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Studies in humans and mice indicate the critical role of the surrogate light chain in the
selection of the productive immunoglobulin repertoire during B cell development.
However, subsequent studies using mutant mice have also demonstrated that
alternative pathways are allowed. Our recent investigation has shown that some
species, such as pig, physiologically use preferential rearrangement of authentic light
chains, and become independent of surrogate light chains. Here we summarize the
findings from swine and compare them with results in other species. In both groups, allelic
and isotypic exclusions remain intact, so the different processes do not alter the paradigm
of B-cell monospecificity. Both groups also retained some other essential processes, such
as segregated and sequential rearrangement of heavy and light chain loci, preferential
rearrangement of light chain kappa before lambda, and functional k-deleting element
recombination. On the other hand, the respective order of heavy and light chains
rearrangement may vary, and rearrangement of the light chain kappa and lambda on
different chromosomes may occur independently. Studies have also confirmed that the
surrogate light chain is not required for the selection of the productive repertoire of heavy
chains and can be substituted by authentic light chains. These findings are important for
understanding evolutional approaches, redundancy and efficiency of B-cell generation,
dependencies on other regulatory factors, and strategies for constructing therapeutic
antibodies in unrelated species. The results may also be important for explaining
interspecies differences in the proportional use of light chains and for the understanding
of divergences in rearrangement processes. Therefore, the division into two groups may
not be definitive and there may be more groups of intermediate species.
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INTRODUCTION

Immunoglobulin (Ig) gene rearrangement has evolved in all jawed
vertebrates and involves recombination of variable (V), diversity
(D), and joining (J) gene segments at their corresponding loci
(reviewed in 1). The number of VDJ segments, their organization,
orientation and position within the genome, and their frequencies
utilized in B cells are known in many species. This is the result of
modern genomic sequencing techniques and available and durable
single-cell analyzes. Surprisingly, information on the mechanism
by which they rearrange in these different species is sparse. In fact,
they are based only on findings in mice and to some extent in
humans (2), and it is assumed to be the same at least in mammals.
The reason for this is understandable, because while genome
sequencing is currently a straightforward task, uncovering the
mechanism usually requires inbred animals in sufficient numbers
and the technology of genetic modification. However, there are
some exceptions such as our studies in swine where we
characterized the development of B cells during ontogeny (3–6),
their development in bone marrow (7), identified different
developmental stages of B cells and the order and status of
their IgH and IgL rearrangements (8), analyzed redundant
rearrangements in the thymus (9), analyzed the order of IgLk
and IgLl rearrangements during development (10), and showed
the consequences of different rearrangement orders in recovered
sequences (11) and IgH and IgL rearrangement configurations in
individual peripheral B cells (12). These studies on non-transgenic
and outbred animals were possible because of the organization of
Ig loci and specific immunological properties. Pigs have a highly
simplified IgH gene complex in which all VH genes belong to the
ancestral VH3 family sharing the same leader and framework
sequences, and only one JH segment is functional (8, 13, 14).
Porcine IgL loci are also restricted to only two VL families and only
two functional JL genes for both IgLk and IgLl (8, 15–18).
Moreover, pigs possess an epitheliochorial placenta that prevents
the prenatal transfer of maternal Ig (as well as smaller proteins) to
the fetus (19, 20). This type of placentation, combined with
prolonged gestation and numerous offspring, provides a
favorable opportunity to characterize successive developmental
steps during fetal life under naive conditions and without
influence of extrinsic factors (4). In addition, pigs are precocial
and do not require their mothers for survival. Late fetuses can be
born aseptically into sterile isolators to easily produce germ-free
piglets (18, 21, 22). Such germ-free animals are devoid of effector,
memory, and plasma B cells, including long-lived bone marrow
plasma cells that could interfere with developmental studies of
naive B cells (5, 8, 12, 23, 24). Here we summarize our findings and
compare them with results from other species to show that
alternative pathways of V(D)J rearrangement are used.
REVIEW

Mouse Paradigm of V(D)J Rearrangement
A model of B cell development and generation of B cell receptor
(BCR) repertoire by V(D)J rearrangement is derived from mouse
studies (reviewed in 1, 25). This sophisticated paradigm describes
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the rearrangement as a tightly sequential process regulated by a
surrogate light chain (SLC) composed of l5 (CD179b) and
VpreB (CD179a). For overview of the process see Figure 1, left
part. The first wave of the rearrangement occurs in the IgH locus
of proB cells by the combinatorial joining of DH to JH segments
on both chromosomes. The resulting preB-I cells subsequently
rearrange a particular VH segment to one incomplete DJH
rearrangement on the first chromosome. Complete VDJH
rearrangement for IgH is tested in preB-II cells for its
productivity by the ability to form preBCR by association with
pre-existing SLC (reviewed in 26). If IgH rearrangement is
productive and can associate with invariant SLC, the resulting
preBCR are anchored into the plasmatic membrane and
associated with the signaling components CD79a and CD79b.
This membrane complex delivers stop signals for further IgH
rearrangement ensuring the selection for productive
rearrangement and allelic exclusion (27). If IgH rearrangement
is not productive and/or fails to fold correctly with SLC, the cell
has one more chance to rearrange VH to DJH using the second
chromosome. The large preB-II cells die in case of failure but
survive, expand, and consecutively become small preB-II cells in
case of success. Up to this stage of development, no IgL
rearrangement takes place. IgL locus is rearranged only if
productive IgH was successfully tested by SLC and the IgH loci
are closed for further rearrangement.

IgL rearrangement thereafter begins in surviving small preB-
II cells initially with IgLk, which continues to rearrange until it is
productive and forms an authentic BCR (28). Multiple IgLk
rearrangements (editing) are possible because IgL genes, unlike
the IgH locus, do not contain a D segment and do not lose
recombination signal sequences between unused VL and JL
segments. Rearrangement in the IgLk loci is finished when (1)
any IgLk protein can form an authentic BCR with existing IgH
and small preB-II cells become immature B cells or (2) all
functional Vk and/or Jk segments on both chromosomes have
been used and/or IgLk loci have been inactivated. Inactivation of
IgLk occurs by excision of Ck segments from the genome by
recombination of any remaining Vk segment or upstream Ck
recombining element (RE) to downstream recombining
sequence in mice or k deleting element in other species
(hereafter referred to as KDE recombination) (28, 29; reviewed
in 30). The existence of KDE has been demonstrated in all species
studied, and the ablation of Ck segments by Vk-KDE and RE-
KDE recombination before any IgLl rearrangement is thought to
ensure the isotypic exclusion (30).

Swine Deviations From Mouse Paradigm
Porcine B cell development begins with IgL rearrangement in the
absence of IgH rearrangement or components of SLC (VpreB
and l5) (8, 12). For overview of the process see Figure 1, right
part. Similar to mice, IgLk rearrangement is a beginning, but it
occurs only on the first chromosome and the precursors become
IgLk+IgLl—IgH—. There are no IgH rearrangements in these
precursors yet, and if some occur rarely, if they are productive,
and if they match productive IgL, the precursors become
immature B cells expressing BCR. This is only a small fraction
of the final IgLk+ B cell pool as evidenced by cultivation and
February 2022 | Volume 13 | Article 823145
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sorting studies (10). In the absence of IgH, the vast majority of
the remaining cells rapidly replace the initial IgLk rearrangement
with successive IgLl rearrangement. These precursors thus
develop from IgLk+IgLl+IgH— to IgLk—IgLl+IgH—

precursors, which continue to rearrange (and consume) further
Vl genes until IgH rearrangement occurs. As indicated by
sorting and sequencing studies (11), most of the initial IgLk
Frontiers in Immunology | www.frontiersin.org 3
genes are inactivated by KDE recombination. Rearrangement of
IgH occurs at the next developmental stage and follows the same
rules as known from mice: Incomplete DJH rearrangements are
primarily formed on both chromosomes followed by complete
VDJH on the first chromosome (7, 9). The IgH product is tested
for its productivity and ability for surface expression by pairing
with pre-existing authentic IgLl. In case that both IgH and IgLl
FIGURE 1 | Proposed comparative model of B cell development in species rearranging IgH before IgL (left part) and IgL before IgH (right part). The critical
checkpoint is indicated on the middle developmental line. Differently colored cells near the developmental line are for illustration only and indicate the proportional
outcome of B cell development with respect to IgLl+ (gray) and IgLk+ (pink) B cells.
February 2022 | Volume 13 | Article 823145
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rearrangements are productive, the cells become immature IgLl+

B cells. The probability of productive IgLl is very high because
early rearrangements are direct VJ joins (31–33). The probability
of productive IgH rearrangement follows the 1/3 success rule due
to shifted reading frames (3, 7, 9). In the case of defective IgH,
there is one more chance to rearrange VH to DJH using the
second chromosome. If successful, these early immature B
cells survive and expand (8). Since initial IgLk rearrangement
was replaced by successive IgLl rearrangement before
IgH rearrangement, the early immature B cells are almost
exclusively IgLl+. This is substantially different from mice, in
which IgLk+ B cells are generated earlier (28). The generation of
IgLk+ B cells in porcine bone marrow occurs during the
transition to late immature B cells by rearrangement of
germline IgLk genes on the second chromosome (10). During
this process, which gives rise to the majority of immature IgLk+ B
cells, the existing IgLl rearrangement is silenced but remains in
the IgLk+ B cells. This is another principal difference from mice
because the vast majority of IgLk+ B cells carry silenced and
mostly productive IgLl transcripts (10, 11). This peculiarity can
be traced even in peripheral mature B cells (12). There may even
be additional IgL editing in a small fraction of late immature cells
if the second wave of IgLk rearrangement is replaced by
secondary IgLl rearrangement. In this case, the existing
secondary IgLk rearrangement is again inactivated by KDE
recombination to allow secondary IgLl rearrangement (10–12).

What Is Essential and What Optional
Studies in pigs have shown that some steps in the sequential
process of V(D)J rearrangement are essential, whereas others are
optional. The first essential process is that the IgH and IgL loci
rearrange at different developmental stages. Thus, the process is
sequential, but the respective order may vary (see below). This
may be related to a reduction in the number of IgL isotypes
during evolution, resulting in only one or two isotypes in birds
and mammals. These can be more comfortably controlled than
in skates and sharks, which have multiple IgH and IgL loci
rearranged simultaneously (34, 35). In any case, once IgH
rearrangement begins, it occurs consecutively on the first
chromosome and, if not productive, also on the second
chromosome, otherwise the developing B cell dies. Our
analyses of single cells have never revealed two productive IgH
rearrangements (9, 10). Furthermore, the developmental stage at
which IgH rearrangements occur is also a crucial checkpoint of
differentiation regulated by intrinsic factors of the bone marrow
(7) always followed by several rounds of proliferation to increase
a cohort of precursor B cells with identical IgH chain (reviewed
in 36). Another essential step is also a preferential rearrangement
of IgLk before IgLl. This has been demonstrated in many other
species (37) and the positions/organizations of k-enhancers are
highly conserved (30). The function of KDE recombination is
also critical. Inhibition of IgLk by Ck excision occurs before the
switch to IgLl rearrangement.

On the other hand, an optional process includes the
independence of IgH and IgL gene rearrangements so that
the respective order may vary. While IgH precedes IgL
rearrangement in mice, IgL precedes IgH rearrangement in
Frontiers in Immunology | www.frontiersin.org 4
swine. Interestingly, the independence of IgH and IgL
rearrangement was predicted based on results with virus-
transformed preB cells (38) and demonstrated in IgH deficient
mice, which rearrange IgL at normal frequencies and with
normal kinetics (39, 40). It has also been demonstrated that a
small fraction of developing B cells can rearrange IgL before IgH
even in mice under physiological conditions (41). Swine can do
this regularly under physiological conditions (8, 10). It should be
emphasized that there may also be an intermediate group of
animals that rearrange IgH and IgL competitively. An example of
this is birds that do it very early in fetal life (42–44). Another
optional process is the independence of IgLk and IgLl
rearrangements on different chromosomes. Although IgLk
rearrange preferentially as explained above, and both IgLk loci
are consumed before any IgLl rearrangement in mice, IgLk and
IgLl rearrangements on different chromosomes may occur at
different developmental stages in pigs. As also demonstrated in
swine, IgL editing can occur much later in immature B cells,
which is also true for any other species because BCR editing is
used in the establishment of central tolerance in late immature B
cells (36). The other optional process is the use of SLC to select
productive IgH rearrangements. Pigs use an authentic IgL and do
not need SLC.

Certainly, there are still some unresolved issues, such as
whether incomplete DJH rearrangements on both chromosomes
occur in the earliest precursors in all species. In swine, they do as
in mice and humans (7, 8). We have also never observed multiple
DH rearrangements in our sequences. However, VH to DH

rearrangement may precede DH to JH rearrangement in rabbits
(45). In chickens, multiple DH to DJH rearrangements have been
reported before a subsequent rearrangement to the VH gene (46).

It needs to be emphasized that it is not the intention of this
report to discuss the molecular mechanisms of the V(D)J
rearrangement machinery. It is apparent that essential
components are also critical enzymes, such as the
recombinase-activating genes (RAG), which are required for
DNA cleavage, or the terminal deoxynucleotidyl transferase
(TdT), which can facilitate N-nucleotide additions. As
indicated by genome sequencing, this is also true for
recombination signal sequences (RSS) and regulatory factors
required for rearrangement processes. The encyclopedic
information on these aspects can be found in other reviews.

Controversial Function of SLC
Originally, SLC was expected to ensure the allelic exclusion. This
was disproved by the construction of knockout mice in which
different components of SLC were deleted but the exclusions
remained intact (47, 48). Only targeted disruption of the
membrane exon of IgH genes results in allelic inclusion (27,
49, 50), confirming that anchoring of IgH in the cell membrane is
essential. Experiments with transgenic mice have also
demonstrated that SLC is not even required for the selection of
productive IgH. The deficiency in SLC does not prevent the
initiation of IgL rearrangement or the development of mature B
cells (47, 48). Although mice lacking SLC have somehow reduced
number of peripheral B cells, they have normal serum IgM levels
(47) and immune responses (48). All these experiments suggest
February 2022 | Volume 13 | Article 823145
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that the SLC play only a role in increased efficiency of B cell
generation and faster membrane deposition of successfully
rearranged IgH in the absence of IgL. The SLC is not necessary
if IgL is already present, which happens in all B cells with both
IgH and IgL successfully rearranged. Since IgH and IgL
rearrangements are independent (38–41), the SLC is not
necessary if the order of IgH and IgL rearrangement is reversed.

There are three VpreB in mice (VpreB1, VpreB2, VpreB3) and
two in humans (VpreB1 and VpreB3). While VpreB1 and VpreB2
are co-expressed and serve for IgH selection (1), the role of VpreB3
is different and probably interacts with IgH in the endoplasmatic
reticulum (26, 51). However, recent studies in several species
indicate that the VpreB and l5 genes may function in other
processes than the formation and testing of IgH. In chickens, no
homologues of l5 have been identified and the function of VpreB3
in these animals is the retention of free IgL inside of cells (51). Cows
have all three VpreBs but VpreB2 and VpreB3 have biological
functions unrelated to B cells development (52). Marsupials have
only maintained VpreB3 and do not have VpreB1, VpreB2, or l5 in
the genome (53). Pigs have VpreB1, VpreB3, and l5 in the genome
(10) but these are not used for IgH selection (8, 10) and they are
mainly expressed in non-lymphoid cells (8, 10, 33, 54). It is therefore
possible that VpreB probes the fitness of other molecules as well,
and that its usage in mice for the selection of productive IgH
rearrangements is a highly specialized role adopted by only
some species.
Expression of IgL on the Cell Surface
Without IgH
Initial IgL rearrangements in the absence of IgH can be expressed
on the cell surface of early precursors in swine (8, 10). This is a
striking observation, as it is generally assumed that IgL cannot
anchor to the cell membrane without IgH. However, free IgL are
common in human pathogenesis, and these so-called Bence
Jones proteins have been known for >170 years (55). This
demonstrates that IgL are able to escape from the
endoplasmatic reticulum without being chaperoned by IgH.
Free IgL in humans are mostly a product of plasma cells in
which IgL are produced in excess to IgH (56). This is
understandable because humans use IgH before IgL
rearrangement and the IgL produced are likely to be in excess
only in plasma cells. On the other hand, mice do not produce
Bence Jones proteins under normal conditions, indicating a
different kind of regulation for IgL synthesis. Early porcine
precursors do not have IgH, so IgL is present in excess until
IgH rearrangement occurs. Unfortunately, the mechanism by
which free IgL attaches to the surface is not fully known. The vast
majority of studies investigate the secreted free IgL. However,
surface expression of free IgL has been demonstrated in virus-
transformed preB cells, which also showed that free IgL do not
associate with other proteins (38). More sophisticated studies
showed that free IgL associates with the outer membrane via
interaction with phospholipids such as sphingomyelin A (57).
Importantly, free IgL are only associated with the surface of cells
that produce these IgL (57). Our results also exclude the
Frontiers in Immunology | www.frontiersin.org 5
possibility that free IgL on a surface may be acquired
incidentally from other sources (8).

The Role of KDE, IgL Isotypic Exclusion
and Distribution of IgL Rearrangements
in B Cells
Preferential usage of IgLk rearrangements on both chromosomes
in mice (37) and the mechanism of IgLk inhibition by KDE
recombination prior to any IgLl rearrangements (30) have four
important consequences: (1) IgLk+ B cells are generated earlier,
(2) IgLk+ B cells highly predominate over IgLl+ B cells, (3) IgLk+

B cells have both IgLl loci in the germline, while (4) IgLl+ B cells
have rearranged IgLk loci inactivated by Ck ablation (28, 58).
This is true and evident in mice, which have hundreds of Vk
genes and generate >90% of IgLk+ B cells. Indeed, only a few Vk
and Jk genes are required for productive IgLk rearrangement
because the 1/3 chance for out-of-frame rearrangement can be
overcome by about three successive rearrangements and only on
one chromosome. However, the proportional usage of IgLk and
IgLl genes is not the same in all species, and some use >90% IgLl
(see below and Table 1), which is not easily explained by
preferential IgLk rearrangement and KDE recombination.

In any case, KDE recombination (leading to Ck ablation and
inhibition of IgLk genes before IgLl rearrangement) appears to
be an effective mechanism to achieve isotypic exclusion. Such an
exclusion function would be of particular interest given that KDE
recombination is highly conserved in many (if not all) species
(30). On the other hand, studies in humans showed the co-
expression of multiple IgLk and IgLl rearrangements in different
combinations in single B cells (65). Studies in mice showed that
IgLk production does not inhibit secondary rearrangements and
multiple productive IgL can be detected in single cells (66).
Studies in pigs extended these findings from the perspective of
species which use IgL before IgH rearrangement and confirmed
that multiple and even productive IgLl rearrangements are
present in IgLk+ B cells (8, 10–12). Moreover, multiple IgL
rearrangements can be effectively transcribed in a single cell
(12, 65). Also, not all IgLk+ B cells undergo Ck deletion by KDE
recombination on the first chromosome before rearranging on
the second (10, 66). The coexistence of multiple productive IgL
rearrangements in a single cell is highlighted in fish (67), where
KDE cannot control up to four different IgL types encoded by
distinct CL genes (18, 34). Therefore, the function of KDE in
isotypic exclusion is implausible. More probably, KDE
recombination supports efficient switching from IgLk to IgLl
rearrangement, but has no control over which IgL allele is
rearranged, whether it is productive, transcribed, and
expressed. Our sorting data suggest that unused IgL
rearrangements are silenced in translation or in export of IgL
protein because they have the corresponding mRNA but are not
expressed on the surface (10). Silencing of the IgH locus is
partially known (68) and is ensured by nonsense-mediated decay
(NMD) (69). Whether a similar mechanism operates for IgL is
unknown, namely because different IgL are located on different
chromosomes and can be silenced even when they are
productive. Some reports indicate that silencing operates after
February 2022 | Volume 13 | Article 823145
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translation on a “best-fit, best-serve” basis when transcription
and translation of unused IgL is at a very low level. This would be
consistent with findings in mice (66).

It must be emphasized that the final KDE recombination
depends on the available number of Jk rather than Vk genes, since
the number of possible successive rearrangements is limited by
the smaller number. If a given species has only one functional Jk,
the further editing is only KDE-mediated Ck ablation. This is not
at all uncommon as Table 1 shows. Goats, sheep, and cattle have
only one functional Jk among several other nonfunctional ones
(59). Furthermore, the remaining Jk in cattle and sheep has a
noncanonical RSS (59) that may favor immediate KDE-mediated
ablation because initial functional rearrangement is inefficient or
impossible. This could lead to the elimination of almost all IgLk
rearrangements and be only the final step before the evolutionary
loss of all IgLk usage, as occurred in bats (60, 61).

Can Authentic IgL Be Used for Selection
of Productive IgH Repertoire?
SLC is invariant and therefore always “productive”. It can
theoretically bind to any productive IgH rearrangement to
ensure its selection. This appears as a huge advantage over
authentic IgL because the initial IgL rearrangements in
precursors may be out of frame or nonproductive for other
reasons, such as internal stop codons. However, investigation in
mice has shown that as many as 50-70% of productive IgH fail to
pair with SLC and developing cells become apoptotic (48;
reviewed in 1). On the other hand, experiments in pigs have
Frontiers in Immunology | www.frontiersin.org 6
shown that the initial IgL rearrangements used for selection of
subsequent IgH rearrangements are >88% in-frame, have no
mutations, and no N-additions (11). Such success rate for
authentic IgL is considerably higher than has been reported
experimentally for SLC. Authentic IgL use also different VL and
JL genes and could allow the generation of B cells whose IgH
would not be capable of pairing with always the same but always
imperfect SLC (48). Therefore, the IgH repertoire selected by
authentic IgL should not be biased by the existence of one type of
non-polymorphic peptide chains like SLC, but selection is driven
by a germline authentic IgL. In fact, each type of IgL with its
specific sequence could serve as a different type of SLC, so
selection driven by authentic IgL could have a substantial
advantage over SLC, and apoptic turnover could be even lower.
Repeated experiments have shown that in the absence of
antigenic pressure (under fetal and germ-free conditions), both
IgLk and IgLl rearrangements are direct IGLV-IGLJ joins
without deletions and N additions (32, 33).

Efficiency of B Cell Generation and
Evolution of Ig Rearrangement
Based on current knowledge, it is difficult to estimate whether the
use of authentic IgL is less redundant and more efficient than SLC-
dependent selection (see section above). The established order of
IgH before IgL gene rearrangement seems to be the most ancestral
because this strategy is used in amphibians (70). However,
amphibians and fish do not use SLC and the number of B cells
per gram of body mass is > 10-fold lower than in birds or
TABLE 1 | Number of biologically functional (and total) gene segments in different species*.

Species Vk IGKV Jk IGKJ Vl IGLV Jl IGLJ VH IGHV DH IGHD JH IGHJ IgLk usage SLC (VpreB/l5)

Mice 80
(>100)

4
(5)

2
(2)

4
(4)

>100
(>100)

16
(31)

3
(4)

95% YES, B cell genesis

Rats >100
(>100)

5
(6)

8
(10)

2
(3)

>100
(>100)

25
(35)

4
(4)

90% ?

Humans 44
(>100)

5
(5)

32
(>100)

4
(6)

45
(130)

27
(30)

6
(9)

60% YES, B cell genesis

Pigs 10
(14)

2
(5)

10
(23)

2
(4)

10
(25)

2
(4)

1
(5)

50% YES, other processes

Goats 6
(15)

1
(4)

25
(63)

1
(2)

4
(34)

2
(4)

1
(6)

20% ?

Horses 19
(60)

4
(5)

27
(144)

4
(6)

4
(50)

35
(40)

8
(8)

7% ?

Sheep 8
(13)

1-NC?#

(3)
14
(43)

1
(2)

6
(10)

4
(2)

2
(6)

5% ?

Cattle 6
(25)

1-NC#

(4)
24
(63)

5
(8)

10
(36)

9
(23)

2
(4)

5% YES, B genesis?, other processes

Marsupials 37
(122)

2
(2)

35
(64)

8
(8)

21
(25)

3?
(3)

2
(6)

35% NO, other processes

Chickens (birds)? 0 0 1$

(200)
1
(1)

1$

(100)
16
(16)

1
(1)

0% NO, other processes

Bats 0 0 93
(>100)

7
(80)

66
(77)

8
(8)

7
(9)

0% NO, other processes
February 2
Data are based on our results and other sources (25, 53, 59–64). The values in bold represent the number of biologically functional genes and the values in parenthesis represent the total
number of genes.
*Numbers are approximate because genome assemblies may not be finished and biological functionality not fully proved. Functional genes do not correspond to IMGT because
functionality in IMGT is based on sequences and mostly not tested for expression.
#NC means that putatively functional genes have noncanonical RSS so that rearrangement is highly inefficient or impossible.
$Chickens use gene conversion and pseudogenes can be used in functional rearrangements.
?Unknown or uncertain.
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mammals (70, 71). A similar effect is seen in marsupials, which
also keep IgH before IgL rearrangements and lack SLC (53). These
mammals have minimal levels of serum antibodies even several
months after birth (72), which is comparable to the kinetics of
mice with genetically deficient SLC (48). Thus, one group of
successor animals could increase the efficiency of B cell
generation by employing the existing components of SLC.
Others might reverse the order of IgH and IgL rearrangement
and omit the SLC requirement or employ yet other mechanisms
such as the gene conversion in chickens (44). The reason why
some species do not retain the ancestral IgH before IgL
rearrangement may be due to their limited IgH repertoire (62).
Chickens have only a single functional VH and JH segment (44)
and pigs are restricted to ten closely related VH and one JH
segment (reviewed in 18, 22). Although it has been
demonstrated that CDR3 junctional diversity can compensate
for the limited combinatorial repertoire (13, 18), limited or
highly homologous VH genes can also be a limiting factor when
invariant SLC does not associate with them (48). This may also be
a reason why species with limited VH repertoire have a much
higher number of VL segments in the genome (61).

The explanation for the different efficiency of B cell generation
can be the critical checkpoint at a developmental stage where IgH
rearrangements occur. This checkpoint has been characterized in
mice (73; reviewed in 36), humans (37), and also in swine (7). In
mice and humans, the checkpoint is overcome by expression of
functional preBCR (74). The same checkpoint occurs in porcine
IgL+ precursors during IgH rearrangement and is overcome by
expression of authentic BCR (7, 8). In all species, the checkpoint is
regulated by intrinsic factors of the bone marrow (or appropriate
stromal cells), and it is followed by several rounds of proliferation
to increase a cohort of precursor B cells with identical IgH chains.
However, the generation of B cells without the bone marrow is
still possible but very inefficient (3, 74), as in the case of the
variants described in the above paragraph.

Two important observations were made in experiments with
porcine bone marrow stromal cells: the first confirms that B cells
developing in the absence of stromal cells contain the IgH
rearrangement on only one chromosome, while stromal cells
support the rearrangement on both chromosomes (7). This
phenomenon was previously observed in vivo during early
ontogeny, when B cells developing in the yolk sac and fetal
liver prior to a functional bone marrow were rare and had only a
single productive IgH rearrangement (3). Such an observation
cannot be made in mice because maturation of B cells in the fetal
liver of mice coincides with maturation in the bone marrow,
while in fetal pigs there is a 25-day window in between (4). These
results collectively indicate that the opening of the second
chromosome for rearrangement does not occur in the absence
of the bone marrow. The second observation confirms that the
absence of stromal cells leads to the accumulation of IgLl+IgH—

precursors and the preferential generation of IgLl+ B cells (8,
10). This is also exactly what happens in vivo during early
ontogeny, when IgLl transcripts are about 20-times more
frequent than IgLk (54, 75). The apparent absence of IgLk
transcripts in the yolk sac and fetal liver led us formerly to the
Frontiers in Immunology | www.frontiersin.org 7
incorrect conclusion that IgLl might precede the rearrangement
of the IgLk genes in pigs (54). Differences in the ability of the
bone marrow to support B cell development throughout the
checkpoint or its timing can therefore explain interspecies
differences in the ration of IgLk/IgLl usage (see below).

IgLk to IgLl Ratio in Different Species
As mentioned earlier, >95% of mouse B cells are IgLk+. However,
humans and pigs have about the same amount of IgLk+ and
IgLl+, while species like cows, sheep, horses, dogs, and cats have
>90% of IgLl+ B cells (63). The enormous interspecies
differences are often explained by the disproportionate number
of Vk and Vl genes in a genome, which in some cases
corresponds to the expressed IgLk/IgLl ratio (25, 64) but in
others does not (61); see Table 1.

However, the preferential IgLk rearrangements on both
chromosomes and the mechanism of KDE recombination do
not allow the generation of substantial numbers of IgLl+ B cells
(see above), especially in species that have relatively high
numbers of functional Vk genes such as horse (19), pig (10),
sheep (8), cat (12) or dog (19) (Table 1; www.imgt.org).
According to the results from swine, the difference in the use
of IgLk compared to IgLl is more likely explained by the
sequence of IgL rearrangements on different chromosomes
and/or the permissiveness of the microenvironment to support
efficient B cell development. Although IgL rearrangement begins
with IgLk and progresses to IgLl probably in all mammals (28,
29), the outcome may be the result of two different processes (1):
secondary IgLk is not consumed before IgLl rearrangement
and/or (2) secondary IgLk rearrangement is not permitted in
given developmental step. In species that use IgL before IgH
rearrangement such as swine, these possibilities lead to early
genesis of IgLl+ B cells, while most IgLk+ B cells are generated
later and require permissive bone marrow stromal cells (10).
Therefore, the dozen-fold prevalence of early IgLl+ B cells is
compensated to approximately 1:1 ratio of IgLl:IgLk in
immature B cells (10). If the bone marrow is less permissive,
the ratio may be less favorable for IgLk+ B cells, and if it is not
permissive, the majority of all B cells would be IgLl+. This could
be the case in some IgLl-high species, in which the lymphoid
potential of the bone marrow declines with age (52). The same
phenomenon can be observed artificially in transgenic mice that
have a longer time for successive IgL rearrangement, resulting in
a considerable shift for higher usage of IgLl over IgLk (76). In
species that use IgH before IgL rearrangement, such as humans,
the same possibilities may lead to the protracted or suspended
second wave of IgLk rearrangement or accelerated IgLl
rearrangement. This can be demonstrated by analyses of IgLk
rearrangements in IgLl+ B cells. Mouse IgLl+ B cells are
generated as a last chance for developing precursors when IgLk
loci are exhausted (66). On the other hand, a substantial number
of human IgLl+ B cells may have IgLk loci in the germline or
rearranged, and only about half of them have IgLk genes deleted
(28, 73). The effect of rearrangement order and the permissivity
to support efficient B cell development is indicated in middle part
of Figure 1.
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Additional evidence that the timing and sequence of each
rearrangement control the proportional utilization of IgL genes
comes from the proportional usage of the different VL and JL
segments in different species. The majority of mouse IgLk+ B cells
preferentially use 3’ Vk and 5’ Jk genes, while more 5’ Vk and 3’ Jk
segments are used in IgLl+ B cells (77, 78) since a pre-existing VJL
can only be edited by a rearrangement that uses more 5’ VL along
with more 3’ JL genes. However, when SLC is inactivated in
transgenic mice, they use more 5’ Vk genes (78) and resemble
more swine, which also do not use SLC. The situation in mice is also
different from humans, in which both naive and experienced B cells
preferentially use more 3’-Vk genes (79). However, more 5’ Vl
genes are used than even in the naive human repertoire (80), likely
reflecting a more independent IgLl rearrangement (28, 73). In any
case, the situation is quite different in the pigs, which have been
repeatedly reported to use more 5’ VL genes in both IgLk (16) and
IgLl (15, 32, 33, 81). This discrepancy is mainly caused by the early
use of IgLk rearrangement in precursor cells, which is replaced by
IgLl rearrangement before IgH rearrangement (11). The depletion
and inhibition of porcine Ck genes on the first chromosome during
this early development has another fundamental limitation: only
IgLk genes on the second chromosome can be used to generate
IgLk+ B cells; and pigs have only two functional Jk segments on one
allele (18). Such restriction to only two consecutive IgLk
rearrangements is probably the reason why only two major Vk
genes are preferentially used in swine (11, 32) and why the Vk
repertoire is severely restricted compared to Vl (32, 33). Higher
flexibility and diversity of IgLl than of IgLk has also been found in
other l-high species (61). All these findings indicate that the
disproportionate number of Vk and Vl genes in different species
is not the cause of differential Vk and Vl usage, but the effect of
different rearrangement order and/or developmental dynamics.

Another important factor is the limited number of VL and/or JL
gene segments, which approaches zero. If species can rely on one
type of IgL, the second may gradually goes unused or be eliminated.
This is the case in birds, which have been able to do so probably
because they use gene conversion (42–44), but also in bats, which
have expanded the Vl and VH repertoire (60). These are two known
species that have eliminated IgLk (Table 1). The opposite might be
a case inmice, which use 95% of IgLk and limited the number of Vl
genes to only two or three (28). Indeed, mice are very specific in the
IgLl locus and use two tandem VlJlCl cassettes (58) instead of
multiple Vl genes arrayed upstream of JlCl cassettes as known
from other species (21). In any case, ungulates are also interesting as
described earlier. In general, these species have sufficient numbers of
putative Jk and Jl segments, but many of them are mutated and not
useful for functional rearrangements. As a result, sheep and cattle
have almost no functional Jk genes. They are either mutated in the
W(F)GxG motif and therefore nonfunctional or have noncanonical
RSS, making rearrangement inefficient or impossible (59). In
comparison, goats have one Jk segment that is still fully
functional, and this may be a reason why they have more IgLl+

B cells than sheep and cattle (59). In this respect, sheep and cattle,
followed by goats, might just be other species that follow the bats in
the complete loss of IgLk+ B cells. It is surprising that many thriving
species are able to keep the number of functional V(D)J segments to
Frontiers in Immunology | www.frontiersin.org 8
a minimum. This is especially true for IgH, which is critical for BCR
formation. For example, pigs have all five JH segments “functional”
in terms of the WGxG motif and the absence of stop codons (14).
However, three of the five have noncanonical RSS (14), and
functional experiments have shown that only one of the
remaining can be used for functional rearrangement (82). A
similar situation appears to apply to goats (59).

Conclusion
In summary, different species appear to have evolved different
strategies for the order of rearrangement of Ig genes and for the
selection of a productive Ig repertoire. Possibilities for these
strategies have even been indicated in mice themselves, which
showed that the order of rearrangement is independent (27, 40,
41) and SLC is unnecessary (47, 48). Apparently, all these species
have survived with comparable success. On the other hand,
differential regulation of rearrangement order and mechanisms of
repertoire selection may have evolutionary and practical
consequences. In the IgL-before-IgH group, extensive editing of
the IgLl repertoire occurs very early and before IgH rearrangement.
On the other hand, IgLl repertoire is edited in the IgH-before-IgL
group only when IgLk is unsuccessful. These principles could lead
to higher diversification of IgLl loci in the IgL-before-IgH group,
while higher diversification of IgLk loci in the IgH-before-IgL
group. Another consequence of the enormous differences between
species is the possibility of choosing the uncomplicated
experimental systems for practical purposes. All porcine VH genes
share the same leader and framework sequences and only one JH
segment is functional. Furthermore, both porcine IgLk and IgLl
loci contain only two families and two functional JL genes. This
allows the recovery of all VDJH rearrangements using a single non-
degenerate primer set or the generation of deficient pigs for B cells
by modifying just a single JH segment (82). However, it must always
be considered if the regulatory components of Ig rearrangement also
need to be copied into the genome. The production of B-cell-
deficient pigs may be a simple task, but it may be difficult to generate
genetically modified pigs that produce a sufficient amount of
human antibodies.
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