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Abstract

In this study, we examined the role of the eastern bent-winged bat (Miniopterus fuliginosus)

in the dispersion of bat adenovirus and bat alphacoronavirus in east Asia, considering their

gene flows and divergence times (based on deep-sequencing data), using bat fecal guano

samples. Bats in China moved to Jeju Island and/or Taiwan in the last 20,000 years via the

Korean Peninsula and/or Japan. The phylogenies of host mitochondrial D-loop DNA was

not significantly congruent with those of bat adenovirus (m2
XY = 0.07, p = 0.08), and bat

alphacoronavirus (m2
XY = 0.48, p = 0.20). We estimate that the first divergence time of bats

carrying bat adenovirus in five caves studied (designated as K1, K2, JJ, N2, and F3)

occurred approximately 3.17 million years ago. In contrast, the first divergence time of bat

adenovirus among bats in the 5 caves was estimated to be approximately 224.32 years

ago. The first divergence time of bats in caves CH, JJ, WY, N2, F1, F2, and F3 harboring bat

alphacoronavirus was estimated to be 1.59 million years ago. The first divergence time of

bat alphacoronavirus among the 7 caves was estimated to be approximately 2,596.92 years

ago. The origin of bat adenovirus remains unclear, whereas our findings suggest that bat

alphacoronavirus originated in Japan. Surprisingly, bat adenovirus and bat alphacorona-

virus appeared to diverge substantially over the last 100 years, even though our gene-flow

data indicate that the eastern bent-winged bat serves as an important natural reservoir of

both viruses.
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Introduction

Bats have been considered to be natural reservoirs for many zoonotic viruses, including lyssa-

viruses [1], filoviruses [2, 3], henipaviruses [4], picornaviruses [5], coronaviruses [6, 7], and

adenoviruses [8]. Infected bats exhibit few clinical symptoms for some viral infections, follow-

ing natural and/or experimental infection [3, 9].

Bat adenovirus (BtAdV), which belong to the Mastadenovirus genus, was first isolated from

Pteropus dasymallus yayeyamae in Okinawa, Japan [10]. Subsequently, the virus has been iso-

lated from various bat species in several geographical regions [11–13]. Recently, BtAdV have

been isolated from bats in Miniopteridae family inhabited in China [13]. At present, 7 species

of BtAdV (namely bat mastadenovirus A–G) have been described by the International Com-

mittee on Taxonomy of Viruses and are classified into three groups, depending on the host;

group 1 viruses include bat mastadenovirus A, B, and G from Vespertilionidae bats; group 2

include bat mastadenovirus C isolated from Rhinolophidae bats; and group 3 include bat mas-
tadenovirus D, E, and F isolated from bats in the Miniopteridae and Pteropodidae families [14].

Alphacoronavirus (AlphaCoV) is one of the four genera of Coronaviridae family. This virus

has been reported to infect both humans and other mammals including bats [15]. AlphaCoV is

believed to has been evolving in bats over a long period of time [16]. There are at least four closely

related alphaCoV detected in bent-winged bats (Miniopterus spp.) including bat alphaCoV 1A,

1B, HKU7, and HKU8 [16]. Recently, some strains of bat alphaCoV were detected in M. fuligino-
sus living in a cave located in Wakayama, Japan [17]. Furthermore, a novel alphaCoV, BtCoV/

Rh/YN2012, was detected in a Rhinolophidae dwelling in China [18]. Thus, the Miniopteridae
and Rhinolophidae families have been considered to be reservoirs of alphaCoV species.

The eastern bent-winged bat (Miniopterus fuliginosus) is an insectivorous bat that inhabits

caves throughout east Asia [19]. The species often share roosting sites with Rhinolophus ferru-
mequinum [20, 21]. M. fuliginosus can fly long distances to change roosting sites between the

summer and winter. Some of them can travel over 200 km [22–24]. This suggests that patho-

gens of M. fuliginosus can be shared with R. ferrumequinum, and be spread in wide area by M.

fuliginosus. M. fuliginosus bats have been observed in China, Jeju Island, Taiwan, and Japan,

and shared 100% identity between their mitochondrial D-loop DNA sequences [25, 26]. The

mitochondrial D-loop is a non-coding DNA region with a high mutation rate and is used to

examine genetic difference among individuals in the same species of animals [27]. This species

might have undergone dynamic movement throughout east Asia [25].

Satellite tracking systems have been used to reveal the wide movement of megabats [28–30].

However, the systems cannot be applied to small insectivorous bats because of heavy weight of

telemetry machines. Additionally, they are not suitable to investigate the movement of many bats

because deploying devices on several bats can be difficult. Pathogens migrated along with their hosts

[31], thus it is beneficial to know the gene flow and genetic compositions of M. fuliginosus among

different populations, to enable tracking the movement of pathogens between different countries.

We hypothesized that if M. fuliginosus has undergone dynamic movement throughout east

Asia and carried BtAdV and bat alphaCoV, genetic co-variation between host populations and the

viruses should be detectable. In this study, we examined gene flows and genetic diversities of M.

fuliginosus throughout east Asia together with their associated viruses, BtAdV and bat alphaCoV.

Materials and methods

Sample collection

Bat fecal guanos were carefully collected on the ground in the cave to limit disturbance of bats

as possible as we could. This sampling procedure did not require ethical approval according to
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the policy of animal experiment in Nagoya University, Japan. Also, we did not need permis-

sion to access the caves in each country, because we did not catch any animal inside the caves.

In August 2017, bat fecal guano samples were collected from 11 caves, including six sites in

Japan, two sites on the Korean Peninsula, and one site each in Jeju Island, China, and Taiwan

(Fig 1 and Table 1). M. fuliginosus and R. ferrumequinum live together in these caves. To accu-

rately evaluate the entire gene pooled, guano was collected randomly at several locations of the

ground in each cave and/or around the entries of the caves, and then pooled for a total of 150

to 250 g guano per cave. The samples were kept on ice during transportation, and stored at

-80˚C until use.

Detection of mitochondrial D-loop DNA of M. fuliginosus
Mitochondrial DNA was extracted from the samples using the QIAamp DNA Stool Mini Kit

(Qiagen, Hilden, Germany). The D-loop region was amplified from each sample by perform-

ing nested-polymerase chain reaction (PCR) runs, using two sets of specific primers for the

eastern bent-winged bat. The sequences of the primers in the 1st set were 50-CCCATCTGATA
TAGATGCCA-30 and 50-TACAGCTTAGCCAAGGCTTA-30, and those in the 2nd set were 50-
TACACTGGTCTTGTAAACCA-30 and 50-TTCGGGGATACTTGCA TGTA-30. PCR was per-

formed using KOD Plus Polymerase (Toyobo, Japan). The PCR amplification protocol was as

follows: 94˚C for 2 min, followed by 35 cycles of 10 s at 98˚C, 1 min 30 s at 55˚C and 2 min at

68˚C. The PCR products were subjected to agarose gel electrophoresis. Each target band

(1,500 base pairs long) was excised from the gel, and the DNA was cleaned up using QIA-

quick1Gel Extraction Kit (Qiagen).

Detection of BtAdV and bat alphaCoV

Total viral nucleic acids were extracted from the bat fecal samples using the High Pure Viral

Nucleic Acid Extraction Kit (Roche, Germany).

For BtAdV, the viral DNA was amplified by nested PCR using the following degenerate

primers designed by our team targeting the hexon gene (nucleotide position, 17,800–18,091):

50-GCTTCHACYYTRGAAGCTATG-30 and 50-CAAMARYCTRTCATTWCCYG GCCA-30 (first

round) and 50-GCTTCHACYYTRGAAGCTATG-30 and 50-GAATKGMAAC TCTYCTRAARG
TATG-30 (second round). Thermocycling was performed using KOD Plus Polymerase

Fig 1. Sampling locations of 11 populations of M. fuliginosus in east Asia. The abbreviations of each sampling

location are referred to Table 1.

https://doi.org/10.1371/journal.pone.0244006.g001
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(Toyobo, Japan). The PCR amplification protocol was as follows: 2 min at 94˚C, followed by

35 cycles of 10 s at 98˚C, 30 s at 50˚C and 30 sec at 68˚C.

Bat alphaCoV RNA was reverse transcribed using SuperScript IV Reverse Transcriptase

(InvitrogenTM, USA) with random hexamers. Then, the resulting complementary DNA was

amplified by nested-PCR using the following primer sets specific for the RdRp gene (nucleo-

tide position, 12,670–12,943): 50-AAYCARGATWSTTATGGTGGTGC-30 and 50-TC HGGTT
CAGTRCCATTACAGG-30 (first round) and 50-AAYCARGATWSTTATGGTGGT GC-30 and

50-TCTAGTCGAGMTGCACTAGAG-30 (second round). Thermocycling was performed using

GoTaq1 Green Master Mix (Promega, USA). The PCR amplification protocol was as follows:

2 min at 95˚C, followed by 35 cycles of 30 s at 95˚C, 30 s at 50˚C and 30 sec at 72˚C, and termi-

nal incubation at 72˚C for 5 min.

The PCR products were subjected to agarose gel electrophoresis. The target bands (292 base

pairs for BtAdV, and 274 base pairs for bat alphaCoV) were excised from the gel and cleaned

up using the QIAquick1Gel Extraction Kit (Qiagen).

Next-Generation Sequencing (NGS) of bat mitochondrial D-loop DNA and

viral fragment

Multiple haplotypes of the viruses and their host were expected to be present within the same

guano samples. Therefore, the NGS was used to sequence the host and viral PCR products.

The PCR products mentioned above were purified with the Agencourt AMPure XP reagent

(Beckman Coulter, Brea, Calif., USA). An NGS library was constructed using the NEBNext1

Ultra™ RNA Library Prep Kit for Illumina1 (New England BioLabs, Massachusetts, USA).

Sequencing of paired ends was performed using the MiSeq Reagent Kit v2 (300 cycles) (Illu-

mina1, San Diego, CA, USA), wherein each read was exported from MiSeq Reporter software

in FASTQ format, and the NGS data were analyzed using CLC Genomics Workbench soft-

ware, version 10.1.1 (Filgen, Nagoya, Japan). The overlapped sequence from each end was con-

nected (Mismatch cost = 2, Gap cost = 3, max unaligned mismatches = 0, Minimum

score = 6). Then, the sequences were mapped onto reference sequences obtained from the

NCBI database. The mapped sequences with 96.44%-100%, similarity to each other were

defined as one haplotype of M fuliginosus D-loop DNA [32]. On the other hand, the viral

sequences with 100% similarity to each other were defined as one haplotype of either BtAdV

or bat alphaCoV. GenBank accession numbers of all sequencing data of the mitochondrial D-

loop DNA, and both of the viruses were presented in Tables 1 and 2, respectively.

Table 1. Global-Positioning System (GPS) coordinates, population size estimated using Migrate-n analysis, the number of D-loop haplotypes of M. fuliginosus, and

GenBank accession numbers of D-loop sequences.

Population GPS Number of haplotypes Population size GenBank accession number

Henan, China (CH) 33.306N, 111.431E 1,519 8.71 ×10−3 MT684783-MT686301

North Gyeongsang, Korea (K1) 36.659N, 128.193E 1,493 8.92 ×10−3 MT686302-MT687794

North Jeolla, Korea (K2) 35.336N, 127.178E 1,468 8.85 ×10−3 MT687795-MT689262

Jeju Island, Korea (JJ) 33.436N, 126.838E 1,274 7.15 ×10−3 MT689263-MT690536

New Taipei, Taiwan (TW) 25.126N, 121.833E 1,265 7.09 ×10−3 MT690537-MT691801

Wakayama, Japan (WY) 33.672N, 135.331E 1,314 7.14 ×10−3 MT691802-MT693115

Nara, Japan (N1) 34.316N, 135.774E 1,388 7.05 ×10−3 MT693116-MT694503

Nara, Japan (N2) 34.284N, 136.002E 1,384 8.20 ×10−3 MT694504-MT695887

Fukui, Japan (F1) 35.473N, 135.865E 1,327 7.50 ×10−3 MT695888-MT697214

Fukui, Japan (F2) 35.531N, 135.839E 1,526 9.26 ×10−3 MT697215-MT698740

Fukui, Japan (F3) 35.948N, 136.135E 1,509 8.46 ×10−3 MT698741-MT700249

https://doi.org/10.1371/journal.pone.0244006.t001
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Analysis of molecular variance (AMOVA)

Analysis of molecular variance (AMOVA) was performed using Arlequin software, version

3.5.2.2 [33] for five groups of M. fuliginosus populations, which were China, South Korea, Jeju

island, Japan, and Taiwan to verify how large the genetic variations in these species were attrib-

uted to among groups and within groups.

Mantel test

Geographic distances among 11 caves were calculated using the geodist package in program R

(http://cran.r-project.org). A Mantel test [34] was performed using Arlequin software, version

3.5.2.2 [33] to examine correlations between genetic (FST) and geographic distance among

populations. Significance of the correlation value was evaluated using 1,000 permutation tests.

Determination of host genetic structure and gene flow

Bat mitochondrial D-loop DNA and viral sequences were investigated in terms of gene flow,

using Migrate-n software [35]. A CX400 Super Computer System (Fujitsu, Tokyo, Japan) was

used for calculations requiring the Migrate-n software. The parameters used for the Migrate-n

simulations were modified and optimized three times before the desired data were obtained (S1

Table). The mutation rate/generation between each population was calculated. Based on the calcu-

lated mutation rate, the population size in each cave and the gene flow among the caves were esti-

mated. Genetic relationships among populations were inferred based on the pairwiseFST genetic

distance [36], which was calculated using Arlequin software, version 3.5.2.2 [33]. The results of

the gene flow and the pairwiseFST genetic distance derived from CH, K1, K2, JJ, TW, and WY

were then subjected to determine migration pattern of M. fuliginosus among east Asian countries.

To determine the migration pattern of M. fuliginosus in Japan, one cave in the Wakayama prefec-

ture was selected as the central point of Japan. This strategy was chosen because the cave in Waka-

yama is known as a large-scale birthing and nursery roost for M. fuliginosus bats [37].

Genetic correlations between bats and viruses

Correlation between M. fuliginosus phylogeny with each of their associated virus phylogeny

was assessed using Procrustes Approach to Cophylogeny, PACo [38] in the R program [39].

Table 2. Population size estimated using migrate-n analysis, number of haplotypes and GenBank accession numbers of bat alphacoronavirus and bat adenovirus.

Sampling location number of haplotypes population size GenBank accession number

Bat Alphacoronavirus

Henan, China (CH) 10 1.87×10−2 MT708742-MT708714

Jeju Island, Korea (JJ) 3 1.70×10−2 MT708752-MT708754

Wakayama, Japan (WY) 10 1.72×10−2 MT708755-MT708764

Nara, Japan (N2) 3 1.57×10−2 MT708765-MT708767

Fukui, Japan (F1) 2 1.72×10−2 MT708768-MT708769

Fukui, Japan (F2) 8 1.98×10−2 MT708770-MT708777

Fukui, Japan (F3) 8 1.35×10−2 MT708778-MT708785

Bat Adenovirus

Jeju Island, Korea (JJ) 10 2.60×10−2 MT708724-MT708733

North Gyeongsang, Korea (K1) 8 2.63×10−2 MT708707-MT708714

North Jeolla, Korea (K2) 9 2.42×10−2 MT708715-MT708723

Nara, Japan (N2) 4 2.57×10−2 MT708734-MT708737

Fukui, Japan (F3) 4 2.52×10−2 MT708738-MT708741

https://doi.org/10.1371/journal.pone.0244006.t002
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PACo firstly constructs principal coordinate plots of a host (bats) and a parasite (viruses)

based on the genetic distances between populations, and applies a Procrustes approach to

examine a similarity between the plotting patterns of the two species. Goodness-of-fit test was

performed to test the cophylogenetic patterns of M. fuliginosus and their associated virus with

100,000 permutations. The threshold for statistical significance was set at p< 0.05.

Divergence-time estimation

When studying M. fuliginosus populations, the divergence times of bat alphaCoV and BtAdV

were calculated using a Bayesian Markov Chain Monte Carlo (MCMC) approach, which was

implemented using BEAST software, version 2.6.0 [40]. HKY+G and Coalescent constant size

models were used to analyze the sequences of bat mitochondrial D-loop DNA, the RdRp fragment

of bat alphaCoV, and the hexon fragment of BtAdV. The mean evolutionary rate of bat alphaCoV

had previously been estimated to be 1.3 × 10−4 nucleotide substitutions/site/year based on the par-

tial RdRp gene of coronaviruses [41]. Since no substitution rate was available for the hexon region

of BtAdV, the substitution rate in the hexon gene of Human adenovirus-7, HAdV-7 (1.107 × 10−3

nucleotide substitutions/site/ year), which belongs to the same genus as BtAdV, was applied to

calculate the divergence time of BtAdV found in this study [42]. The divergence time of the bats

was estimated, based on an evolutionary rate for mitochondrial D-loop of 20% nucleotide substi-

tution/site/million years. The MCMC run was 3× 107 steps long, with sampling every 300 steps.

The convergence of the MCMC run was checked using Tracer version 1.7.1. Higher ESS values

for most of phylogenetic parameters were shown after discarding 95% of the sampled data as

burn-in, but they are still very low. Thus, we carried out a MCMC run once again and found that

the second MCMC run reached to the same values for each phylogenetic parameter as the first

run. Because the MCMC run took a long time at once (more than one week) due to a huge num-

ber of bat D-loop sequences, we copied the last 5% of tree data ten times and combined them as a

single tree file using the software, LogCombiner version 2.6.0. The Bayesian phylogenetic trees

were constructed with Tree Annotator software, version 2.6.0 based on the combined tree data.

Results

Detection of mitochondrial D-loop sequences of M. fuliginosus
All of eleven bat populations exhibited the targeted band of the D-loop region of M. fuliginosus
based on PCR detection. After purification, the PCR products were sequenced by NGS

method. Number of D-loop haplotypes of each bat populations were presented in Table 1. In

total, 15,467 of D-loop haplotypes obtained from the eleven populations were then subjected

for genetic quantification and gene flow analyses.

Genetic differences among bat populations

AMOVA indicated that more than half of the total genetic variations among eleven M. fuligi-
nosus populations (approximately 53.0%) were attributed to the genetic variations within each

population. Genetic differences between 11 populations and between five groups contributed

to 27.5% and 19.5% of the total genetic variations, respectively (S2 Table). The result of Mantel

tests (S3 Table) indicated that there was no significant correlation (P>0.05) between genetic

and geographic distances for all of M. fuliginosus populations.

Genetic structure of bats and gene flow in east Asia

Less gene flow of M. fuliginosus was observed from China to Korea than from China to Japan,

and from China to Taiwan. In addition, gene flow from Korea to Japan, and from Korea to
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Taiwan exceeded that from Korea to China (Fig 2). The number of haplotypes and the popula-

tion sizes in China and Korea were similar (Table 1). In addition, the FST genetic distance

between China and Korea was small (Table 3).

Gene flow between the Korean and Jeju Island populations was smaller or comparable

when compared with that between other countries (Fig 2). The number of haplotypes and the

size of the population on Jeju Island were relatively small (Table 1).

Using Migrate-n analysis to compare gene flows from China and Korea to Japan revealed

that the gene flow from China to Japan was larger (Fig 2). Additionally, the FST genetic dis-

tance between Japan and China was large (Table 3). The gene flows from Japan, Korea, and

China to Taiwan were larger than the gene flows to Japan, Korea, and China (Fig 2). The FST

genetic distances between Taiwan and Japan (TW-WY: 0.48), Taiwan and Korea (TW-K1:

0.42, TW-K2: 0.39), and Taiwan and China (TW-CH: 0.41) were almost equivalent (Table 3).

Genetic structure of bats and gene flow in Japan

The gene flows among six bat populations in Wakayama, Nara, and Fukui are shown in Fig 3.

The gene flow to the bat population of Wakayama was mostly the largest of any population we

sampled. In addition, gene flow to the population in Nara (N1) from other populations was

relatively large.

Fig 2. Gene flows among the populations of M. fuliginosus in east Asia. The gene flows were estimated, based on the

D-loop amplicon-sequencing results, determined by analysis with Migrate-n software. The arrowheads on the lines

show the directions of gene flows and the numbers near the arrowheads are the relative values of the gene flows (×103).

https://doi.org/10.1371/journal.pone.0244006.g002

Table 3. TheFST genetic distance among the M. fuliginosus populations in east Asia.

CH K1 K2 JJ TW WY

CH

K1 0.03

K2 0.02 0.02

JJ 0.29 0.30 0.27

TW 0.41 0.42 0.39 0.18

WY 0.74 0.75 0.73 0.47 0.48

All values show significance at P� 0.05.

https://doi.org/10.1371/journal.pone.0244006.t003
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The population of Fukui (F2) was larger than other populations (Table 1). Furthermore, the

gene flow to the F2 population from other populations was remarkably small, especially from

the N1 and Wakayama populations.

Diversity of bat viruses

The fecal samples of eleven bat populations, which had been determined for the gene flow as

described above, were then subjected to further analysis in terms of the viruses harbored. The

results showed that seven bat populations (CH, JJ, WY, N2, F1, F2, and F3) contained bat

alphaCoV, and five bat populations (K1, K2, JJ, N2, and F3) contained BtAdV. In total, 44 hap-

lotypes of bat alphaCoV, and 35 haplotypes of BtAdV (Table 2). All viral sequences were then

subjected to PACo analysis to observe genetic correlations between M. fuliginosus and the

viruses.

Genetic correlations between bats and viruses

Results of the PACo analysis (Fig 4) showed lack of the significant congruence in phylogenetic

patterns between M. fuliginosus and BtAdV (m2
XY = 0.07, p = 0.08), and between M. fuligino-

sus and bat alphaCoV (m2
XY = 0.48, p = 0.20).

Divergence times of bats and their viruses

A Bayesian phylogenetic tree (Fig 5, S1 Fig) showed that the BtAdV sequences from fecal sam-

ples in Korea, Japan, and Jeju Island diverged into three major clades (clades I, II, and III).

Clades I and III were derived from BtAdV sequences present in all positive caves. The clade I

sequences diverged into two sub-clades; clade Ia consisted of sequences from Japan and Jeju

Fig 3. Gene flows among populations of M. fuliginosus bats in Japan (Wakayama, Nara, Fukui prefecture). The

gene flows were estimated based on the D-loop amplicon sequencing results and subsequent analysis with Migrate-n

software. The arrowheads on the lines show the directions of gene flow and the numbers near the arrowheads are the

relative values of the gene flows (×103).

https://doi.org/10.1371/journal.pone.0244006.g003
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island and clade Ib consisted of sequences from Korea. Clade III diverged into sub-clades IIIa,

IIIb, and IIIc. Sub-clades IIIa and IIIb were both comprised of rare sequences found only in

Jeju Island, whereas the sub-clade IIIc included sequences from all three regions (Korea,

Japan, and Jeju Island). In contrast, clade II consisted of only the sequences found in Japan.

The divergence times were estimated for the nodes between each of the clades and sub-clades

(A, B, C, D, E, and F). Node A, which was the first divergence of the viruses among the five bat

populations showed a divergence time of approximately 224.32 years ago. The time of the sec-

ond divergence at node B was estimated to be 183.30 years ago. Nodes C, D, and F represented

splits of rare BtAdV sequences from Jeju Island in the major sub-clade, IIIc, at which the diver-

gence times were estimated to be approximately 89.84, 49.57, and 37.46 years ago, respectively.

The Bayesian phylogenetic tree (Fig 6, S2 Fig) revealed that all bat alphaCoV sequences

found in this study diverged into three major clades (I, II, and III). Only clade III was assigned

into two sub-clades (IIIa and IIIb). Clades I and II consisted of sequences found in all positive

caves in Japan, except for N2, whereas clade III was composed of sequences detected in all pos-

itive caves in Japan, Jeju Island, and China. The split times were estimated for all nodes among

these clades, which were labeled as A, B, C, and D. Node A represented the first divergence

time of bat alphaCoV, which was estimated to occur at 2,596.62 years ago. The second diver-

gence of the virus was estimated to occur around 1,749.23 years ago at node B, which was

between clades II and III, whereas node C resided between clades IIIa and IIIb, which repre-

sented a divergence time of around 99.02 years ago.

The divergence times based on the mitochondrial D-loop sequences of bats from 5 caves

and 7 caves, which corresponded to positive dwellings for BtAdV and bat alphaCoV, respec-

tively, are exhibited in S3 and S4 Figs. The Bayesian phylogenetic tree showed that the bats

migrated among different geographic regions several times over time. The first divergence

time of BtAdV-infected bats occur approximately 3.16 million years ago, whereas the first

divergence time of alphaCoV-infected bats was estimated to occur 1.59 million years ago.

Fig 4. Congruence of phylogenetic patterns between M. fuliginosus and the related viruses. Comparison of

population phylogenetic trees of A) M. fuliginosus and bat alphaCoV, and B) M. fuliginosus and BtAdV. Procrustean

superimposition plots of C) M. fuliginosus and bat alphaCoV, and D) M. fuliginosus and BtAdV produced using PACo.

D-loop of M. fuliginosus in each population are represented in blue color. Bat alphaCoV and BtAdV populations are

represented in red color and green color, respectively.

https://doi.org/10.1371/journal.pone.0244006.g004
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Discussion

Satellite tracking systems have been used to determine migration of large frugivorous bats

[28–30]. The systems cannot be applied to small bats because of heavy weight of telemetry

machines [43]. A telemetry equipment cannot exceed more than 5% of bat body weight [44].

The weight of M. fuliginosus and R. ferrumequinum ranges from 10–14 g [45, 46] and 17–34 g

[47], respectively. So, the telemetry equipment has to be less than 0.7 g for M. fuliginosus, and

1.7 g for R. ferrumequinum. To overcome these limitations, indirect population genetic meth-

ods including gene flow determination and genetic diversity analysis among populations have

been used to evaluate movement patterns of animals [48–50].

Fig 5. Divergence-time estimation of BtAdV based on the nucleotide-substitution rate per site per year of the

hexon gene of HAdV-7. The time-scaled phylogenetic tree summarizes all MCMC phylogenies of the hexon gene data

set, analyzed under HKY+G and Coalescent constant size models in BEAST software, version 2.6.0. The number at

each node indicates the divergence time (years ago).

https://doi.org/10.1371/journal.pone.0244006.g005
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Bat fecal samples and mitochondrial D-loop DNA

In this study, the mitochondrial D-loop DNA sequences of M. fuliginosus in China, Korea, Tai-

wan, and Japan were examined, and the dynamic gene flows among these populations were

revealed, using fecal guano samples taken from different caves. It has been reported that mito-

chondrial DNA degrades more slowly than nuclear DNA and that fecal mitochondrial DNA

can still be sequenced, even at 60 days post-excretion [51, 52]. Generally, DNA in guano

adheres to soil particles, and is more resistant to degradation than DNA alone [53, 54]. The

study of Cai et al., 2006 [55] revealed that the existence of soil colloids and minerals was able to

protect DNA to resist degradation by DNase I. Therefore, the presence of soil inside caves

lengthens the shelf-life of mitochondrial DNA in feces; thus, the D-loop sequences obtained in

Fig 6. Divergence-time estimation of bat alphaCoV based on the nucleotide-substitution rate per site per year of

the RdRp gene of coronavirus. The time-scaled phylogenetic tree summarizes all MCMC phylogenies of the RdRp
gene data set, analyzed under HKY+G and Coalescent constant size models in BEAST software, version 2.6.0. The

number at each node indicates the divergence time (years ago).

https://doi.org/10.1371/journal.pone.0244006.g006
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this study could represent a large number of bats that lived in the caves for many years.

Although coronavirus has shown stability in soil [56], and adenoviral DNA could be long pre-

served with soil [57], both of the viral genomic fragments have not been detected in TW and

N1 cave by PCR. The reason remains unclear.

The movement pattern of M. fuliginosus in east Asia

Previously, it was revealed that an ancestral population of the M. fuliginosus bat (before the

Quaternary Glacier period) existed in southwest China, near the borders of Vietnam and Laos

[19]. In this study, it was assumed that the bat population in the Henan Province (China) was

most similar to the ancestral population, because this location was closest to the place where

M. fuliginosus is thought to have originated.

Gene flow could be essential to determine movement patterns of animals. More gene flow

means mixing of the population leading to increasing homogeneity of the population, and less

gene flow means that populations are less mixed and genetically more differentiated. But in

the case of bats, philopatry seems to play a very important role in the preservation of geo-

graphic genetic structure [58, 59]. If bats return to their natural colonies, rather than disperse

to new or foreign colonies, then this reduces gene flow among populations and increases

genetic differences especially among continental and island populations. Genetic similarity

among all M. fuliginosus populations in our study were suggested by the results of Mantel test

and AMOVA, which means frequent bat migrations among east Asian countries. Low FST val-

ues between the bat populations indicate a recent diversification of the three populations, CH,

K1, and K2, which caused the low migration rates among the populations because Migrate-n

estimated historical gene flows between populations.

The results shown in Fig 2 and Table 3 suggest that the genetic compositions of the Chinese

and Korean bat populations were the most similar among all countries surveyed. Furthermore,

our findings indicated that the bats in China, which were most similar to the ancestral population,

might have moved to Korea and that such movement has been active between these populations.

After the genetic structure of these populations reached near equilibrium, the bats might

have moved to Japan and Taiwan relatively recently. For example, previous results revealed

that the bats in Japan, Korea, and China shared the same D-loop sequences [25, 26]. Assuming

that the mutation rate of the D-loop DNA sequence is approximately one base every 20,000

years [60], we inferred that the bats in Japan arrived from Korea or from China during the last

20,000 years.

The geographical distance between the Korean Peninsula and Jeju Island (K1-JJ: 379 km,

K2-JJ: 213 km) is smaller than that between China and Jeju Island (CH-JJ: 1,429 km), between

Taiwan and Jeju Island (TW-JJ: 1,043 km), and between Japan and Jeju Island (WY-JJ: 788

km). However, it is possible that when M. fuliginosus bats migrated to Jeju Island from China

and the Korean Peninsula, limited food resources reduced the population size, resulting in a

bottleneck effect on Jeju Island. This possibility could explain the different genetic composi-

tions of the population in Jeju Island versus those in China and on the Korean Peninsula.

The migration rate estimated using Migrate-n software does not reflect the current gene

flow, but rather, the gene flow that occurred during the evolutionary history of the local bat

populations [61]. Regarding the gene flow between China, Korea, and Japan, and the FST

genetic distance between China and Japan, our findings suggest that the Japanese bat popula-

tion might have been maintained as an independent population for a very long time after the

bats migrated to Japan from China and Korea. We assumed that after the M. fuliginosus bats

migrated from China to the Korean Peninsula and Japan, they later migrated to Jeju Island

and/or Taiwan. Such migrations could have been caused by climate change, particularly by
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declining sea levels during the glacial period and the subsequent warming period that occurred

20,000 years ago [62].

The movement pattern of M. fuliginosus in Japan

It was previously reported that approximately 15,000 pregnant female bats migrated to the

nursery roost in Wakayama from mid-June to mid-August to give birth and raise their off-

spring collaboratively. When the offspring reached two months of age, the colony of female

bats and offspring flew away from the nursery roost. These bats were then found in winter

roosts, which are located 10–200 km away from the nursery roost [24]. Additionally, it is possi-

ble that N1 serves as a relay point connecting the nursery roost in Wakayama to winter roosts

in various other regions. The winter roosts in Fukui and Shiga are located more than 200 km

away from Wakayama. Thus, the N1 roost may serve as a stopover site, since the bats might

have difficulty completing such a journey in a single night.

Based on the population size of the bats in the F2 cave (Table 1), we assumed that the F2

population might be formed earlier and was comprised of sedentary bats that did not use the

Wakayama cave as a nursery one. It is also possible that the bats of the F2 population fly to the

nursery roost in Wakayama without stopping at the site of the N1 population, or that they go

to another nursery roost to give birth and raise their offspring. The largest FST genetic distance

of bat WY population to the other populations (Table 4) and large gene flows from WY to the

other populations (Fig 3) supported that WY cave has been used for a long time as a nursery

roost for bats. The low gene flows of bats into F2 from other populations (Fig 3), and low FST

between F2 and F3 of bat populations (Table 4) also supported the recent establishment of bat

F2 populations by migrants from F3 population.

Genetic correlations between viruses and their hosts

Originally, we expected that if bats carry viruses, significant genetic co-variation between the

viruses and M. fuliginosus populations could be detected. However, no significant co-variation

was observed between the phylogenies of bats and viruses. Although the population genetic

structure of bats revealed in this study was historically constructed by bat individuals which

produced descendants successfully, there must be some bats which moved between the caves,

but did not succeed in mating. We supposed that the individual contact between the M. fuligi-
nosus bats, which did not result in successful mating, might also increase transmission oppor-

tunities of viruses that were not reflected in the host genetic pattern.

The divergence time of bats and viruses

The Bayesian phylogenetic tree of BtAdV (Fig 5) did not indicate the geographical origin of

BtAdV observed in our study because all clades contained Japanese and Korean viral strains.

Table 4. FST genetic distance between M. fuliginosus populations in Japan.

N1 N2 WY F1 F2 F3

N1

N2 0.16

WY 0.01 0.19

F1 0.71 0.41 0.73

F2 0.43 0.23 0.44 0.56

F3 0.36 0.11 0.37 0.40 0.12

All values show significance at P� 0.05.

https://doi.org/10.1371/journal.pone.0244006.t004
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Lineage diversification of BtAdV was inferred to recently occur within the last 50 years in all

five bat populations. In contrast, the Bayesian phylogenetic tree of bat alphaCoV (Fig 6)

revealed three major clades, each of which shared the virus sequences detected in Fukui, Japan

(F3). We propose that the virus of the F3 population may have been the common ancestor of

all bat alphaCoV lineages that presented approximately 2,596.92 years ago. According to this

theory, the virus was then distributed to seven bat populations around 1,749.23 years ago. The

third and fourth large divergences of bat alphaCoV occurred in the last 100 years. Our result

was consistent with the previous report, in which all alphaCoV lineage was estimated to occur

approximately 4,381 years ago based on the RdRp gene [41]. Whilst, the recent divergence

time of BtAdV (50 years ago) corresponds to the report of Lin et al., 2015 [42], in which the

most recent common ancestor of HAdV-7 was dated approximately 71 years ago based on the

hexon gene. Even though a short fragment of viral sequences (less than 300 bps in length) were

analyzed in this study, the regions possessed a large number of variable sites. Thus, we decided

the sequences were informative enough to resolve phylogenetic relationships and to estimate

divergence times among viral populations examined in this study.

Based on the findings of this study, it seems that other animals and/or other bat species may

be involved in the divergences of BtAdV and bat alphaCoV in recent years. Viral transmission

could be happened within and among bat colonies by direct and/or indirect contact. Not only

does viral transmission observed among bats, but occasionally transmission to other animals

inhabited in the same foraging area can be exposed to their infectious bodily fluids [63].

Hematophagous arthropods which are in close contact with bats could serve as pathogen

transmitters among bats and humans [64]. It is suggested that houseflies (Musca domestica
Linnaceaus) are able to fly up to 20 km, and could be the vectors of porcine alphaCoV [65].

Also, mammalian adenoviral DNA has been detected in blow flies (Calliphoridae) and flesh

flies (Sarcophagidae) [66]. Even though there is no scientific evidence that bat alphaCoV and

BtAdV are transmitted by the flies, it is possible that the flies could be act as the vector in viral

dispersion.

Additionally, the pathogen transmission among different bat species which is co-roosting

in the same cave should be considered. Host-switching event of alphaCoV has been found in

the cave shared by Miniopterus bats and Rhinolophus bats [67]. There is a report that R. ferru-
mequinum bats have been found in China, Korea, and Japan, and exhibited close phylogenetic

relationship in their mitochondrial cytochrome b DNA [68]. Therefore, the species have

moved over the three countries [68]. Moreover, R. ferrumequinum inhabit in China have been

reported to be the host of alphaCoV [18]. The species often share their roosting sites with M.

fuliginosus [20, 21]. Thus, it is considered that the viruses found in our study might be shared

between M. fuliginosus and R. ferrumequinum. It provides opportunities for cross-species

transmission of viruses among different bat species.
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