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Abstract

As the big data science develops, efficient methods are demanded for various data analysis.

Granger causality provides the prime model for quantifying causal interactions. However,

this theoretic model does not meet the requirement for real-world data analysis, because

real-world time series are diverse whose models are usually unknown. Therefore, model-

free measures such as information transfer measures are strongly desired. Here, we pro-

pose the multi-scale extension of conditional mutual information measures using MORLET

wavelet, which are named the WM and WPM. The proposed measures are computational

efficient and interpret information transfer by multi-scales. We use both synthetic data and

real-world examples to demonstrate the efficiency of the new methods. The results of the

new methods are robust and reliable. Via the simulation studies, we found the new methods

outperform the wavelet extension of transfer entropy (WTE) in both computational efficiency

and accuracy. The features and properties of the proposed measures are also discussed.

1 Introduction

As big data science developments, practical time series methods are demanded to study the

complexity and dynamics of the data. Real-world data are time series usually obtained by

experiments or observations whose models are diverse and the data are often nonlinear or

non-stationary [1–2], e.g. the EEG time series measured from experiments [2–5] and financial

data observed from real-world markets [6]. Therefore, efficient method is necessary to study

the dynamics of these complex systems.

Various directed methods have been developed for studying the directed interaction

between time series. The most classic causality measure is the Granger causality (GC) [7–8], it

is a prime model for causality measures which uses significance tests to detect the directed

dependency of one time series on another time series [7–8]. However, GC has many limita-

tions, it is bivariate time domain method suits for only linear models [7–8]. Other similar

methods have been derived to cover the limitation of GC [9–12]. For instance, the conditional

Granger causality is a multivariate method that can detect direct interactions between time

series [10], the frequency domain GC is derived for frequency domain data analysis [10–11],

and the nonlinear GC can be applied to nonlinear data analysis [12]. More advanced measures
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are such as the Partial Direct Coherence (PDC) [13–17] and Directed Transfer Function

(DTF) [18–19], which are sophisticated frequency domain measures. However, both PDC and

DTF are linear measures whose validity rely on the linear autoregressive or moving average

model fitting [13–19].

Since real world time series are often nonlinear and sometimes nonstationary, the data

models are usually varied and unknown, therefore linear causal measures are farfetched to ana-

lyze the real-world time series. To analyze the dynamics and interactions between real-world

time series and also theoretic models, information transfer measures are preferred [1, 12, 20–

30]. Information transfer measures are used to detect the directed information transfer

between coupled time series which can be used to study the direction of interactions of com-

plex networks. However, the information transfer is a different notion to the causal effect [31–

34]. In [33], J. T. Lizier and M. Prokopenko have used the study of the transfer entropy [27]

and information flow to differentiate the concepts of information transfer and causal effect

[33]. N. Ay and D. Polani have introduced in [31] the notion of causal independence which

allows for defining a measure for the strength of a causal effect. In their work, they call this

notion the information flow which is compared with the transfer entropy. A relevant work is

presented by Wibral et. al. in [34], in which an extension method from transfer entropy is pro-

posed that account for delayed source-target interactions, while crucially retaining the condi-

tioning on the embedded target state at the immediately previous time step [34]. This new

extension method proposed by Wibral et. al. in [34] is proved as the only relevant option in

keeping with the Wiener’s principle of causality. To clarify the notional causality which is dif-

ferent from notion of information transfer, a clear and systematic literature of causality,

including theories and causal models is presented in the work by J. Pearl in [32].

Transfer entropy (TE) is a fundamental information transfer measure proposed by T.

Schreiber [27], it is a directed information transfer method that evaluates the bivariate infor-

mation transfer between coupled time series. Due to the model-free nature of information

methods, information transfer measures such as transfer entropy (TE) are preferred in many

studies to analyze the interactions for varied models. To suffice the needs of different analysis,

many other information transfer methods are derived from the transfer entropy. For instance,

the symbolic transfer entropy (STE) [28] and the Partialized Transfer Entropy (PTE) [35] are

derived to improve TE for particular applications. However, these transfer entropy measures

are computationally redundant, in that they use uniform embeddings in their expressions,

which leads to high computational complexity and redundancy in their computations, because

variables of no significant contribution to the information transfer detection are also included

in the computation [22, 29].

To solve this problem, non-uniform state-space embedding methods such as MIME (condi-

tional mutual information from mixed embeddings) [29] and partial MIME (PMIME, a direct

version of MIME) [22] are developed to reduce the computational redundancies. Both MIME

and PMIME use a progressive scheme of a maximum criterion and a stopping criterion to

select significant contributive components from uniform state-space embedding vector to

form refined embedding vectors for information transfer detection [22, 29]. In consequence,

both methods are computational efficient and have wide applications to various data analysis

[22, 26, 29, 35–38].

Most of these measures require data stationarity [7–8, 13–19]. Real world data such as

financial and biological time series are not seriously stationary. Wavelet is an ideal tool for

non-stationary data analysis who presents good solutions to time and frequency allocations

and outperforms the short-time Fourier transforms [24, 39–43]. In [24], MORLET wavelet

[40] is introduced to TE to cover non-stationary and discontinuous data analysis [24]. Since

TE is primitive and computationally redundant, we are inspired to use MORLET wavelet to
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extend MIME and PMIME into computational efficient multi-scale measures that cover the

deficiency of WTE, and the new extensions are expected to be useful in various data analysis

particular the real-world data analysis.

In this paper, we introduce the MORLET wavelet extension to MIME and PMIME and

study their efficiency in application to both model data and real-world time series. The paper

is organized as follows. In the Introduction section, we review the background of this study. In

the section of Materials and methods, we describe the formulative wavelet extension of MIME

and PMIME. In the Results section, four synthetic models (theoretic maps) and two real-world

examples (EEG and financial data) are used to demonstrate the efficiency of the proposed

extensions, where all simulation studies are compared to the wavelet-extension of TE (WTE).

In the Discussion section, application and features of the new methods are discussed. The final

conclusion of this study is drawn in the Conclusion section.

2 Materials and methods

In this section, we introduce the details of the wavelet extension of MIME and PMIME. Here,

we refer the two wavelet extensions as WM and WPM, respectively.

2.1 MORLET wavelet extension of MIME (WM)

Conditional mutual information from mixed embeddings (MIME) [29] is a time domain non-

linear information transfer measure whose wavelet extension is described as follows.

Assume X and Y are two arbitrary time series of length N, LX and LY denote the maximum

time lag for X and Y. To compute the WM for Y->X, a mother function cðZÞ ¼

p� 1=4eio0Ze� Z2=2 [2, 24, 39–43] is used to convert the X and Y time series into MORLET wavelet

coefficients [24]

Vsi ;tX
¼

1
ffiffiffisi
p
PN

t¼1
Xtc

�
ð
t � tX
si
Þ ð1Þ

Wsi ;tY
¼

1
ffiffiffisi
p
PN

t¼1
Ytc

�
ð
t � tY
si
Þ ð2Þ

where ω0 2 [5,6] is the normalized frequency, time lags τX (1� τX� LX) and τY (1� τY� LY)

are the translation parameters used to localize the wavelet, si (1� i�m, m is the total number

of time scales) is the time scale that determines the width and resolution of the wavelet, � repre-

sents the complex conjugation [24]. This wavelet setting is the same to the WTE [24].

The WM are computed for every time scale si (1� i�m). For each time scale si (1� i�

m), a future embedding vector of X of time horizon T [29] (T 2 Nþ) is defined as

VFðsiÞ ¼ ðVsi ;tþ1;Vsi ;tþ2; � � � ;Vsi ;tþT
Þ; ð3Þ

A collective set of candidate components is also defined at the time scale:

BðsiÞ ¼ ðVsi ;t
;Vsi ;t� 1; � � � ;Vsi ;t� LX

;Wsi ;t
;Wsi ;t� 1; � � � ;Wsi ;t� Y

Þ; ð4Þ

The same progressive scheme of MIME [29] is used for each time scale si. The progressive

scheme starts with an empty vector b0(si) = ;. In the first iterative cycle, WM goes through B

(si) to find the element x0 that satisfies the maximum criterion [29]:

I : Iðx0;VFðsiÞÞ ¼ maxx2BðsiÞIðx;VFðsiÞÞ; x
0 2 BðsiÞ: ð5Þ

where I(x;VF(si)) is the mutual information rate between the x and VF(si). The element x0 that
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satisfies the maximum criterion is selected to join b0(si) that forms b1(si) = (x0), x0 is then

removed from B(si) and obtains Bk−1(si) = B(si)\{x0} [29].

At a k-th iterative cycle, WM seeks the element x0 in the remaining set Bk−1(si) (obtained

from the k-1-th iterative cycle) that satisfies the maximum criterion [29]

I : Iðx0;VFðsiÞjbk� 1ðsiÞÞ ¼ maxx2Bk� 1ðsiÞ
Iðx;VFðsiÞjbk� 1ðsiÞÞ; x

0 2 Bk� 1ðsiÞ; ð6Þ

and moves the element x0 from Bk−1(si) to bk−1(si) to obtain the enlarged embedding vector

bk(si) = (x0,bk−1(si)) and Bk(si) = Bk−1(si)\{x0}.
The progressive scheme stops at a k+1-th iterative cycle and uses bk(si) as the final selected

embedding vector, if the following stopping criterion is satisfied [29]:

IðbkðsiÞ;VFðsiÞÞ
Iðbkþ1ðsiÞ;VFðsiÞÞ

> A; ð7Þ

Here, A is the significance threshold (between 0 and 1) controls the inclusion of embedding

components [29]. This stopping criterion ensures contributive components to be included

while prevents useless components from being added. The progressive scheme stops if no sig-

nificant information can be given when including new component is included [29, 35–38].

The WM for time scale si is evaluated by [29]:

WMY!X sið Þ ¼ 1 �
IðVFðsiÞ; bVk ðsiÞÞ
IðVFðsiÞ; bkðsiÞÞ

¼
IðVFðsiÞ; bWk ðsiÞjb

V
k ðsiÞÞ

IðVFðsiÞ; bkðsiÞÞ
ð8Þ

We note that this WM information transfer between coupled time series is evaluated at the

same time scale si, (i = 1,2,. . .,64), which means that the WM does not evaluate the cross scales

information transfers. This is limitation of this method. The evaluation of cross-scale informa-

tion transfers will be our research of the next stage.

2.2 MORLET wavelet extension PMIME (WPM)

WPM is the multi-variate version of WM, which inferences only the direct interactions. With-

out the loss of generality, assume X, Y and Z are three arbitrary time series of length N, LX, LY,

LZ are the maximum time lags for the three time series. WPM first converts the X,Y, Z time

series into MORLET wavelet coefficients [24]:

Vsi ;tX
¼

1
ffiffiffisi
p
PN

t¼1
Xtc

�
ð
t � tX
si
Þ ð9Þ

Wsi ;tY
¼

1
ffiffiffisi
p
PN

t¼1
Ytc

�
ð
t � tY
si
Þ ð10Þ

Usi ;tZ
¼

1
ffiffiffisi
p
PN

t¼1
Ztc

�
ð
t � tZ
si
Þ ð11Þ

where the mother function and all the other wavelet parameters are the same to WM.

WPM values are computed for every time scale. To compute the WPM of Y->X, a future

embedding vector [22] of time horizon T is defined:

VFðsiÞ ¼ ðVsi ;tþ1;Vsi ;tþ2; � � � ;Vsi ;tþT
Þ: ð12Þ
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Different from WM, the collective set of candidate components are multivariate that are

defined by all time series in the system [22]:

BðsiÞ ¼ ðVsi;t
;Vsi ;t� 1; � � � ;Vsi ;t� LX

;Wsi;t
;Wsi;t� 1; � � � ;Wsi ;t� Y

;Usi ;t
;Usi ;t� 1; � � � ;Usi ;t� Z

Þ; ð13Þ

The initial selected embedding vector is again an empty vector b0(si) = ;.

WPM follows the same progressive scheme and the maximum criterion to WM with the

only difference of the collective set of candidate components. WPM selects candidate compo-

nents from all rather than two variables in the system which contribute to the inference of

direct information transfers [22].

If the progressive scheme stops at a k+1-th iterative cycle and uses bk(si) as the final selected

embedding vector. The WPM for Y->X at time scale si is given by

WPMY!X sið Þ ¼
IðVFðsiÞ; bWk ðsiÞjb

V
k ðsiÞ; b

U
k ðsiÞÞ

IðVFðsiÞ; bkðsiÞÞ
ð14Þ

where bVk ðsiÞ; b
W
k ðsiÞ and bUk ðsiÞ are the X, Y and Z components of bk(si) [22, 29], respectively.

Also, we should note that the WPM evaluates information transfer between wavelet coeffi-

cients of the same scales.

2.3 Bias correction by surrogate data

We use time-shifted surrogate [22,24,29,44–49,50] to test the significance of the results. Take

WM as an example. Let fVsi ;tX
g and fWsi ;tY

g to denote the MORLET wavelet coefficients for

the two arbitrary time series X and Y, the WMX!Y(si) indicates the WM information transfer

from X to Y evaluated at time scale si. We fix fVsi ;tX
g and permute the temporal indices of

fWsi ;tY
g randomly [22,24,29,50] to obtain the surrogate of fWsi ;tY

g. Next, we apply the WM

method on the original series of fVsi ;tX
g and the surrogate time series of fWsi ;tY

g, the results

are denoted as WMX!Y(si,q), where q is the index for the surrogates of fWsi;tY
g. Thus, the bias

corrected WM for X!Y is given by [24]

WMC;X!YðsiÞ ¼WMX!YðsiÞ � maxqfWMX!Yðsi; qÞg ð15Þ

In the following context, we use WMC,X!Y(si) to denote the bias corrected WM information

transfer from X to Y [22,24,29,50]. The bias corrected WM for the inverse direction, and the bias

corrected WPM and WTE are similarly defined. In all simulations, we use q = 10 [22,24,29,50].

2.4 Contrast information transfer

To obtain the dominance of interaction between coupled time series, we compute the contrast

information transfer between paired variables [24]. For example, to analyze the dominance of

interaction between two time series X and Y, we compute the contrast information transfer

between X!Y and Y!Xfor each time scale si:OWM,X!Y(si) = WMC,X!Y(si)−WMC,Y!X(si). If

OWM,X!Y(si)>0, the dominant information transfer is detected for X!Y; and vice versa, if

OWM,Y!X(si)>0, the dominant information transfer is detected for Y!X. The contrast infor-

mation transfer for WPM and WTE are similarly defined.

3 Results

In this section, we use six examples, including both synthetic data and real-world time series,

to demonstrate the efficiency of WM and WPM. In these examples, various types of interac-

tions are displayed, and all simulation studies are compared with the method of WTE.

A wavelet extension study on information transfer measures
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3.1 Synthetic data

Synthetic data are examples of model time series generated by equations. These examples

include the Henon maps, linear autoregressive models, and Lorenz systems [22, 29, 50–53],

which are indeterministic systems that are frequently used for time series analysis [22, 29, 50,

53]. Here, we use four synthetic examples to demonstrate the efficiency of the proposed infor-

mation transfer measures.

3.1.1 Cosine map. The cosine map consists of two unidirectionally coupled first order

autoregressive processes where one of the processes contains a cosine [24]:

xtþ1 ¼ 0:7xt þ 0:7 cosð0:3tÞ þ nðxÞt ð0; s2Þ;

ytþ1 ¼ 0:7yt þ nðyÞt ð0; s2Þ þ ext;
ð16Þ

where nðxÞt ; n
ðyÞ
t are independent zero mean Gaussian random processes with variance σ2 = 2,

and e2[0,1] is the coupling strength controls the linear interaction from Xt to Yt. The data of

this example can be found in S1 Dataset.

The initial data are randomly generated from normal distribution with zero mean and unit

variance. Each data series contains 5×104 data points. For comparison purpose, we use the

same MORLET parameters for WM and WPM as recommended for WTE [24, 40]: r = 0.125,

ω0 = 6,s0 = 0.5,V = 10, and n = 64.

To analyze the effect of stopping criteria, we compute the WM and WPM as functions of

the stopping criterion A. The stopping criterion A represents the proportionality of the condi-

tional mutual information between the current and the previous iterative cycles. In general

applications [22,29,46], A is a value close to but no greater than 1 [22, 29]. Larger values of A

representing looser criteria, while smaller values of A imply more rigid criteria. In the MIME

and PMIME studies, the usual choice of the stopping criteria is A = 0.95 for MIME and

A = 0.97 for PMIME. These choices of A value are obtained by various simulation studies,

A = 0.95 and 0.97 are appropriate A values that not only allow useful lagged values to be

detected but also prevent false positiveness from being included [22,29,46]. To study the

impact of the stopping criteria A on evaluation of the information transfer, we alter the crite-

rion A = 0.91, 0.93, 0.95, 0.97, 0.99, and present the WM and WPM results (directional infer-

ence) in Table 1. Since the cosine map has only two processes, the multivariate measure WPM

has same results to that of the bivariate measure WM. We can see from Table 1, when the cou-

pling strength 0.1�e�1, both WM and WPM indicate the correct information transfer from X

to Y. When e = 0, the coupling disappears and no flow of information is detected.

An example of the contrast WM results between X and Y (coupling strength e = 0.5) at dif-

ferent scales are shown in Fig 1. In this figure, we can see that different stopping criteria A

presents similar results of the contrast WM between X and Y. However, the stopping criterion

theoretically becomes looser when A increases. In later Henon map analysis, we will see that

A = 0.95 and A = 0.97 are good choices, but A = 0.95 is a bit rigid than A = 0.97 in the

Table 1. WM information transfer for the cosine map with different stopping criteria and coupling strengths.

Coupling strength A = 0.91 A = 0.93 A = 0.95 A = 0.97 A = 0.99

e = 0 - - - - -

0.1�e�1 X->Y X->Y X->Y X->Y X->Y

This table shows the directional inference of the cosine map by using WM at different stopping criteria A and coupling strength e. Since the cosine map is bivariate, the

WM and WPM have the same results on this example.

https://doi.org/10.1371/journal.pone.0208423.t001
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directional inference of indirect interactions, therefore we use A = 0.97 for both WM and

WPM in all simulation studies.

In this example, we use the stopping criterion A = 0.97 and the referenced embedding

parameters [22, 29, 36–38]: T = 1 (time horizon, prediction time step) and Lmax = 5 (the maxi-

mum time lag). The WM, WPM and WTE information transfer values are filtered with the

surrogate bias correction. Moreover, the contrast information transfer values between X and Y

are computed for WM, WPM and WTE which are shown in Figs 2–4, respectively.

In these figures, the contrast information transfer values are plotted against time scales and

coupling strength. We can see that both all three measures inference the correct linear interac-

tion from X!Y, which are supported by the non-negative surfaces of OWM,X!Y (Fig 2),

OWPM,X!Y (Fig 3), and OWTE,X!Y (Fig 4).

Fig 1. The contrast WM for the Cosine map at different stopping criteria A (e = 0.5). This figure shows the contrast

WMOWM,X!Y(si,e) = WMC,X!Y(si,e)−WMC,Y!X(si,e)(i = 1,2,. . .64,e = 0,0.1,0.2,. . .,1) for the cosine map (coupling

e = 0.5). The curves with different colors represent the contrast WM at different stopping criteria (A = 0.91,

0.93,0.95,0.97,0.99).

https://doi.org/10.1371/journal.pone.0208423.g001

Fig 2. The contrast WM information transfer values for the cosine map. This figure shows the 3D surface of the

contrast WMOWM,X!Y(si,e) = WMC,X!Y(si,e)−WMC,Y!X(si,e)(i = 1,2,. . .64,e = 0,0.1,0.2,. . .,1) for the cosine map. This

surface represents the values of the contrast information transfer against different time scale si and coupling strength e.

The non-negative surface implicates the directed influence from X->Y.

https://doi.org/10.1371/journal.pone.0208423.g002
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In these figures, we can see a ‘cosine’ shape (a slowly increasing ridge or a ‘tail’ rather than

well-localized in scale) of the surfaces, which nicely reflects the ‘cosine’ influence on the

dynamics of the coupled system [24].

To see the information transfer in each independent direction, we plot the bias corrected

information transfer values in Fig 5.

3.1.2 Four unidirectionally coupled Henon maps. The four unidirectionally coupled

Henon maps are defined by the equations [22,24–25,29,36–38,51–52]:

X1;nþ1 ¼ 1:4 � x2
1;n þ 0:3X1;n� 1;

X2;nþ1 ¼ 1:4 � 0:3X1;nX2;n � 0:7X2
2;n þ 0:3X2;n� 1;

X3;nþ1 ¼ 1:4 � 0:3X2;nX3;n � 0:7X2
3;n þ 0:3X3;n� 1;

X4;nþ1 ¼ 1:4 � 0:3X3;nX4;n � 0:7X2
4;n þ 0:3X4;n� 1;

ð17Þ

Fig 4. The contrast WTE information transfer values for the cosine map. In this figure, the 3D surface presents the

contrast WTE OWTE,X!Y,(si,e) = WTEC,X!Y(si,e)−WTEC,Y!X(si,e)(i = 1,2,. . .64,e = 0,0.1,0.2,. . .,1) for the cosine map at

different time scale si and coupling strength e. The non-negative surface indicates the directed information transfer

from X->Y.

https://doi.org/10.1371/journal.pone.0208423.g004

Fig 3. The contrast WPM information transfer values for the cosine map. This figure shows the 3D surface of the

contrast WPMOWPM,X!Y(si,e) = WPMC,X!Y(si,e)−WPMC,Y!X(si,e)(i = 1,2,. . .64,e = 0,0.1,0.2,. . .,1) for the cosine

map. The surface represents the values of the corrected information transfer against time scale si and coupling strength

e. The non-negative surface implies the directed information transfer from X->Y.

https://doi.org/10.1371/journal.pone.0208423.g003
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the direct nonlinear directed interactions are from Xi−1!Xi,i = 2,3,4. The wavelet parameters

used are r = 0.125,ω0 = 6,s0 = 0.2,V = 8, and n = 64 [24]. The other WM and WPM parameters

are the same to the previous example. The data of this example can be found in S2 Dataset.

These Henon maps have more than two variables, the WPM results are different from that

of the WM. To study the influence of the stopping criteria on the multivariate example, we

make the following analysis on the direct interaction between X2 and X3, and also the indirect

interaction between X1 and X3. Results of the directional inference of different stopping crite-

ria A is shown in Table 2. In this table, both WM and WPM detect all correct interactions

between the unidirectionally coupled Henon maps. When the stopping criteria is small

(A�0.95), WM detects only direct interactions, when A�0.97, WM also detects the indirect

interactions from X1->X3, X2->X4. WPM is a direct measure, so it detects only the direct

interactions for all the different stopping criteria.

To analyze the influence of the stopping criteria, we take X1 and X3 as an example. Fig 6

shows the contrast WM between X1 and X3 with different stopping criteria and time scales. In

this figure, the indirect interaction from X1->X3 can only be detected when A�0.97, and

when A = 0.99, WM presents false positiveness for X3->X1. Because WPM is a direct measure,

it gives all zeros for the information transfer between X1 and X3 for all stopping criteria.

Fig 5. Information transfer between X and Y. In this figure, we present the WM (red), WPM (blue) and WTE (black)

information transfer values of cosine map (coupling strength e = 0.8) in each independent direction. We can see that all

measures present dominant information transfer values for X->Y.

https://doi.org/10.1371/journal.pone.0208423.g005

Table 2. Directional inference of WM and WPM with different stopping criteria.

Stopping criteria WM WPM

A = 0.91 X1->X2, X2->X3, X3->X4 X1->X2, X2->X3, X3->X4

A = 0.93 X1->X2, X2->X3, X3->X4 X1->X2, X2->X3, X3->X4

A = 0.95 X1->X2, X2->X3, X3->X4 X1->X2, X2->X3, X3->X4

A = 0.97 X1->X2, X2->X3, X3->X4,X1->X3, X2->X4 X1->X2, X2->X3, X3->X4

A = 0.99 X1->X2, X2->X3, X3->X4,X1->X3, X2->X4 X1->X2, X2->X3, X3->X4

This table shows the directional inference of WM and WPM between the four unidirectionally coupled Henon maps

with different stopping criteria A. We can see that WPM detects only the direct interactions, while WM also detects

indirect direction when A�0.97.

https://doi.org/10.1371/journal.pone.0208423.t002
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Similarly, we analyze the criteria effect on the direct interactions. We take the direct interac-

tion X2->X3 as an example. The WM and WPM information transfer between X2 and X3

with different stopping criteria A are shown in Figs 7 and 8. We can see from these figures, the

different stopping criteria presents similar values of the contrast results for both WM and

WPM, and the trends of the contrast WM and the contrast WPM are similar. This is because

this interaction from X2->X3 is direct, and the WM and WPM may present similar results.

Fig 6. The contrast WM for the four unidirectionally coupled Henon maps with different stopping criteria

(X1-X3). This figure shows the line plots of the contrast WM (contrast values between X1 and X3)OWM,X1!X3(si,e) =

WMC,X1!X3(si,e)−WMC,X3!X1(si,e)(i = 1,2,. . .64) for the Henon maps between X2 and X3. This curves with different

colors represent the contrast WM results obtained by different stopping criteria.

https://doi.org/10.1371/journal.pone.0208423.g006

Fig 7. The contrast WM for the four unidirectionally coupled Henon maps with different stopping criteria

(X1-X3). This figure shows the contrast WM between X1 and X3:OWM,X1!X3(si,e) = WMC,X1!X3(si,e)−WMC,X3!X1(si,
e)(i = 1,2,. . .64) with different stopping criteria and time scales. This curves with different colors represent the contrast

WM obtained by different stopping criteria.

https://doi.org/10.1371/journal.pone.0208423.g007
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Also, we note that in the contrast results of WM, when A = 0.99 the contrast WM presents neg-

ative values which implies a false direction from X3->X2. This maybe because the A is large

and the stopping criteria become too loose that false positive is detected in this situation.

For the overall situation for the directional inference, the average information transfer val-

ues (over time scales) for the Henon maps are shown in Fig 9. In this figure, the average infor-

mation transfer values are plotted by color-matrices, the correspondence between the colors

and the information transfer values is shown in the color-bar. In the color-matrices, the direc-

tional inference of each lattice is from the row channel to the column channel, e.g. the (1,2)-th

lattice in the color-matrix represents the average information transfer for X1! X2. We can

see that WM indicates all the correct directions of interactions, while WPM inferences only

the direct interactions. In this study, WTE only indicates clear interaction from X1! X2,

Fig 8. The contrast WPM for the four unidirectionally coupled Henon maps with different stopping criteria

(X1-X3). This figure shows the contrast WM between X1 and X3:OWPM,X1!X3(si,e) = WPMC,X1!X3(si,e)−WPMC,

X3!X1(si,e)(i = 1,2,. . .64) with different stopping criteria and time scales. This curves with different colors represent the

contrast WPM obtained by different stopping criteria.

https://doi.org/10.1371/journal.pone.0208423.g008

Fig 9. The color-map for the average information transfer between the four unidirectionally coupled Henon maps. The

three color-graphs separately show the average WM (left), WPM (middle) and WTE (right) information transfer for the four

unidirectionally coupled Henon maps. The direction of each lattice is read from the row channel to the column channel. In

this figure, WM indicates all correct interactions from Xi−>Xj where i<j, WPM indicates only the direct directions Xi−>Xi

+1,i = 1,2,3, while WTE indicates only X1->X2 and other directions are failed to be detected.

https://doi.org/10.1371/journal.pone.0208423.g009
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although the average information transfer values for X3->X1 and X3->X2 are positive, but

they are too weak compared to the strength of X1->X2, and cannot be shown in this color map.

An example of the information transfer between X1 and X3 is shown in Figs 10 and 11. Fig

10 shows the bias reduced information transfer values for WM, WPM and WTE between X1

and X3. We can see from Fig 10 that WM presents positive information transfer for X1->X3

and zero information transfer for X3->X1. Since X1->X3 is an indirect direction of interac-

tion, and WPM is a direct measure, therefore no positive information transfer is detected by

Fig 10. Information transfer between X1 and X3 for the four unidirectionally coupled Henon maps. In this figure,

we present the bias corrected information transfer values between X1 and X3. The curves in different colors separately

show the corrected WM (red), WPM (blue) and WTE (black) information transfer between X1 and X3, which are

plotted against the different time scales.

https://doi.org/10.1371/journal.pone.0208423.g010

Fig 11. The contrast information transfer values for X1->X3 for the four unidirectionally coupled Henon maps. This

figure shows the contrast WM (red), WPM (blue) and WTE (black) information transfer between X1 and X3 at different

time scales si (i = 1,2,. . .64). WM (red) indicate the indirect information transfer from X1->X3 (positive curves), while

WPM (blue) presents strictly vanishedOWPM,X1!X3(si) for all scales, which indicates no direct information transfer

between X1 and X3. WTE (black) presents subtle but negativeOWTE,X1!X3(si) which indicates false information transfer

from X3-> X1.

https://doi.org/10.1371/journal.pone.0208423.g011
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WPM between X1 and X3. WTE presents false positiveness for X3->X1 but zeros information

transfer for X1->X3.

The contrast information transfer values for X1->X3 (OX1!X3(si),i = 1,. . .,64) are shown in

Fig 11. In this figure, WM (red) indicates the indirect information transfer from X1->X3,

while WPM (blue) indicates no direct information transfer between X1 and X3. WTE (black)

presents negative OWTE,X2!X3(si), which indicates false direction from X3->X1.

Also, we note that the information transfer values of WM and WPM decline to zero for

large time scales. This may due to many reasons. One possible reason is that when time scale

increases, the frequency and resolution decrease, details of the time series are smeared out,

hence the causal interactions become too weak to be detected. The other reason is because of

the characteristic correlation time of Henon maps [51–52]: if the time lag of Henon maps

exceeds the characteristic cross-correlation time, the directed influence disappears [54]. The

threshold of time scales may indicate the cross-correlation time of Henon maps [54]. Alterna-

tively, it may due to the full correlation between the coupled time series that if the time series

are fully correlated, the system becomes deterministic, whose values of information transfer

between the wavelet coefficients become zero. The signal correlation at certain common fre-

quencies [24, 39–43] is also be a possible reason for the vanishing causalities.

3.1.3 A system of three coupled variables. The system of three coupled variables is given

by the equations [50]:

x1;t ¼ 3:4x1;t� 1ð1 � x1;t� 1Þ
2expð� x1;t� 1

2Þ þ 0:4ε1;t

x2;t ¼ 3:4x2;t� 1ð1 � x2;t� 1Þ
2expð� x2;t� 1

2Þ þ 0:5x1;t� 1x2;t� 1 þ 0:4ε2;t

x3;t ¼ 3:4x3;t� 1ð1 � x3;t� 1Þ
2expð� x3;t� 1

2Þ þ 0:3x2;t� 1 þ 0:5x2
1;t� 1
þ 0:4ε3;t

ð18Þ

where X2!X3 is the linear interaction of the system and X1!X2 and X1!X3 are nonlinear

interactions, εi,t (i = 1,. . .,3) are Gaussian random white noises. The data of this example can

be found in S3 Dataset. The WM and WPM parameters are the same to the previous example.

The average information transfer values (over all time scales) are computed for the system

which are shown in Fig 12. In this figure, all measures correctly identify the linear (X2!X3)

and nonlinear (X1!X2 and X1!X3) interactions.

The bias corrected information transfer values are computed for each direction. The WM

and WPM information transfer for the X1->X2 are similar, and all three measures present the

correct interaction from X1->X2. We take the direction of X1->X3 as an example. The infor-

mation transfer for both X1->X3 and X3->X1 are presented in the Fig 13. In this figure, we

can see that all three measures detect the correct nonlinear interaction from X1->X3. This can

also be seen from the plot of the contrast information transfer between X1 and X3 in Fig 14.

For the interaction between X2 and X3, the contrast information transfer between X2 and

X3 is shown in Fig 15.

3.1.4 Three coupled Lorenz systems with nonlinear couplings. The three coupled

Lorenz systems with nonlinear couplings X1!X2 and X2!X3 are given by the following equa-

tions [50]:

_x1 ¼ 10ðy1 � x1Þ

_y1 ¼ 28x1 � y1 � x1z1

_z1 ¼ x1y1 �
8

3
z1

ð19Þ
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_x2 ¼ 10ðy2 � x2Þ þ kðx1 � x2Þ

_y2 ¼ 28x2 � y2 � x2z2

_z1 ¼ x2y2 �
8

3
z2

ð20Þ

Fig 12. The color-map of the average information transfer values for the system of three coupled variables. The three color-maps

show the average WM (left), WPM (middle) and WTE (right) values for the system of three coupled variables. The directed direction

of each lattice is indicated from the row channel to the column channel. Comparing the information transfer values between opposite

directions, all measures identify the correct linear (X2->X3) and nonlinear (X1->X2, X1->X3) interactions.

https://doi.org/10.1371/journal.pone.0208423.g012

Fig 13. Information transfer between X1 and X3 the nonlinear interaction X1->X3. In this figure, we present the bias

corrected WM (red), WPM (blue) and WTE (black) information transfer between X1 and X3 at different time scales si
(i = 1,2,. . .64). By comparing the strength between opposite directions, all three measures indicate the correct nonlinear

interaction from X1->X3.

https://doi.org/10.1371/journal.pone.0208423.g013
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_x3 ¼ 10ðy3 � x3Þ þ kðx2 � x3Þ

_y3 ¼ 28x3 � y3 � x3z3

_z3 ¼ x3y3 �
8

3
z3

ð21Þ

where k (k = 0,1,3,5) is the coupling strength regulates the interaction from X1!X2 and

X2!X3. All time series become completely synchronized when the coupling strengths k�8.

Fig 14. The contrast information transfer values for the nonlinear interaction X1->X3. The three curves show the

contrast WM (red), WPM (blue) and WTE (black) information transfer between X1 and X3 at different time scales si
(i = 1,2,. . .64). All three measures indicate the correct nonlinear interaction from X1->X3.

https://doi.org/10.1371/journal.pone.0208423.g014

Fig 15. The contrast information transfer values for the linear interaction X2->X3. The three curves show the

contrast WM (red), WPM (blue) and WTE (black) information transfer between X2 and X3 at different time scales si
(i = 1,2,. . .64). All measures indicate X2->X3 at small time scale si (1�i<30), and contrast values decline to zero at

middle time scales. The contrast WM keeps zero at all larger scales, while the contrast WPM rises positive again at

some large time scales. The contrast WTE fluctuates around zero level with more positive than negative values. All

three measures are able to indicate the correct linear interaction from X2->X3.

https://doi.org/10.1371/journal.pone.0208423.g015
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The WM and WPM parameters are the same to the previous example. The data of this example

can be found in S4 Dataset.

The average values of information transfer (over all time scales) for the Lorenz systems

(c = 3) are shown in Fig 16. In this figure, both WM and WPM indicate clear interactions

within each system and the cross interactions between different systems. WTE also indicates

the internal and external interaction, but with less directional manner.

Fig 17 shows the bias corrected information transfer between X1 and X2. In this figure, we

can see that the WM indicates X1->X2 at middle time scales, while WPM indicates X1->X2 at

lower time scales. WTE presents similar and subtle information transfer between X1 and X2.

Similarly, the information transfer for the indirect interaction between X1 and X3 is shown in

Fig 18.

The contrast information transfers between the systems are shown in Figs 19–24. Figs 19–

21 present the contrast information transfer between X1 and X2, in these figures, we see that

both WM and WPM give clear positive information transfers for X1->X2, while WTE pres-

ents fluctuate information transfers between X1 and X2. Similarly, Figs 22–24 present the con-

trast information transfer between X2 and X3, in these figures, both WM and WPM present

the positive contrast which indicate the correct directional inference for X2->X3, the WTE

again gives biased contrast that cannot indicate a clear direction.

3.2 Real world time series

In this section, we use two real-world data examples to demonstrate the analysis of WM and

WPM. The examples include a set of EEG data measured from experiments and a financial

data set observed from real market.

3.2.1 The reading experiment. The reading experiment is comprised of a reader and a lis-

tener whose EEG data are measured when the reader is reading a short story to the listener.

Fig 16. The color-map of the average information transfer for the three coupled Lorenz systems (k = 3). This figure shows the color-map for the average WM (left),

WPM (middle) and WTE (right) information transfer (coupling strength k = 3) over time scales. The directed direction of each lattice is indicated from the row to the

column channel. The bright diagonal blocks of WM and WPM indicate internal interaction within each system. In the WM and WPM graphs, the upper-right blocks

are comparatively brighter than the lower-left blocks, which indicates the interactions between the systems. WPM indicates only direct interactions from the first to the

second system and from the second to the third system, but no indirect interaction from the first to the third system. WTE presents similar strength of information

transfer on both directions between coupled variables.

https://doi.org/10.1371/journal.pone.0208423.g016
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This experiment has been reported in [26, 38] for information flow test. The EEG data is made

up of 10 channels for each participant, which are measured from 10 international standard

electrodes [26, 38] at 100Hz frequency. The set of EEG time series are typical nonlinear and

non-stationary [2–5]. The reader and the listener together form a “driver-responder” system.

Here, we use WM and WPM to test the information transfer for the EEG data. The data of the

reading experiment can be found in S5 Dataset.

Fig 17. Information transfer between X1 and X2. In this figure, the bias corrected WM (red), WPM (blue) and WTE (black)

information transfer between X1 and X2 are plotted at different time scales si (i = 1,2,. . .64). By comparing the strength of

information transfer between X1 and X2, WPM identifies X1->X2 at small time scales, while WM identifies X1->X2 at middle

time scales. WTE gives similar and small strength on both directions that hard to identify a clear direction for the interaction.

https://doi.org/10.1371/journal.pone.0208423.g017

Fig 18. Information transfer between X1 and X3. In this figure, the bias corrected WM (red), WPM (blue) and WTE (black)

information transfer between X1 and X3 are plotted at different time scales si (i = 1,2,. . .64). By comparing the strength between

X1 and X3, only WM identifies the indirect direction of interaction from X1->X3, WPM is a direct measure that presents zero

information transfer between X1 and X3. WTE presents almost zero information transfer between X1 and X3 with slightly

higher X3->X1 than X1->X3.

https://doi.org/10.1371/journal.pone.0208423.g018
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To view the instantaneous dynamics of the system, the entire data is split into equal-space

time windows of 4 seconds [26, 38]. The entire data contains 30 such time windows, we use

intermediate 20 consecutive time windows (from the 6th to the 25th windows) to demonstrate

the analysis. WM and WPM are supposed to detect the directed interaction from the reader to

the listener [26, 38].

Fig 25 shows the average values of information transfer (over windows and scales) for the

20 channel EEGs of reader and the listener. The color lattices indicate the magnitudes of the

average information transfer values, whose direction is read from the row channel to the col-

umn channel. In this figure, the 20x20 color-matrix are divided into two 10x10 diagonal blocks

presenting “intra-brain” interactions within the participants and two 10x10 off-diagonal

blocks presenting the “cross-brain” interactions between different participants. Here, both

WM and WPM indicate information transfer from the reader to the listener, because the

Fig 19. The contrast WM information transfer for X1!X2. The 3D surface presents the contrast WM information

transfer (OWM,X1!X2(si,k) = WMC,X1!X2(si,k)−WMC,X2!X1(si,k), i = 1,2,. . .64,k = 0,1,3,5) between X1 and X2 at

different couplings and time scales. The non-negative surface indicates clear interactions from X1!X2.

https://doi.org/10.1371/journal.pone.0208423.g019

Fig 20. The contrast WPM information transfer for X1!X2. The 3D surface presents the contrast WPM

information transfer (OWPM,X1!X2(si,k) = WPMC,X1!X2(si,k)−WPMC,X2!X1(si,k),i = 1,2,. . .64,k = 0,1,3,5) between X1

and X2 at different couplings and time scales. The non-negative surface indicates clear interactions from X1!X2.

https://doi.org/10.1371/journal.pone.0208423.g020
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upper-right block (Reader->Listener) is bit brighter than the lower-right block (Listener-

>Reader). The color-matrix of WTE is nearly symmetric, which is hard to detect a clear

direction.

To analyze the directed interaction between the reader and the listener, the contrast infor-

mation transfers for Reader!Listener are plotted in Figs 26–28. We can see from Figs 26 and

27, both WM and WPM present positive ridges for the contrast information transfer, which

indicate dominant information transfer from Reader!Listener. The WTE results as shown in

Fig 28 present fluctuant surface around the zero plane, which is hard to indicate a clear

direction.

3.2.2 Fixed incomes. The fixed incomes data are composed of 10 sovereign bond futures

issued by different countries and with different maturities. The labels of these futures are listed

as follows: CAN10 (Canadian, 10 years maturity), GER10 (German, 10 years maturity), GER5

Fig 21. The contrast WTE information transfer for X1!X2. The 3D surface presents the contrast WTE information

transfer (OWTE,X1!X2(si,k) = WTEC,X1!X2(si,k)−WTEC,X2!X1(si,k), i = 1,2,. . .64,k = 0,1,3,5) between X1 and X2 at

different couplings and time scales. The fluctuant surface around the zero plane fails to indicate a clear direction of the

interaction.

https://doi.org/10.1371/journal.pone.0208423.g021

Fig 22. The contrast WM information transfer for X2!X3. The 3D surface presents the contrast WM

(OWM,X2!X3(si,k) = WMC,X2!X3(si,k)−WMC,X3!X2(si,k), i = 1,2,. . .64,k = 0,1,3,5) between X2 and X3 at

different couplings and time scales. The positive ridge of the surface indicates the directed interaction from

X2!X3.

https://doi.org/10.1371/journal.pone.0208423.g022
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(German, 5 years maturity), GER2 (German, 2 years maturity), US15 (US, 15 years maturity),

US25 (US, 25 years maturity), US10 (US, 10 years maturity), US5 (US, 5 years maturity), US2

(US, 2 years maturity). The data is extracted from E-Signal on November 13th at 12:51 and

goes back to October 18th at 13:00, on a minute-by-minute basis and in the unit of US dollars.

We use a synchronized segment of the data to demonstrate the analysis. The data of the fixed

incomes can be found in S6 Dataset.

Financial time series are often nonlinear and non-stationary [6], we use WM and WPM to

analyze the inter dynamics between different bond futures. Fig 29 shows the average informa-

tion transfer (over time scales) for the Germany bond futures with different maturities. Both

WM and WPM indicate the information transfer from GER5->GER10, GER5->GER2, and

GER2->GER10. WTE also indicates GER5->GER10 and GER2->GER10, but with another

direction from GER2->GER5.

Fig 30 shows the average information transfer values (over time scales) for the US bond

futures. Both WM and WPM indicate the long-year US bond futures influence the short-year

Fig 23. The contrast WPM information transfer for X2!X3. The 3D surface presents the contrast WPM

(OWPM,X2!X3(si,k) = WPMC,X2!X3(si,k)−WPMC,X3!X2(si,k),i = 1,2,. . .64,k = 0,1,3,5) between X2 and X3 at

different couplings and time scales. The positive surface indicates the directed information flows from X2!X3.

https://doi.org/10.1371/journal.pone.0208423.g023

Fig 24. The contrast WTE information transfer for X2!X3. The 3D surface presents the contrast WTE

(OWTE,X2!X3(si,k) = WTEC,X2!X3(si,k)−WTEC,X3!X2(si,k),i = 1,2,. . .64,k = 0,1,3,5) for X2!X3 at different

couplings and time scales. The fluctuant sign of the surface indicates no clear direction of interactions.

https://doi.org/10.1371/journal.pone.0208423.g024
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US bond futures such as US10 and US2. WTE identifies strong influence from US5 to US25

and US15, but it fails to inference the other directions.

Fig 31 plots the average information transfer values (over time scales) between all 10-year

bond futures issued by different countries. All three measures indicate US10!CAN10, WM

also indicates GER10->US10, while WPM and WTE indicate CAN10->GER10 and

US10!GER10.

To study the dynamics at different time scales, we also compute the contrast information

transfer for the three measures, an example of the Germany bond futures is shown in Figs 32–

34.

In Fig 32, WM indicates clear interactions from GER5->GER2 (black) and GER5->GER10

(red), and fluctuant interaction between GER10 and GER2 (blue). WPM (Fig 33) also indicates

clear interaction from GER5->GER2 (black) and GER5->GER10 (red), and also GER2-

>GER10 (blue). WTE (Fig 34) indicates GER5->GER10 (red), GER2->GER10 (blue) and

GER2->GER5 (black).

Fig 25. The color-map for the average information transfer between the reader and the listener. The color-graphs separately show the

average WM (left), WPM (middle) and WTE (right) values for the 20 channel EEGs. For each lattice the directional inference is read from

the row channel to the column channel. In the color-matrices, the diagonal blocks present the “intra-brain” information transfers within

each participant, while the off-diagonal blocks present the “cross-brain” interactions across different participants.

https://doi.org/10.1371/journal.pone.0208423.g025

Fig 26. The contrast WM for Reader->Listener. The 3D surface presents the contrast WM for Reader!Listener at

different scales and time windows (OWM,R!L(si,w) = WMC,R!L(si,w)−WMC,R!L(si,w),i = 1,2,. . .64,w = 1,2,. . .,20).

https://doi.org/10.1371/journal.pone.0208423.g026
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We also examine the information transfer for each independent direction. An example of

the information transfer between Germany bond futures is shown in Fig 35. In this figure, the

three graphs separately show the directed information transfer between the three Germany

bond futures. In these graphs, we can see that both WM and WPM give higher information

transfer values for GER5->GER10, WTE presents some of the positiveness for GER5-

>GER10, but the strength of WTE is quite subtle that almost vanish. For the interaction

between GER10 and GER2, both WM and WPM indicate dominant information flows from

GER2->GER10 at middle time scales, again WTE presents subtle information transfers that

approximately vanish. In the third graph, both WM and WPM show dominant information

flow from GER5->GER2, while WTE fails to identify the interactions.

The overall results of the directed interaction for the bond futures agree with the outcomes

found by MIME [55]. The difference is that the WM and WPM can interpret the directed

interaction at multi-scales. Since the scales are related to the frequencies, one can use these

multi-scale measures to specify the interactions or time series correlation at specific scales or

Fig 28. The contrast WTE for Reader->Listener. The 3D surface presents the contrast WTE for Reader!Listener at

different scales and time windows (OWTE,R!L(si,w) = WTEC,R!L(si)−WTEC,R!L(si), i = 1,2,. . .64,w = 1,2,. . .,20).

https://doi.org/10.1371/journal.pone.0208423.g028

Fig 27. The contrast WPM for Reader->Listener. The 3D surface presents the contrast WPM for Reader!Listener

at different scales and time windows (OWPM,R!L(si,w) = WPMC,R!L(si,w)−WPMC,R!L(si,w), i = 1,2,. . .64,

w = 1,2,. . .,20).

https://doi.org/10.1371/journal.pone.0208423.g027
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frequencies, the multi-scale interpretation of information transfer may help one to find more

information from given datasets.

Discussion

In this paper, we propose two multi-scale information transfer measures, namely the WM and

WPM, which are extended from conditional mutual information measures by using MORLET

wavelet. By a series of simulation studies, the two measures are proved to be efficient and accu-

rate in directional inference, which are computational efficient and outperform the wavelet

extension of transfer entropy (WTE) in various situations. Particularly, the two measures are

very useful in real-world data analysis.

The two proposed measures have many good advantages. By using wavelet, the proposed

measures are able to inference the directed interactions at multi-scales. This not only helps to

discover more information between coupled time series, but also solves the problem for non-

stationary and discontinuous data analysis [24, 39–43]. One reason that we use MORLET

wavelet to do the measure extensions is that MORLET wavelet is believed to be closely related

to human perception and has vital applications to medicine [39–43], which may have wide-

Fig 29. The color-map for the average information transfer between the Germany bond futures. The three color-graphs present the

color-map of the average WM (left), WPM (middle) and WTE (right) information transfer between the Germany bond futures. The

direction of information flow is read from the row channel to the column channel for each lattice.

https://doi.org/10.1371/journal.pone.0208423.g029

Fig 30. The color-map for the average information transfer values of the US bond futures. The three color-graphs present the

color-map for the average WM (left), WPM (middle) and WTE (right) information transfer for the US bond futures. The direction

of interaction is read from the row channel to the column channel for each lattice.

https://doi.org/10.1371/journal.pone.0208423.g030

A wavelet extension study on information transfer measures

PLOS ONE | https://doi.org/10.1371/journal.pone.0208423 December 6, 2018 23 / 30

https://doi.org/10.1371/journal.pone.0208423.g029
https://doi.org/10.1371/journal.pone.0208423.g030
https://doi.org/10.1371/journal.pone.0208423


applications in medicine and biological data analysis e.g. EEG data analysis. The other reason

is that M. Lungarella and A. Pitti have successfully introduced MORLET wavelet to Transfer

Entropy, which is proved to be feasible in information transfer detection [24] of non-station-

ary and discontinuous data analysis. Since real-world time series are sometimes non-stationary

and discontinuous, it is necessary to have this wavelet-extension that suits for practical data

analysis.

Due to the basis of conditional mutual information measures, the proposed multi-scale

measures can have wide-applications to various data models. Information transfer measures

are a type of very useful measures. Although we note that information transfer is a different

concept from that of the causal effect [31–34], but the efficiency of directional inference and

the model-free advantage of the information transfer measures guarantee their wide-applica-

tions in various types of data analysis particularly the real-world data analysis [26].

Fig 31. The color-map for the average information transfer values of the 10-year bond futures. The three color-graphs present

the color-map for the average WM (left), WPM (middle) and WTE (right) values for the 10-year bond futures. The direction of

interaction is read from the row channel to the column channel for each lattice.

https://doi.org/10.1371/journal.pone.0208423.g031

Fig 32. The contrast WM information transfer values for the Germany bond futures. The line graphs show the

contrast WM values between the Germany bond futures at different time scales si (i = 1,2,. . .64).

https://doi.org/10.1371/journal.pone.0208423.g032
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Transfer entropy (TE) is a fundamental information transfer measure, which is a good pro-

totype for other derivative information measures. The work by M. Lungarella and A. Pitti [24]

shows the wavelet derivation of TE for non-stationary and discontinuous data analysis. How-

ever, WTE uses uniform state-space embedding vector [25–27] which is computational redun-

dant and costs long time of computation. This drawback not only affects the accuracy in

information flow detection but also limits WTE from large dataset applications.

To avoid the computational redundancy and improve the speed and accuracy, we do the

extension of wavelet on two conditional mutual information measures of mixed embeddings

[22, 29]. The two prototype measures are the MIME and PMIME, while the latter is the direct

Fig 34. The contrast WTE information transfer values for the Germany bond futures. The line graphs show the

contrast WTE values between the Germany bond futures at different time scale si (i = 1,2,. . .64).

https://doi.org/10.1371/journal.pone.0208423.g034

Fig 33. The contrast WPM information transfer values for the Germany bond futures. The line graphs show the

contrast WPM values between the Germany bond futures at different time scales si (i = 1,2,. . .64).

https://doi.org/10.1371/journal.pone.0208423.g033
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version of the former. These two measures are proved to be accurate and efficient in various

data analysis [22, 26, 29, 35–38]. They use a progressive scheme and a stopping criterion to

select only useful embedding components to be included and also to prevent false causalities

[22, 29]. This stopping criterion is used as a threshold that balances the inclusion of useful

lagged elements and the exclusion of useless lagged elements [22,26,29,38,46]. By using the

selected non-uniform state-space embedding vectors, MIME and PMIME exclude the redun-

dant components in information transfer evaluation, which not only guarantees the accuracy

but also removes the computational redundancy.

In the simulation study, the parameters used are referenced from early studies [22, 29, 24,

38, 50]. Other parameters are plausible but depend on specific type of the applications. In this

paper, we particularly studied the influence of the stopping criterion on the information trans-

fer detection. The stopping criterion A is the proportionality of the conditional mutual infor-

mation rate between the current and the past iterative cycles. We see that appropriate choices

of this criterion help to ensure the true interactions to be identified, and false positiveness are

prevented. Via simulation studies, we found that A = 0.97 and A = 0.95 are good choices for

the stopping criterion. The stopping criterion A should not be too large or too small, because a

too large A for instance A>0.97 will cause false interactions to be detected, while a too small A

for instance A<0.95 will be too rigid for the criterion that it often fails to identify the interac-

tions that truly exist. However, the choice of the stopping criterion may also depend on the

datasets to be analyzed.

By definition of the WM and WPM methods, we should note that both WM and WPM

evaluate the information transfer between wavelet coefficients of the same scales rather than

different scales. This may be a limit of these two measures. However, the detection of informa-

tion transfers across scales will be our next stage study.

In the synthetic data analysis, we note that the information transfer declines to zero for

large time scales. Many reasons can explain for this phenomenon. One reason is that, when

time scale grows, the frequency and resolution decrease, hence details of the time series are

smeared out, the directed interaction becomes too weak to be detected. The other reason is the

Fig 35. Information transfer between the Germany bond futures. In this figure, the three graphs show the information transfer

between the three Germany bond futures (GER10, GER5, GER2). In each graph, the WM (red), WPM (blue) and WTE (black)

information transfer values are plotted against different time scales si, i = 1,2,. . .64.

https://doi.org/10.1371/journal.pone.0208423.g035
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characteristic correlation time of theoretic maps [51–52, 54]. When the time scale exceeds the

characteristic correlation time, wavelet coefficients of the coupled time series become fully cor-

related and the system becomes deterministic, information transfer measures such as MIME

and PMIME are vanished for deterministic systems [22, 29, 50]. Another reason is that, the time

scale threshold may correspond to the frequency where two time series have large mutual infor-

mation between each other, the wavelet coefficients are correlated at this frequency and the sys-

tem becomes deterministic. This concept of correlation is one of the key features of wavelet [24,

39–43] that makes WM and WPM special in this case. We are interested to make the bold

hypothesis that the WM and WPM may be able to inference the cross-correlation time between

time series and may also be able to identify the common frequencies for signal correlations.

Conclusion

In this paper, we have proposed two multi-scale information transfer measures, namely the

WM and WPM, which are the MORLET wavelet extension of conditional mutual information

from mixed embedding measures. Both measures are model-free and accurate in information

transfer detection of various datasets. By using non-uniform state-space embeddings, both

WM and WPM are computational efficient which outperform WTE in both accuracy and

speed. Due to the nature of wavelet, the proposed measures may have wide-applications

including also non-stationary and discontinuous data analysis.
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