery [79]. Adeno-associated
viruses (AAVs), while already in clinical use for lipoprotein lipase deficiency, are too small to
deliver TALENs. Experiments with lentiviral vector delivery are prone to TALE monomer rear-
rangement and have not yet produced targeted editing [79–82]. Other options for TALEN de-
livery are baculovirus and cell-penetrating peptides, but stability of these proteins in blood is a
likely barrier for the latter [83,84].

Supporting Information
S1 File. Expression of TALENs in vitro. The western blot from in vitro transcription/
translation reactions in Fig 2B showing the full gel.
(TIFF)

S2 File. Expression of TALENs in HeLa-tat-III/LTR/d1EGFP cells. The western blot of ex-
tracts from transiently transfected HeLa-tat-III/LTR/d1EGFP cells in Fig 3B showing the full
gel. The blot was probed with anti-Flag.
(TIFF)

S3 File. Flow cytometry analysis of pRSET.mCherry transfected Hela-tat-III/LTR/d1EGFP
cells. Flow cytometry analysis of GFP reporter expression analyzed to create Fig 3C. HeLa-tat-
III/LTR/d1EGFP samples were analyzed for GFP and mCherry expression. Cells containing
the functional HIV-1 LTR fused d1EGFP reporter expressed GFP (n = 3).
(TIFF)

S4 File. Flow analysis of HT-TALEN transfected HeLa-tat-III/LTR/d1EGFP cells. Flow cy-
tometry analysis of GFP reporter expression analyzed to create Fig 3C. Transiently transfected
HeLa-tat-III/LTR/d1EGFP samples were analyzed for GFP and mCherry expression. Cells
with mCherry contained the transfected mCherry plasmid and the HT-TALEN pair. Cells con-
taining the functional HIV-1 LTR fused to the d1EGFP reporter expressed GFP (n = 3).
(TIFF)

S5 File. Flow analysis of NS-TALEN transfected HeLa-tat-III/LTR/d1EGFP cells. Flow cy-
tometry analysis of GFP reporter expression analyzed to create Fig 3C. Transiently transfected
HeLa-tat-III/LTR/d1EGFP samples were analyzed for GFP and mCherry expression. Cells
with mCherry contained the transfected mCherry plasmid and the NS-TALEN pair. Cells con-
taining the functional HIV-1 LTR fused to the d1EGFP reporter expressed GFP (n = 3).
(TIFF)

S6 File. Expression of TALENs in HeLa/LAV cells. The western blot from HeLa/LAV cells
transfected with either the HT-TALEN pair or NS-TALEN pair in Fig 4B showing the full gel.
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The blot was probed with anti-Flag.
(TIFF)

S7 File. Flow cytometry analysis of pRSET.mCherry transfected HeLa/LAV cells following
Annexin V staining. Flow cytometry analysis of HeLa/LAV cells transiently transfected with
pRSET.mcherry and immmunostained with an Annexin V antibody (GFP channel) to create
Fig 4C (n = 3).
(TIFF)

S8 File. Flow cytometry analysis of HT-TALEN transfected Hela/LAV cells following
Annexin V staining. Flow cytometry analysis of HeLa/LAV cells transiently transfected with
HT-TALENs and immmunostained with an Annexin V antibody (GFP channel) to create Fig
4C (n = 3).
(TIFF)

S9 File. Flow cytometry analysis of NS-TALEN transfected HeLa/LAV cells following
Annexin V staining. Flow cytometry analysis of HeLa/LAV cells transiently transfected with
NS-TALENs and immmunostained with an Annexin V antibody (GFP channel) to create Fig
4C (n = 3).
(TIFF)

S10 File. Expression of Gag and Actin in transiently transfected pEAK Rapid cells. The west-
ern blot from pEAK Rapid cells transfected with either mutant or wild type plai.2 proviral DNA
in Fig 4E showing the full gel. The blot was probed with anti-Capsid to detect Gag production.
(TIFF)
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