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Structural crystallography aims to provide a three-dimen-

sional representation of macromolecules. Many parts of the

multistep process to produce the three-dimensional structural

model have been automated, especially through various

structural genomics projects. A key step is the production of

crystals for diffraction. The target macromolecule is combined

with a large and chemically diverse set of cocktails with some

leading ideally, but infrequently, to crystallization. A variety of

outcomes will be observed during these screening experiments

that typically require human interpretation for classification.

Human interpretation is neither scalable nor objective,

highlighting the need to develop an automatic computer-

based image classification. As a first step towards automated

image classification, 147 456 images representing crystalliza-

tion experiments from 96 different macromolecular samples

were manually classified. Each image was classified by three

experts into seven predefined categories or their combina-

tions. The resulting data where all three observers are in

agreement provides one component of a truth set for the

development and rigorous testing of automated image-

classification systems and provides information about the

chemical cocktails used for crystallization. In this paper, the

details of this study are presented.
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1. Introduction

One of the major bottlenecks in the process of going from

target to structure is crystallization. The Hauptman–Wood-

ward Medical Research Institute (HWI) provides a high-

throughput crystallization screening (HTS) service for the

structural genomics and biological crystallography community.

Macromolecular samples are screened against 1536 chemically

diverse cocktails (Luft et al., 2003) using the microbatch-

under-oil technique (Chayen et al., 1992). Each of the 1536

experiments are imaged before the macromolecular sample is

added, immediately after the sample is added and then in

weekly intervals for four weeks. Since its inception in 2000, the

HWI HTS facility has screened >10 000 macromolecular

samples, generating over 90 million images.

Currently, the interpretation of images is carried out

manually. This is a necessary but time-consuming process that

causes a major ‘bottleneck’ in the crystallization-screening

pipeline. There have been a number of efforts to automate the

image analysis of crystallization outcomes. Many of these

efforts emphasize the identification of several specific cate-

gories of outcomes related to crystallization leads (Zuk &

Ward, 1991; Cumbaa et al., 2003; Miyatake et al., 2005; Bern et



al., 2004; Mayo et al., 2005; Berry et al., 2006; Walker et al.,

2007; Cumbaa & Jurisica, 2005; Wilson & Main, 2000; Wilson,

2002; Kawabata et al., 2006).

We are also developing image-analysis software but taking a

complementary approach. The majority of crystallization-

screening experiments in our laboratory have an outcome that

can be classified as either clear or precipitate. If the clear and

precipitate conditions could automatically be identified then

they could be eliminated from the set of images that require

classification. Eliminating these outcomes would significantly

reduce the number of images and would reduce the bottleneck

in the crystallization-screening pipeline, making the human or

machine image-analysis problem more manageable. As a

result, more truth data can be generated, which will lead to

better automated classifiers. This culling of clear and precipi-

tate outcomes provides a subset of images for which more

focused classification software could be developed. Adding

credence to this approach is the ability of previous studies to

assign images to these two classes with high accuracy (Cumbaa

& Jurisica, 2005). As an initial step in the development of fully

automated image analysis, we have established a training set

of 147 456 manually classified images of crystallization

experiments. These images depict the outcomes from a group

of 96 macromolecules with a wide range of physical properties.
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Figure 2
Screenshot of the MacroScope visualization software, displaying 96 crystallization images at a time, overlaid with a magnified scoring window.

Figure 1
Graph showing the number of macromolecules used in the study as a
function of molecular weight.



The cocktails used to screen these macromolecules can be

divided into three groups: concentrated salts, polyethylene

glycols (PEGs) and commercial screens. The salts and PEGs

(groups 1 and 2) were constructed using an incomplete

factorial design (Audic et al., 1997) and are buffered with

100 mM concentrations of CAPS (pH 10.0), TAPS (pH 9.0),

Tris (pH 8.0), HEPES (pH 7.5), MOPS (pH 7.0), MES (pH

6.0), sodium acetate (pH 5.0) and sodium citrate (pH 4.0).

Group 1, highly soluble salts (262 cocktails), includes 36

different salts (11 cations and 14 anions) at �30%, �60% and

�90% saturation, buffered as described. Group 2, PEG/salt

(722 cocktails), includes five different molecular-weight PEGs,

20, 8, 4, 1 kDa and 400 Da, combined with 35 salts at 100 mM

concentration, also buffered as described. Group 3 consists of

commercial screens (552 cocktails). This comprises Hampton

Research Natrix, Quik Screen, PEG/Ion, PEG Grid, Ammo-

nium Sulfate Grid, Sodium Chloride Grid, Crystal Screen HT,

Index and SaltRx screens. For historical reasons, the first 22

cocktails from Hampton Research Crystal Screen Cryo are

distributed within groups 1 and 2. These and other occur-

rences of Hampton Research cryocondition cocktails serve as

a control during the experimental process.

By using images from a screen that encompasses most of the

typical conditions used for crystallization, a comprehensive set

of outcomes is obtained. The classified training set provides

broad and large-scale truth data for training and testing of

computer-based crystallization image-analysis algorithms. In

this paper, we describe the process used to create this unique

training set, evaluate the accuracy of the classifications and

present a rudimentary analysis of the classified experimental

outcomes.

2. Experimental

2.1. Samples

A group of 96 macromolecular samples representing a

distribution of molecular weights were randomly selected for

this study (Fig. 1). The samples were provided by 89 inde-

pendent laboratories and represent a diverse population of

macromolecular crystallization targets.

2.2. Instrumentation

The high-throughput crystallization screening laboratory,

which has been operational for a number of years, has been

described in detail elsewhere (Luft et al., 2003). Each of the 96

macromolecular samples was submitted to the screening-

laboratory pipeline. Crystallization experiments were set up in

1536-well experiment plates (Greiner BioOne, Frickenhausen,

Germany) using the microbatch-under-oil method (Chayen et

al., 1992). Each experiment plate contained a single macro-

molecule solution arrayed with an equal volume of 1536

different crystallization cocktails (400 nl total drop volume)

under mineral oil. Images were recorded using a custom-built

plate reader. The reader was constructed from a Parker

Daedal 300000 AT series 30-inch xy translation stage with

ZETA57-83 motors and a QImaging Microimager 12-bit

cooled FireWire camera (Kodak KAI-2020 sensor, 1600 �

1200 pixels), with a Nikon 12� telecentric zoom lens and 1�

coupler, controlled using software developed in-house. Images

were recorded 1 d after the addition of the protein solution

and weekly thereafter for four weeks. Images were archived in

uncompressed TIFF format, but to ease the data-handling and

computer-hardware requirements images used for the visual
classification study were converted to

JPEG format. The images were

randomly assigned into four groups

sampling the weekly reads, each group

being comprised of 24 macromolecules.

2.3. Image distribution

The 96 macromolecules chosen for the

classification generated 147 456 images,

i.e. 96 samples with 1536 images per

sample. These images were randomized

into six subsets of 16 � 1536 images and

distributed amongst eight viewers. Each

viewer received three of these six subsets

such that they classified one half of all

images. The distribution was designed so

that each image was scored by three

viewers with an equal distribution of

images among the three viewers for

cross-validation. Each scorer scored

images over a period of �4 months.

2.4. Image-scoring software

The software (MacroScope) used to

view and classify the 632 � 504 pixel
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Figure 3
Examples illustrating multiple forms of the seven classifications used in the study: clear, phase
separation, precipitate, skin, crystals, junk and unsure. Junk is used for cases with suspected
contamination in the well or liquid-handling malfunctions etc.



images was developed in-house. Images (632 � 504 pixels)

were displayed in 16 groups of 96 thumbnail images. A full-

sized view of a thumbnail was selected for closer inspection

(Fig. 2). The images were presented to the viewers with no

chemical information or other distinguishing features (as

opposed to the default mode for the program). Each image

was visually classified into seven categories: clear, phase

separation, precipitate, skin, crystals, junk and unsure (Fig. 3).

With the exception of clear, combinations (two or more) of all

other categories were allowed. The classifications were based

upon an initial analysis of a subset of images by the scorers.

They represent a balance between having too few categories

to accurately describe the outcomes and having too many

categories, which makes the scoring effort more time-

consuming, cumbersome and less accurate. A pre-defined

reference table of classified images (see supplementary

material1) was available to the scorers throughout the classi-

fication study, providing a reference set for visual comparison.

2.5. Controls

It was anticipated that visual classification of >55 000

images would take some time. As the image classification

progressed and the viewers gained experience, there was a

concern that consistency would be affected. To monitor and

address this concern, a control was established. One set of

1536 randomized images from two macromolecules that had

crystals was used to monitor both individual and collective

agreement among the viewers. All eight viewers classified this

set prior to starting the image-classification study, halfway

through the study and after the last non-control image set had

been classified.

3. Results

3.1. Consistency in classification

An analysis of the classifications from the control set of

images at the start, middle and end of the study showed that

78% of the images had classifications exactly the same at the

start, decreasing to 73% for the middle and final classification

of the control set (Fig. 4). Breaking this data down by scorer

(Fig. 5), the average agreement between scores in the first and

middle scoring of the control set is 77%, rising to 84% for the

agreement in scores between the middle and final scoring. This

change in classification over time is probably extenuated by
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Figure 4
Graph showing the percentage of scores in common between the scorers
for the control data set at the beginning, middle and end of the image-
analysis study. The average values are indicated by dashed lines. The
error bars indicate the standard deviation of the average agreement
between other scorers.

Figure 5
Graph showing the percentage of scores in common between the initial
and middle scoring of the control data set and the scores in common
between the middle and final scoring of the control data set as a function
of the scorer.

Figure 6
Graph of the distribution of 70 565 images where there was complete
agreement in the classification between three scorers. In the case of the
multiple classification phase, skin and crystal, the number of images is too
small to show on the logarithmic scale.

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: BW5257). Services for accessing this material are described at the
back of the journal.



the ability to give images multiple

classifications. For example, an

image classified as a crystal in the

first viewing may be classified as a

crystal with precipitate in the

second analysis. This would be

counted as a different result given

our deliberately strict definition

of common classifications.

3.2. Outcomes of classification

Approximately 48% (�70 000)

of the 147 456 images were

unanimously classified by three

separate viewers. The outcomes

from these classifications are

shown in Fig. 6. Of these images,

42% were classified as precipitate

only, 41% as clear and 8% as

phase separation only. When a

majority classification was con-

sidered, i.e. agreement between

two out of three viewers, 54% of

the 147 456 images were classified

as precipitate and 30% as clear. In

the minority case, one out of three

viewers, 8.3% were classified as

precipitate versus 5.7% as clear.

In the unanimously classified

images used to establish the

training set, a fraction (0.4%)

were classified as containing a

crystal, i.e. a likely lead condition.

Lead-condition hits were identi-

fied by two or more viewers for 49

of the 96 different macro-

molecules in the study, a success

rate of �51%. For unanimous

agreement between all three

viewers, the success rate fell to

�37%, i.e. 36 of 96 macro-

molecules were classified as

containing a crystal. Finally, for 92

of the macromolecules at least

one hit was identified by a single

viewer. Approximately 45 000

images are associated with cock-

tails in groups 1 and 2. These

cocktails constitute the incom-

plete factorial portion of the HWI

1536-cocktail screen and were the

focus of biochemical analysis of

crystallization trends. Out of the

total set of images attributed to

cocktails in groups 1 and 2, 46%

were classified as precipitate only,

research papers

Acta Cryst. (2008). D64, 1123–1130 Snell et al. � Visual analysis of crystallization trials 1127

Figure 7
(a) Relative distribution of phase separation, precipitate and clear results for salt conditions; (b) the
number of crystal hits observed.

Figure 8
Relative distribution of phase separation, preci-
pitate and clear results for various molecular-
weight PEGs at 20% concentration as a function
of pH.



36% as clear, 9% as phase separation only and 0.2% as

containing crystals. Group 3, the commercial screens, do not as

a collective have a true incomplete factorial sampling of

chemical space, so only limited information about trends can

be extracted from these data.

3.3. Analysis of the results

In Fig. 7(a), the relative distribution of phase separation,

precipitate and clear is shown as a function of pH for the

group 1 highly soluble salts. As the pH increases, the ratio of

clear to precipitate also increases. Phase separation appears to

have little or no correlation with pH. Crystals are distributed

throughout the conditions sampled (Fig. 7b), with no clear pH

effect. The salts have been analyzed as a function of phase

separation, precipitate and clear for pH and salt concentration

(Figs. 7c, 7d and 7e).

In Figs. 8 and 9, the group 2 PEGs have been subdivided

into 20% and 40% concentrations, respectively. For the 20%

PEG cases (Fig. 8) as the pH increases the proportion of clear

to precipitate again increases. More phase separation is

observed than in the group 1 cases, but again this phase

separation does not seem to be dependent on pH. As the

molecular weight of the PEG increases, the chance of preci-

pitation also increases. This is particularly dramatic in the case

of the 40% PEGs (Fig. 9). As the molecular weight of the PEG

increases, the ratio of clear to precipitate decreases signifi-

cantly.

3.4. Crystals

The group 1 conditions that produced crystals are shown in

Fig. 7(b). The group 2 conditions that produced crystals for the

20% and 40% PEG conditions are shown in Fig. 10. This group

comprises 136 crystals seen in over 70 000 images, repre-

senting 0.2% of the images. These results suggest that the

lower concentration of PEG (20%) supports crystallization

with a reduced dependence on pH. As will be addressed in x4,

this observation is misleading and is likely to be caused by the

limited number of crystals contained within the sample data.

4. Discussion and concluding
remarks

The classification of images

showing the results of crystal-

lization experiments can vary

significantly between viewers and

between samples. While it is easy

to agree on cases where a large

well defined crystal is seen or

where the drop is completely

clear, the task becomes more

difficult where a precipitate has

microcrystals within it, a phase

separation produces small

features that make it harder to

distinguish from potential crystals

or ‘something’ is seen within an

otherwise clear drop. The task can

also be affected when a macro-

molecule produces very few

potential hits and standards can

slip for the classification of a lead.

Similarly, for a macromolecule

that shows hits in many condi-

tions, the criteria can subcon-

sciously become stricter. Our

control experiment enabled us to

investigate this phenomenon.

Over 48% of the full 147 456

images were classified identically

by three viewers. Given that seven

different categories were avail-

able and multiple classifications

were allowed for every case

except for clear, this represented
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Figure 9
Relative distribution of phase separation, preci-
pitate and clear results for various molecular-
weight PEGs at 40% concentration as a function
of pH.



a remarkable level of agreement. The viewers represented

varied expertise in crystallization, with one trained as part of

the experiment and others with many years of crystallization

experience. There was no relationship between experience

and agreement of classification in the control data set (data

not shown). When the majority scores were considered, 30%

of the 147 392 images were classified as clear and 54% as

precipitate; in the minority case these values dropped to 5.7%

and 8.3%, respectively. It seems that unanimous classification

of a clear drop is easier than for a precipitate. The choice to

allow multiple outcomes was taken at the outset of the study

as previous images showed many cases where a single outcome

inadequately described the result. This was true with the

images viewed in this study; we do not know how the results

would be influenced if only a single outcome was allowed or if

the classifications could be weighted by the viewer.

A large number of images from the study were classified as

either precipitate or clear (�83%), with similar proportion for

each of the two classes. This is not surprising given that the

crystallization screen is designed to bracket potential crystal-

lization conditions that lie in between precipitate and clear.

Automated identification of just two categories, clear and

precipitate, would eliminate

�83% of the images, leaving only

�17% to be categorized by

further more intensive image-

analysis techniques.

It was obvious that the ratio of

clear to precipitate for the group 2

PEG results decreased as the pH

increased. This was particularly

apparent for the low-molecular-

weight PEGs. With increasing

PEG molecular weight, precipi-

tate started to dominate the

outcomes. At 40% PEG concen-

tration, the predominant outcome

of the PEG 4K–20K examples

was precipitate. Analyzing the

crystal results (Fig. 10), it would

seem that this precipitation was

an indication that the PEG

concentration was too high and

precipitation rather than crystal-

lization was being promoted. The

number of crystal samples in the

data was small and in a

companion analysis of crystals

resulting from 269 macro-

molecules supplied by the struc-

tural genomics community (Snell

et al., 2008) the data indicated

exactly the opposite: regions

showing increased precipitation

were correlated with those where

crystallization was more likely to

occur.

The main aim of this study was to provide a large and broad

training and test set of classified images for the development

of image-analysis techniques. The data set provides a large

number of labeled images representing typical crystallization

outcomes for a biochemically diverse collection of macro-

molecules. The results are limited by the low frequency of

crystal examples observed. The images that were classified

identically by three viewers were used to form a training set

and the images that had divergent classifications were used to

form a set of problem images. As mentioned above, a

companion study was performed in which crystal hits were

identified from 269 macromolecules and the images were

extracted (Snell et al., 2008). These crystal images have been

combined with the images from the training set developed

here to supplement the sparsely populated crystal category.

These data are now being used to develop software for image

classification. The truth data set supplemented with crystal

outcomes is available for other developers on request.

The HWI high-throughput crystallization laboratory is a

unique resource. Since its inception, every macromolecule that

has come through the laboratory has been consistently

screened and the results have been imaged and archived
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Figure 10
Relative distribution of crystal results for
various molecular-weight PEGs at 20% and
40% concentration as a function of pH.



together with biochemical information. Screening has taken

place using an incomplete factorial sampling of chemical space

combined with commercial screens that have evolved over the

years. The laboratory has acted as a service to the general

biological crystallization community in addition to screening

samples from a number of structural genomics centers. To

date, over 10 000 macromolecules have been screened by the

laboratory using a consistent protocol. This has generated

over 15 million crystallization experiments with 90 million

associated images. The macromolecules screened in the

laboratory are from a biochemically diverse population. The

development of automated image analysis, combined with

biochemical data from the macromolecules and the incom-

plete factorial approach used to design the cocktails from the

outset, provides a rich source of data, the analysis of which will

provide a unique insight into crystallization. The establish-

ment of this training set represents an initial but major step in

this direction.
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