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ABSTRACT

Current work for multivariate analysis of phenotypes in genome-wide association studies
often requires that genetic similarity matrices be inverted or decomposed. This can be a
computational bottleneck when many phenotypes are presented, each with a different
missingness pattern. A usual method in this case is to perform decompositions on subsets
of the kinship matrix for each phenotype, with each subset corresponding to the set of
observed samples for that phenotype. We provide a new method for decomposing these
kinship matrices that can reduce the computational complexity by an order of magnitude
by propagating low-rank modifications along a tree spanning the phenotypes. We dem-
onstrate that our method provides speed improvements of around 40% under reasonable
conditions.

Keywords: Cholesky decomposition, genome-wide association study, kinship matrix, linear

mixed models, multiphenotype analysis.

1. INTRODUCTION

Understanding the etiology and biological pathways involved in health and disease requires a

multivariate analysis of phenotypic data in genome-wide association studies (GWAS). This sort of

analysis is becoming more common due to increased compute power (Cox et al., 2018). Only recently have

such analyses become tractable through improvements to the efficiency of linear mixed models and related

models (Lippert et al., 2011; Listgarten et al., 2012, 2013; Dahl et al., 2016). Further multivariate analysis is

required for the study of complex diseases such as cancer (Knox, 2010) and groups of complex phenotypes

such as brain imaging phenotypes (Elliott et al., 2018), and the analysis of large consortia involving mul-

timodal data such as the U.K. Biobank (Bycroft et al., 2018).

The use of multiphenotype (or multivariate) data often requires that a scaled version of the

kinship matrix (or genetic similarity matrix, or genetic relationship matrix: Patterson et al., 2006;

Balding et al., 2007) K be used as a covariance matrix of a multivariate distribution or matrix
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variate normal distribution, defined on the phenotype vector in a GWAS (Dutilleul, 1999). And so,

solutions to K - 1
2y, in which y is a phenotype matrix (with a row for each sample and a column for

each phenotype), must be computed to obtain maximum likelihood estimates for use in expectation

maximization, variational Bayes or data whitening, or to obtain Markov chain Monte Carlo updates

for Bayesian posterior simulation. Here K is an n · n positive-definite genetic similarity matrix, and

y is an n · d partially observed phenotype matrix such that yij is phenotype for sample i and

phenotype j and n is the number of samples in the study and d is the number of phenotypes in the

study. The computation of K - 1
2y is also of general interest to other machine learning fields such as

kernel methods (Gretton, 2003).

Phenotype matrices may be partially observed (e.g., outliers are removed leading to column-specific

missingness, or experimental paradigm varies among subjects leading to blockwise missingness in phe-

notype categories). To compute K - 1
2y for missingness in y, imputation may be performed (Dahl et al.,

2016), but imputation can be slow and it adds additional model-specific biases into the analysis. A standard

and classical method for dealing with missingness in y is the construction of (Kobs(j)‚ obs(j))
- 1

2yobs(j)‚ j for each j.

This is equivalent to marginalizing out the missing samples under the assumption of Gaussianity (i.e., it

does not add additional assumptions beyond those already assumed by mixed models). Here obs(j) is the set

of indices of samples observed for phenotype j and AB‚ C for a matrix A means that if B or C is a subset of

N , the submatrix of A should be formed by selecting rows with indices in B or columns with indices in

C. For ease of subscript usage, we adopt the notation Kj = Kobs(j)‚ obs(j) and yj = yobs(j)‚ j. Computing K
- 1

2

j yj for

each phenotype j is costly and precludes scaling of multivariate GWAS analysis.

In this article, we present an efficient algorithm for computing the Cholesky decomposition (Benoıt,
1924) of Kj, for use in calculation of K

- 1
2

j yj. The algorithm works by computing the full O(n3) Cholesky

decomposition Lj0 for Kj0 for a fixed j0, and then performing rank-1 modifications (updates and

‘‘downdates’’; Benoıt, 1924) to the Cholesky decompositions and also performing other O(n2) oper-

ations to propagate the Cholesky decomposition of Kj0 to that of Kj 8j : 1 � j � d‚ j 6¼ j0. The decom-

position is propagated along a minimum spanning tree of a complete graph with one vertex per

phenotype, and edge weights given by the number of rank-1 Cholesky modifications required for

propagation of the decomposition along that edge. In Figure 1, a comparison is provided for the runtime

and asymptotics of the full Cholesky decomposition against the Cholesky modifications for a range of

sample sizes, indicating the efficiency of these modifications. In this figure, genetic similarity matrices

are simulated by drawing from a Wishart distribution with means given by the identity matrix and with

10,000 degrees of freedom (simulating a study typed at 10,000 markers). We refer to our algorithm as

kgen (for kinship generation) and we implement our algorithm in an open source software package

called the kgen software. A manual for this software is provided in Appendix C of the Supplementary

Material.

The asymptotic complexity of performing Cholesky decompositions in a naive way for all Kj is O(dn3),

(assuming the missingness patterns of each phenotype are not identical). In contrast, the worst-case as-

ymptotic complexity of the kgen algorithm is as follows:

O(n3 + rdn2): (1)

Here r is defined as max
1�j1<j2�d

f#(obs(j1)nobs(j2)) + #(obs(j2)nobs(j1))g (this is the maximum number of

rank-1 Cholesky modifications required to propagate a Cholesky decomposition between two phenotypes)

and #A denotes the size of a set A and BnC for sets B and C denotes the set difference between B and C.

1.1. Related work

To reduce the computational complexity of genetic similarity matrix operations, several research pro-

grams have been conducted to store and manipulate sparse representations of the genetic similarity matrix

(Shor et al., 2019). In these representations, researchers set a threshold and then zero out elements of the

genetic similarity matrix with absolute value less than this threshold. The computational gains of such an

approach may be large, but in theory, such an approach could lead to loss of power. Furthermore, this

approach would be less suitable to data originating from pedigrees or small isolated populations. To our

knowledge, our work is the first to leverage Cholesky low-rank modifications for improving efficiency of

genetic similarity matrix-based inference.
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2. METHODS

In this section, we describe the genetic similarity matrices for which the kgen algorithm is appropriate

and then provide the details of the kgen algorithm.

2.1. Genetic similarity matrices

The definition of the kinship matrix we use is that of a genetic similarity matrix centered at population-

level minor allele frequencies. This definition is based on Patterson et al. (2006) but note that it involves

population-level normalization instead of sample-level normalization. Let Gi‘ be the genotype of the i-th

subject at the ‘-th marker (suppose that there are n markers in total), and let q‘ be the minor allele

frequency of the ‘-th marker with respect to the population from which the samples are drawn (we assume

q‘ > 0). Then, the genetic similarity matrix is an n · n positive semidefinite matrix such that:

Ki1‚ i2 =
1

m

Xm

‘ = 1

(Gi1‚ ‘ - 2q‘)(Gi2‚ ‘ - 2q‘)
2q‘(1 - q‘)

: (2)

The Cholesky decomposition of an n · n positive definite matrix K is the unique upper triangular matrix L

such that LLT = K and so L - 1y is a solution to K - 1
2y. Efficient algorithms exist for computing L (Anderson

et al., 1999), and although the computation of L has asymptotic complexity O(n3), it is often much faster

than a matrix inversion performed on a matrix of the same size. Due to the upper triangular nature of L, L - 1

and L - 1y may be computed with asymptotic complexity O(n2). Given a Cholesky decomposition L of K,

for any vector v of length n, the Cholesky decomposition L may be updated to form the Cholesky

decomposition of K + vvT (i.e., the sum of K and the rank-1 vector vvT ) or downdated to form the Cholesky

decomposition of K - vvT . These update and downdate operations have asymptotic complexity O(n2). For

FIG. 1. Runtimes for Cholesky decomposition and modifications for 10,000 to 50,000 samples. The log/log scale

shows the asymptote and the order of magnitude relative speed of the modifications over the full Cholesky decom-

positions. For each condition, 15 random positive-semidefinite matrices are considered. The Cholesky decomposition is

performed (mean given by red line) and then modifications are performed on a random row and column. Computations

are performed using the Intel Math Kernel Library (MKL) implementation of the Netlib library.
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more detail on Cholesky decompositions and their modifications, we refer to Seeger (2008), Osborne et al.

(2010), and Benoıt (1924).

2.2. The kgen algorithm

A meditation on these asymptotes suggests the kgen algorithm. The Cholesky modifications can be

designed to add and remove rows and columns of K (Osborne et al., 2010), and so, the computation of

K
- 1

2

1 y1‚ . . . ‚ K
- 1

2

d yd can be done by performing only one O(n3) full Cholesky decomposition (instead of d

such operations) and then propagating it to the rest of the decompositions, provided that the number of rows

and columns to be added and removed to propagate the Cholesky decompositions is small with respect to n

yielding Eq. (1).

Procedures to arrange Cholesky modifications in a way that adds and removes rows and columns of K are

provided in Osborne et al. (2010). We refer to these operations as delete and insert. These operations are

described formally as follows. Let v be an n · 1 vector and let L be the Cholesky decomposition of the n · n

positive definite matrix

K + =
Kf1‚ ...‚ i - 1g‚ f1‚ ...‚ i - 1g vf1‚ ...‚ i - 1g‚ 1 Kf1‚ ...‚ i - 1g‚ fi + 1‚ ...‚ ng

vT
f1‚ ...‚ i - 1g‚ 1 vi1 vT

fi + 1‚ ...‚ ng‚ 1

Kfi + 1‚ ...‚ ng‚ f1‚ ...‚ i - 1g vfi + 1‚ ...‚ ng‚ 1 Kfi + 1‚ ...‚ ng‚ fi + 1‚ ...‚ ng

0
B@

1
CA: (3)

Then, L - = delete(K + ‚ i) is the Cholesky decomposition of

K - =
Kf1‚ ...‚ i - 1g‚ f1‚ ...‚ i - 1g Kf1‚ ...‚ i - 1g‚ fi + 1‚ ...‚ ng

Kfi + 1‚ ...‚ ng‚ f1‚ ...‚ i - 1g Kfi + 1‚ ...‚ ng‚ fi + 1‚ ...‚ ng

 !
: (4)

Conversely, let L be the Cholesky decomposition of the matrix K - given in Equation (4), then

L + = insert(K - ‚ i‚ v) is the Cholesky decomposition of the matrix K + given in Equation (3).

These insert and delete operations can be performed in O(n2) time. Descriptions of these operations are

provided in Algorithms S1 and S2 of the Supplementary Material. For our delete operation, we use the

procedure from Osborne et al. (2010). For our insert operation, we use a procedure slightly different from

Osborne et al. (2010) and provide a proof of our procedure in Appendix A of the Supplementary Material.

We now describe the kgen algorithm in detail. The kgen algorithm is listed in Algorithm 1 in this article.

This algorithm assumes that an n · n positive definite genetic similarity matrix K is provided as in Eq. (2),

and that an n · d phenotype matrix Y is provided, with missing entries indicated. The phenotype matrix is

used to find the sets of missing entries obs(j) : 1 � j � d, and the particular values of the phenotype matrix

are not used. Instead, Cholesky decompositions Lj of Kj = Kobs(j)‚ obs(j) are returned, providing fast access to

L - 1
j yj.

The kgen algorithm works by first finding a phenotype j0 such that the number of missing entries for

the j0-th column of Y is less than or equal to the number of missing phenotypes in any other column.

And then, we find a tree spanning all phenotypes. The tree is chosen such that the sum of the number of

samples that must be added or removed for each edge of the tree (the sum of the weights of the edges)

is minimized. For an edge from phenotypes j1 to j2, a sample must be added if it is in obs(j2) but not in

obs(j1), and a sample must be removed if it is in obs(j1) but not in obs(j2). Note that this relation about

the number of samples to be added or removed is reflexive and so the weighted complete graph with

vertices given by the columns of the phenotype matrix is an undirected graph. The vertex j0 is identified

as the root of this minimum spanning tree. In our implementation of this algorithm, we use Kruskal’s

algorithm to find the minimum spanning tree (Kruskal, 1956).

After this minimum spanning tree is created, a breadth-first enumeration of the edges of this tree is con-

structed, such that the first edge includes the root of the tree. This enumeration must be breadth-first, because

propagation of Cholesky decompositions along an edge may involve hard-drive reads and writes. The finished

decompositions may have to be written and read to disk, as RAM (random access memory) provisions on

supercomputers often cannot store the Cholesky decompositions of >1,000 phenotypes with 20,000 samples. So,

software implementing the kgen algorithm will read the decomposition from the ‘‘source’’ vertex unless that

decomposition has been recently read. Ensuring that the decomposition for the ‘‘source’’ vertex has most often

been recently read is equivalent to providing the path through the spanning tree in a breadth-first way.
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Algorithm 1 The kgen algorithm

1: Inputs: a) An n · n positive definite matrix K; b) An n · d phenotype matrix Y.

2: Outputs: A list of Cholesky decompositions Lj for 1 £ j £ d wherein Lj is the #obs(j) · #obs(j) Cholesky

decomposition of the positive definite matrix Kj.

3: Let G be the weighted undirected complete graph on d vertices such that the weight of the edge between vertices j1
and j2 is #(obs(j1) yobs(j2)) + #(obs(j2) yobs(j1)).

4: Let T be a minimum spanning tree of G.

5: Let j0 be a vertex such that #obs(j0) £ #obs(j) c 1 £ j £ d.

6: Let E1,., Ed-1 be a breadth-first enumeration of all of the edges of T along with an ordering of the vertices of each

edge (so the two vertices defining the edge Ei are given in order by Ei1 and Ei2), such that the vertex Ei1 always

appears among the set {j0, E12,., Ei-1,2} and such that E11 = j0.

7: Lj0 ) chol(Kj0)

8: for j = 1 . d – 1 do

9: e1 ) LEj1

10: e2 ) LEj2

11: L0 ) Le1

12: S ) obs(e1)

13: k ) 1

14: for i = 1 . n do

15: if i ˛obs(e1) and i ˛obs(e2) then

16: k ) k + 1

17: else if i ˛obs(e1) and i ; obs(e2) then

18: S ) S y{i}

19: L0 ) delete(L0, k)

20: else if i ; obs(e1) and i ˛obs(e2) then

21: S ) S W{i}

22: L0 ) insert(L0, KS,k, k)

23: k ) k + 1

24: assert S = obs(e2)

25: Le2 ) L0

26 return L1,., Ld

After the enumeration is created, the kgen algorithm computes the Cholesky decomposition of Kj0 and

then for each edge (e1‚ e2) in the enumeration, it modifies the Cholesky decomposition of Ke1
by inserting

samples that are in obs(e2)nobs(e1) and deleting samples that are in obs(e1)nobs(e2). And then it proceeds to

the next edge in the path, and repeats this procedure until the d - 1 edges in the minimum spanning tree on

the phenotypes are exhausted.

2.3. A worked example of the kgen algorithm

In Figure 2, we provide a worked example of the kgen algorithm involving 10 samples and 8 phenotypes.

In this example, the root of the minimum spanning tree is phenotype two and a breadth-first enumeration

of the edges of the minimum spanning tree (such that the root is given by the first edge) is

(2‚ 1)‚ (1‚ 4)‚ (4‚ 3)‚ (4‚ 7) . . .. The Cholesky decomposition in Fig. 2e right can be formed by performing

rank-1 modifications after computing the Cholesky decomposition in Fig. 2d.

3. EXPERIMENTS

We now consider two experiments on simulated data and compare the speed and accuracy of the kgen

algorithm to that of a naive algorithm in which the full Cholesky decomposition is computed for each

phenotype. In the first experiment, we vary the number of samples and the missingness rate of the

phenotype measurements, and assume that the data are missing-at-random, and assume a fixed number

of 100 phenotypes per condition. In the second experiment, we examine a blockwise missingness

pattern.
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These experiments (and the results are displayed in Fig. 1) were conducted on Intel Xeon E5-2683 CPUs,

and the numerical matrix operations were performed using Intel’s MKL (math kernel library) im-

plementation of the Netlib library (Anderson et al., 1999). The machine epsilon on this CPU was 2:2e - 308.

3.1. Experiment 1

We consider missingness rates of 0.01%, 0.05%, 0.1%, 0.15%, and 0.2%, and a missing-at-random

missingness pattern over 100 phenotypes. We consider n = 10,000, 15,000, 20,000, 25,000, and 30,000

samples. For each condition, we consider five independent replicates, and we sample the kinship matrix

from the same Wishart distribution that was used in Figure 1 (i.e., with a mean given by the identity matrix

and with 10,000 degrees of freedom). The difference in the runtime between kgen and the naive method (in

which a full Cholesky decomposition is done for each phenotype), averaged over the five independent

replicates for each condition, is displayed in Figure 3. The maximum entrywise absolute difference between

the two methods over all phenotypes and conditions was 1.1768e - 14 (in the units of the Cholesky

decomposition space), indicating close alignment and low numerical imprecision.

A histogram of all of the elementwise absolute differences is displayed in Supplementary Figure S1 in

the Supplementary Material. The runtime of each replicate (for both the kgen algorithm and the naive

method) and the maximum entrywise absolute difference between the Cholesky decompositions of each

method are shown in Supplementary Table S1 of Appendix B in the Supplementary Material.

3.2. Experiment 2

In our second experiment, we consider a blockwise missingness pattern and vary the number of phe-

notypes. We fix the number of samples at n = 15‚ 000 and we consider a missing-at-random rate of 0.1%

and also a blockwise missingness pattern in which each block of 50 consecutive phenotypes all have 10%

of the samples masked (the same 10% of samples are masked for all 50 phenotypes in the block). The

genetic similarity matrix is taken to be the same Wishart distribution that was used in Experiment 1. This

situation is similar to a massively multiphenotyped version of the Wellcome Trust Case/Control Con-

sortium (2007). The number of phenotypes is varied in the set f100‚ 200‚ 300‚ 400‚ 500g. The runtime of

kgen and the naive method for Experiment 2 are shown in Figure 4.

Improvements shown in Figure 3 are only generally realized for < 0:1% missingness. And so for

Experiment 2 (and our released kgen software), we institute a new rule in which if >100 samples must be

added or removed to propagate along an edge between one phenotype and another in the minimum

spanning tree, instead a full Cholesky decomposition is performed on the other phenotype. This ‘‘short

circuits’’ the kgen algorithm and allows superb performance even in cases for which the overhead of the

low-rank modifications in the kgen algorithm could swamp the gains (the choice of 100 depends on the

overhead and could be reduced in the future, to respect new and more powerful hardware).

FIG. 3. Improvement in runtime for the kgen

software over naive Cholesky decompositions for

low values of missingness (x-scale) for 100 phe-

notypes, and varying numbers of samples (indi-

cated by legend). The y-scale indicates the median

runtime for the kgen software minus the runtime of

naive Cholesky decompositions, over five repli-

cates per condition. The kgen software is better for

all values of missingness � 0:1%.
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4. RESULTS

In Figure 3, we see a between 1- and 6-hour improvement for sample sizes greater than 15,000 and

missingness rates <0.1%, and for 100 phenotypes. In theory, and in Figure 4, we see an indication that these

improvements are linear in the number of phenotypes. And so a study with 10,000 phenotypes under the right

conditions may benefit from a 25-day reduction in compute on our hardware through the kgen algorithm.

Table 1. Detailed Results for Experiment 1

n Rate Mean (kgen) Std (kgen) Mean (naive) Std (naive)

10,000 01 283 81.781 1044 175.907

10,000 05 492 233.195 1457 254.245

10,000 10 983 486.558 1364 276.035

10,000 15 1352 610.731 1282 283.564

10,000 20 2572 940.290 1896 678.998

15,000 01 502 81.288 3276 274.027

15,000 05 1052 134.875 3875 276.780

15,000 10 3260 1121.938 4314 446.635

15,000 15 5461 1940.624 4472 711.593

15,000 20 5345 1162.868 3910 319.418

20,000 01 1270 413.137 9029 1105.049

20,000 05 2521 321.002 9080 855.493

20,000 10 6650 1891.464 9654 1267.275

20,000 15 9943 3244.624 10,422 1403.009

20,000 20 13,540 4436.192 10,156 2372.845

25,000 01 567 231.747 4368 2256.119

25,000 05 8188 3164.044 20,674 3322.788

25,000 10 11,276 810.770 18,165 1055.435

25,000 15 24,398 7299.440 18,742 1989.225

25,000 20 24,460 1885.233 20,427 6236.077

30,000 01 1266 960.024 10,743 8736.785

30,000 05 13,200 5850.212 34,280 3823.599

30,000 10 24,727 6558.746 32,808 4861.380

30,000 15 31,193 5695.082 31,005 4110.901

30,000 20 40,397 5455.380 29,346 5139.770

The ‘‘n’’ column indicates number of samples, ‘‘rate’’ column indicates the missingness rate (in basis points), ‘‘mean (kgen)’’ and

‘‘std (kgen),’’ ‘‘mean (naive)’’ and ‘‘std (naive)’’ column indicates means and standard deviations over five independent replicates for

kgen and the naive method (in seconds) resp.

FIG. 4. Runtimes for Experiment 2 versus

number of phenotypes, displaying some linearity

in d (varied in the set f100‚ 200‚ 300‚ 400‚ 500g).
Lines show means over five independent repli-

cates. Shaded region indicates standard devia-

tions. The kgen algorithm improves runtimes by

*40% in all conditions.
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Since Figure 3 indicates the difference in runtimes between kgen and the naive method, we also provide

means and standard deviations for the runtime for both methods in Table 1. This table indicates that the

kgen algorithm provides between 0% and 40% improvement in runtime for missingness at random rates of

less than 0.1%. Figure 4 indicates around a 40% improvement for situations similar to The Wellcome Trust

Case/Control Consortium (2007).

5. CONCLUSION

Multivariate GWAS are limited by computational resources. We have provided a new method to create

and manipulate the genetic similarity matrices required for linear mixed models for multivariate GWAS.

On our hardware, our method provides an improvement of around 40% under reasonable simulation

settings. Software implementing our methods are released under an open source license.
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des moindres carrésa un systeme d’équations linéaires en nombre inférieura celui des inconnues. (Procédé du
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