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We examined whether reversal of high fat diet, stimulating weight loss, compared to two treatments previously shown to have
beneficial effects, could improve glucose utilization and peripheral neuropathy in animalmodels of obesity and type 2 diabetes. Rats
were fed a high fat diet and treated with a low dose of streptozotocin to create models of diet induced obesity or type 2 diabetes,
respectively. Afterwards, rats were transferred to a normal diet or treated with enalapril or dietary enrichment with menhaden
oil for 12 weeks. Obesity and to a greater extent type 2 diabetes were associated with impaired glucose utilization and peripheral
neuropathy. Placing obese rats on a normal diet improved glucose utilization. Steatosis but not peripheral neuropathy was improved
after placing obese or diabetic rats on a normal diet. Treating obese and diabetic rats with enalapril or a menhaden oil enriched diet
generally improved peripheral neuropathy endpoints. In summary, dietary improvement withweight loss in obese or type 2 diabetic
rats was not sufficient to correct peripheral neuropathy. These results further stress the need for discovery of a comprehensive
treatment for peripheral neuropathy.

1. Introduction

The goal of these studies was to determine whether replacing
the high fat diet with a normal diet would improve glucose
utilization and/or peripheral neuropathy in diet induced
obese or type 2 diabetic rats. Efficacy of reversal of the high
fat diet on these endpoints was compared to two distinct
treatments that had previously been found to have beneficial
effects: angiotensin converting enzyme inhibitor, enalapril,
and dietary enrichment with omega-3 (n-3) polyunsaturated
fatty acids derived from menhaden (fish) oil a natural source
of eicosapentaenoic acid and docosahexaenoic acid [1–17].
The two ratmodels used in these studieswere the diet induced
obese and type 2 diabetic rat models. We previously demon-
strated that diet induced obese rats develop whole body
insulin resistance and sensory neuropathy associated with

reduced sensory nerve conduction velocity, thermal hypoal-
gesia, and decreased intraepidermal nerve fiber density in the
skin of the hindpaw [18]. To model type 2 diabetes we used
the high fat fed/low dose streptozotocin treated rat model.
We previously characterized the progression of neuropathic
deficits in this model that included severe insulin resistance
compared to diet induced obesity rats and a decrease inmotor
and sensory nerve conduction velocity as well as deficits
associated with thermal nociception [19–21]. Rats fed a high
fat diet do not become hyperglycemic, presumably due to
compensatory hyperinsulinemia [21]. However, treating diet
induced obese rats with a low dose of streptozotocin damages
insulin producing 𝛽-cells so that hyperglycemia develops
even though insulin levels are similar or even higher than in
normal fed control rats [19, 21]. The diabetes in these rats is
analogous to the development of human type 2 diabetes when
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the decline in hyperinsulinemia is not able to compensate
for insulin resistance and results in the development of
hyperglycemia [19]. In our hands this rat models late stage
type 2 diabetes [21].

Obesity is considered to be a contributing factor to
insulin resistance and type 2 diabetes [22–25]. The question
being addressed is whether replacing the high fat diet of
a rat model with diet induced obesity or type 2 diabetes
with a normal diet would improve insulin resistance and/or
peripheral neuropathy. It has been shown that humans and
animal models of prediabetes and insulin resistance have
sensory neuropathy like deficits [1, 21, 26–29]. Results from
dietary correction were compared to the effect of treatment
with enalapril or enrichment of the diet with menhaden oil.
In previous studies we have found that both enalapril and
menhaden oil enrichment are effective treatments for obesity
and/or diabetes related neural deficits [1–5, 15, 21].

2. Materials and Methods

Unless stated otherwise all chemicals used in these studies
were obtained from Sigma Chemical Co. (St. Louis, MO).

2.1. Animals. Male Sprague-Dawley (Harlan SpragueDawley,
Indianapolis, IN) rats 10-11 weeks of age were housed in
a certified animal care facility and food (Harlan Teklad,
#7001, Madison, WI) and water were provided ad libitum.
All institutional (approvalACURF#1290202) andNIHguide-
lines for use of animals were followed. All possible steps
were taken to avoid animal suffering during the course of
these experiments. At 12 weeks of age rats were separated
into nine groups. Eight of these groups were placed on a
high fat diet (D12451 (45% kcal as fat, 4.7 kcal/g); Research
Diets, New Brunswick, NJ), which contained 24 gm% fat,
24 gm% protein. and 41 gm% carbohydrate with the primary
source of the increased fat content being lard. The remaining
group was maintained on a normal diet (Harlan Teklad,
#7001, 3.0 kcal/g, Madison, WI), which contained 4.25 gm%
fat. Rats were maintained on the high fat diet for 8 weeks.
Afterwards, four of the high fat fed group of rats were treated
with streptozotocin (30mg/kg in 0.1M citric acid buffer,
pH 4.5, i.p.). Diabetes was verified 96 h later by evaluating
blood glucose levels with the use of glucose-oxidase reagent
strips (Accu-Chek, Roche Inc., Indianapolis, IN). Rats having
blood glucose level of 300mg/dl (11.1mM) or greater were
considered to be diabetic.These rats as well as the four groups
of high fat fed rats that were not treated with streptozotocin
weremaintained on the high fat diet for an additional 4weeks.
Afterwards, one of each of the four groups of high fat fed rats
and diabetic rats were placed on the normal diet (obese and
diabetic reversal groups), treated with enalapril (500mg/kg
in the high fat diet, obese and diabetic enalapril groups) or
treated withmenhaden oil by replacing 50% of the fat derived
from lard in the high fat diet with menhaden oil (obese and
diabetic menhaden oil groups) [1, 30]. The other group of
high fat fed rats and diabetic rats remained on the standard
high fat diet. At the time treatments were started there was
no statistical difference between the amount of high fat diet
consumed by the diet-induced obese rats and high fat fed rats

treated with a low dose of streptozotocin.The high fat fed rats
consumed 39 ± 5 g/day/kg rat and the diabetic rats consumed
45 ± 4 g/day/kg rat. The amount of diet consumed did not
change when enalapril was added to the high fat diet or when
the high fat diet was enriched with menhaden oil. Therefore,
for these studies the diet-induced obese rats and diabetic rats
received about the same amount of treatment.

2.2. Glucose Tolerance and Insulin Stimulated Glucose Uptake
by Isolated Soleus Muscle. Glucose tolerance was determined
by injecting rats with a saline solution containing 2 g/kg
glucose, i.p., after an overnight fast [1, 21]. Rats were briefly
anesthetized with isoflurane and the glucose solution was
injected. Immediately prior to the glucose injection and at 15,
30, 45, 60, 120, 180, and 240min blood samples from the tip of
the tail were taken tomeasure circulating glucose levels using
glucose-oxidase reagent strips.

2.3. Thermal Nociceptive Response. Thermal nociceptive
response in the hindpaw was measured using the Hargreaves
method as previously described [1, 21]. Briefly, the rat was
placed in the observation chamber on top of the thermal
testing apparatus and allowed to acclimate to the warmed
glass surface (30∘C) and surroundings for a period of 15min.
The mobile heat source was maneuvered so that it was under
the heel of the hindpaw and then activated, a process that
activates a timer and locally warms the glass surface; when
the rat withdrew its paw, the timer and the heat source
were turned off and the time was recorded. The heat source
goes off by default after 25 sec to avoid injury to the rat.
Following an initial recording, which was discarded, two
measurements were made for each hindpaw, with a rest
period of 5min between each measurement. The mean of
the measurements reported in sec were used as the thermal
nociceptive response.

2.4. Motor and Sensory Nerve Conduction Velocity. On the
day of terminal studies rats were weighed and anesthetized
with Nembutal i.p. (50mg/kg, i.p., Abbott Laboratories,
North Chicago, IL). Motor nerve conduction velocity was
determined as previously described using a noninvasive
procedure in the sciatic-posterior tibial conducting system
[1, 21]. The left sciatic nerve was stimulated first at the sciatic
notch and then at the Achilles tendon. Stimulation consisted
of single 0.2-ms supramaximal (8V) pulses through a bipolar
electrode (Grass S44 Stimulator, Grass Medical Instruments,
Quincy, MA). The evoked potentials were recorded from the
interosseous muscle with a unipolar platinum electrode and
displayed on a digital storage oscilloscope (model 54600A,
Hewlett Packard, Rolling Meadows, IL). Motor nerve con-
duction velocity was calculated by subtracting the distal
from the proximal latency measured in milliseconds from
the stimulus artifact of the take-off of the evoked potential
and the difference was divided into the distance between
the 2 stimulating electrodes measured in millimeters using a
Vernier caliper. Sensory nerve conduction velocity was deter-
mined using the digital nerve as described [1, 21]. Briefly, hind
limb sensory nerve conduction velocity was recorded in the
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Table 1: Effect of reversal of high fat diet, enalapril, or menhaden oil in diet-induced obese or type 2 diabetic rats on change in body weight,
nonfasting blood glucose, hemoglobin A1C, steatosis, and epididymal fat pad.

Condition Start weight
(g)

End weight
(g)

Blood glucose
(mg/dL)

Hb A1C
(%)

Steatosis
(% area)

Epididymal fat pad
(g)

Control (12) 326 ± 3 491 ± 9 149 ± 10 6.6 ± 0.4 3.0 ± 0.5 2.8 ± 0.1
Obese (11) 329 ± 3 560 ± 18a 144 ± 6 7.0 ± 0.7 5.4 ± 0.7a 5.9 ± 0.6a

Obese + Normal diet (10) 320 ± 3 496 ± 11d 133 ± 5 7.8 ± 0.8 2.7 ± 0.3d 3.1 ± 0.2d

Obese + enalapril (12) 311 ± 1 489 ± 12d 149 ± 4 6.3 ± 0.4 4.1 ± 0.6 3.3 ± 0.3d

Obese + menhaden oil (12) 312 ± 2 585 ± 12a 152 ± 9 5.8 ± 0.5 4.0 ± 0.5 5.8 ± 0.4a

Diabetic (10) 325 ± 4 493 ± 24 382 ± 20a,d 14.6 ± 1.0a,d 7.7 ± 1.2a 2.8 ± 0.3d

Diabetic + normal diet (10) 321 ± 3 413 ± 21b 418 ± 25a,b,d 11.9 ± 2.0a,b,d 3.1 ± 0.5c 1.6 ± 0.3b

Diabetic + enalapril (11) 315 ± 3 416 ± 9b,c 415 ± 23a,b,d 11.9 ± 1.6a,b,d 3.4 ± 0.8c 2.5 ± 0.1d

Diabetic + menhaden oil (11) 310 ± 4 450 ± 23b 364 ± 21a,b,d 9.5 ± 1.0a,b,c,d 5.2 ± 0.8 3.3 ± 0.5b,d

Data are presented as the mean ± S.E.M. a𝑃 < 0.05 compared to control; b𝑃 < 0.05 compared to obese matched condition; c𝑃 < 0.05 compared to diabetic;
d
𝑃 < 0.05 compared to obese. Parentheses indicate the number of experimental animals.

digital nerve to the second toe by stimulating with a square-
wave pulse of 0.05-ms duration using the smallest intensity
current that resulted in a maximal amplitude response. The
sensory nerve action potential was recorded behind the
medial malleolus. Eight responses were averaged to obtain
the position of the negative peak.Themaximal sensory nerve
conduction velocity was calculated by measuring the latency
to the onset/peak of the initial negative deflection and the
distance between stimulating and recording electrodes. The
motor and sensory nerve conduction velocity was reported
in meters per second.

2.5. Intraepidermal Nerve Fiber Density in the Hindpaw.
Immunoreactive intraepidermal nerve fiber profiles, which
are primarily sensory nerves, were visualized using confocal
microscopy. Samples of skin of the right hindpaw were fixed,
dehydrated, and embedded in paraffin. Sections (7 𝜇m) were
collected and immunostained with anti-PGP9.5 antibody
(rabbit anti human, AbD Serotic, Morpho Sys US Inc.,
Raleigh, NC) overnight followed by treatment with sec-
ondary antibodyAlexa Fluor 546 goat anti-rabbit (Invitrogen,
Eugene, OR). Profiles were counted by two individual inves-
tigators that were masked to the identity of the sample. All
immunoreactive profiles within the epidermis were counted
and normalized to epidermal length [1, 21, 31].

2.6. Physiological Markers. Nonfasting blood glucose was
determined. Hemoglobin A

1
C levels were determined using

a Glyco-tek affinity column kit (Helena Laboratories, Beau-
mont, TX). Serum samples were collected for determina-
tion of free fatty acid, triglyceride, free cholesterol, leptin,
and insulin using commercial kits from Roche Diagnostics,
Mannheim, Germany (for free fatty acids); Sigma Chemical
Co., St. Louis, MO (for triglycerides); Bio Vision, Moun-
tain View, CA (for cholesterol); ALPCO, Salem, NH (for
leptin); EMD Millipore Corp., Billerica, MA (for insulin).
The left epididymal was isolated and weight determined.
To examine steatosis, liver samples were frozen in OCT
compound (Sakura FineTek USA, Torrance, CA) in liquid

nitrogen. Liver sections, 5 𝜇m, were incubated with BODIPY
(Molecular Probes, Carlsbad, CA, USA), at a 1 : 5000 dilution
in 1% BSA for 1 h at room temperature. After washing, liver
sections were mounted using ProLong Gold antifade reagent
(Molecular Probes, Carlsbad, CA, USA) and covered with a
glass coverslip. Images were collected using Zeiss 710 LSM
confocal laser scanning microscope. Images were analyzed
for % area fraction of lipid droplets using ImageJ software
[1, 21].

2.7. Data Analysis. Results are presented as mean ± S.E.M.
Comparisons between the treatment groups and control and
nontreated high fat fed and diabetic rats were conducted
using one-way ANOVA and Bonferroni posttest comparison
(Prism software; GraphPad, San Diego, CA). A 𝑃 value of less
than 0.05 was considered significant.

3. Results

Data in Table 1 demonstrate that the beginning weight of all
the rats in the study were statistically the same. Diet induced
obese rats weighed significantly more than control rats after
24 weeks on the high fat diet. Treating diet induced obese rats
with enalapril or placing them on a normal diet for 12 weeks,
after 12 weeks of the high fat diet, resulted in diet induced
obese rats weighing about the same as control rats at the end
of the study. In contrast, the weight of diet induced obese
rats treated with a menhaden oil enriched diet was similar to
nontreated diet induced obese rats. Diabetic rats and diabetic
rats placed on the menhaden oil enriched diet weighed about
the same as the control rats at the end of the study. Diabetic
rats placed on the normal diet or treated with enalapril
trended to weigh less than the untreated diabetic rats. We
have previously reported that diet-induced obese rats and rats
made diabetic by feeding a high fat diet followed by a low
dose on streptozotocin trend to weigh less than when treated
with enalapril compared to their untreated counterparts [1,
32]. The reason for this is unknown but could be due to
an improved metabolic status in enalapril treated rats. All
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Figure 1: Effect of treatment of diet induced obese rats (a) and high fat fed/low dose streptozotocin type 2 diabetic rats (b) with normal diet,
enalapril, or menhaden oil on glucose tolerance. Glucose tolerance was determined as described in Section 2. Data are presented as the mean
± S.E.M. in mg/dl.The number of rats in each group was the same as shown in Table 1. Control rats (C), diet induced obese rats (HF), diabetic
rats (HF STZ), and rats returned to a normal diet or treated with enalapril or placed on a menhaden oil enriched diet designated as Rev, Enal,
or MO, respectively.

diabetic rats were hyperglycemic and this was not affected
by treatments. Steatosis was significantly increased in diet
induced obese rats and diabetic rats compared to control rats.
Treating diet induced obese rats or diabetic rats by placing
them on the normal diet or to a lesser extent by treating
those with enalapril or menhaden oil enriched diet reduced
the fatty liver condition. Weight of the left epididymal was
significantly increased in diet induced obese rats. Placing diet
induced obese rats on a normal diet or treating them with
enalapril but not menhaden oil corrected the left epididymal
fat pad weight toward control levels. The weight of the left
epididymal fat in diabetic rats was similar to control.

Figure 1 demonstrates that diet induced obese rats (Fig-
ure 1(a), area under the curve (AUC): 133% of control, P
< 0.05) and to a greater extent diabetic rats (Figure 1(b),
AUC: 171% of control, P < 0.05) had significantly impaired
glucose clearance compared to control rats. After 12 weeks
on a high fat diet, high fat fed rats placed on a normal diet
for 12 weeks had completely normalized glucose clearance
(Figure 1(a), AUC: 95% of control, P < 0.05 compared to diet
induced obese rats). Treating high fat fed ratswith enalapril or
menhaden oil enriched diet also improved glucose clearance
compared to diet induced obese rats but was not as efficacious
as replacing the high fat diet with a normal diet (Figure 1(a),
AUC: 113% and 118% of control, resp.). Placing diabetic rats
on a normal diet for 12 weeks, after 12 weeks of the high fat
diet and 4 weeks of hyperglycemia, had a modest effect on
glucose clearance (Figure 1(b), AUC: 144%of control,P < 0.05
compared to control rats) but the difference between diabetic
rats and diabetic rats placed on the normal diet did not reach
statistical significance. Treating diabetic rats with enalapril
or menhaden oil enriched diet had no effect on improving

glucose clearance (Figure 1(b), AUC: 167% and 163%, resp., P
< 0.05 compared to control rats).

Data in Table 2 demonstrate that feeding rats a high fat
diet to induce obesity or subsequent treatment by placing
obese rats on a normal diet or treating them with enalapril
or menhaden oil enriched diet did not significantly change
serum levels of free fatty acids, triglycerides, or cholesterol.
In diabetic rats, serum free fatty acid, triglyceride, and
cholesterol levels were all significantly increased compared
to control rats. Placing diabetic rats on a normal diet or
treating them with enalapril or menhaden oil enriched diet
lowered serum lipid levels compared to untreated diabetic
rats. Serum leptin levels were significantly increased in diet
induced obese rats compared to control rats (Table 2). Placing
diet induced obese rats on a normal diet or treating themwith
enalapril lowered serum leptin levels. In contrast, leptin levels
remained significantly elevated when diet induced obese
rats were treated with a diet enriched with menhaden oil.
Leptin levels were unchanged in diabetic rats and diabetic
rats placed on a normal diet or treated with enalapril or
diet enriched with menhaden oil. Overall, serum leptin levels
mirrored the change in the epididymal fat pad weight. This
was expected since leptin is mainly produced by adipose
tissue and its circulating levels correlate with the amount
of body fat [33]. Serum insulin levels appeared lower in
diabetic rats compared to control or diet induced obese rats
but the difference was not significant. Treating diet induced
obese rats with a diet containing enalapril or enriched with
menhaden oil caused a significant increase in serum insulin
levels compared to control or diet induced obese rats. There
was a trend toward increased insulin levels in serum of
diabetic rats placed on a normal diet or treated with enalapril
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Table 2: Effect of reversal of high fat diet, enalapril, or menhaden oil in diet-induced obese or type 2 diabetic rats on nonfasting serum free
fatty acids, triglycerides, cholesterol, leptin, and insulin levels.

Condition Free fatty acids
(mmol/L)

Triglycerides
(mg/dL)

Cholesterol
(mg/mL)

Leptin
(ng/mL)

Insulin
(ng/mL)

Control (12) 0.20 ± 0.03 85 ± 8 3.0 ± 0.5 11.1 ± 1.1 4.3 ± 0.8
Obese (11) 0.20 ± 0.05 94 ± 8 4.1 ± 0.3 38.9 ± 5.8a 4.5 ± 0.8
Obese + normal diet (10) 0.16 ± 0.03 94 ± 13 3.6 ± 0.5 10.4 ± 0.8d 3.8 ± 0.7
Obese + enalapril (12) 0.20 ± 0.02 83 ± 12 3.4 ± 0.3 24.8 ± 4.1 29.0 ± 2.6a,c,d

Obese + menhaden oil (12) 0.24 ± 0.02 62 ± 9 3.7 ± 0.6 65.6 ± 17.4a 19.5 ± 3.2a,c,d

Diabetic (10) 0.63 ± 0.11a,d 319 ± 59a,d 8.0 ± 2.3a 16.7 ± 8.5 0.9 ± 0.4
Diabetic + normal diet (10) 0.31 ± 0.06 232 ± 46 6.0 ± 1.0 5.2 ± 1.9 5.2 ± 1.4
Diabetic + enalapril (11) 0.48 ± 0.15 179 ± 36 3.2 ± 0.5 4.3 ± 1.2 6.7 ± 1.5b

Diabetic + menhaden oil (11) 0.29 ± 0.03 104 ± 22c 4.4 ± 0.7 16.3 ± 4.0b 5.5 ± 1.3b

Data are presented as the mean ± S.E.M. a𝑃 < 0.05 compared to control; b𝑃 < 0.05 compared to obese matched condition; c𝑃 < 0.05 compared to diabetic;
d
𝑃 < 0.05 compared to obese. Parentheses indicate the number of experimental animals.

Table 3: Effect of reversal of high fat diet, enalapril, or menhaden oil in diet-induced obese or type 2 diabetic rats onmotor and sensory nerve
conduction velocity, thermal nociception, and intraepidermal nerve fiber density.

Condition MNCV
(m/sec)

SNCV
(m/sec)

Thermal nociception
(sec)

Intraepidermal nerve fiber
(profiles/mm)

Control (12) 61.3 ± 1.3 21.0 ± 0.4 10.0 ± 0.6 15.1 ± 0.5
Obese (11) 60.4 ± 2.3 18.5 ± 0.4a 15.5 ± 0.7a 10.3 ± 0.7a

Obese + normal diet (10) 58.1 ± 2.2 19.1 ± 0.5a 13.4 ± 1.0 11.6 ± 1.0a

Obese + enalapril (12) 60.2 ± 2.6 19.7 ± 0.3 11.9 ± 0.6d 14.1 ± 0.7d

Obese + menhaden oil (12) 64.3 ± 2.9 20.4 ± 0.3d 11.3 ± 0.7d 14.1 ± 0.4d

Diabetic (10) 44.3 ± 1.6a,d 17.3 ± 0.3a 17.4 ± 1.0a 10.7 ± 0.9a

Diabetic + normal diet (10) 47.3 ± 1.4a,b,d 18.6 ± 0.4a 15.9 ± 0.9a 12.8 ± 0.8
Diabetic + enalapril (11) 48.5 ± 1.8a,b 19.0 ± 0.5 11.9 ± 0.8c 14.1 ± 0.9c

Diabetic + menhaden oil (11) 52.3 ± 1.6b,c 20.0 ± 0.4c 10.6 ± 0.6c 14.6 ± 0.9c

Data are presented as the mean ± S.E.M. a𝑃 < 0.05 compared to control; b𝑃 < 0.05 compared to obese matched condition; c𝑃 < 0.05 compared to diabetic;
d
𝑃 < 0.05 compared to obese. Parentheses indicate the number of experimental animals.

or a diet enrichedwithmenhaden oil. However, the difference
was not significant. Therefore, one possible explanation for
the beneficial effects observed with dietary improvement
and/or treatmentwith enalapril ormenhaden oil of obese and
diabetic rats is increase in serum insulin levels.

Data in Table 3 demonstrate that sensory nerve con-
duction velocity but not motor nerve conduction velocity is
significantly decreased in diet induced obese rats compared
to control rats. Placing diet induced obese rats on a normal
diet did not improve sensory nerve conduction velocity. In
contrast, treating diet induced obese rats with enalapril and
to a greater extent with a diet enriched with menhaden oil
improved sensory nerve conduction velocity. Both motor
and sensory nerve conduction velocity was significantly
decreased in diabetic rats (Table 3). Placing diabetic rats
on a normal diet did not improve motor or sensory nerve
conduction velocity. Motor and sensory nerve conduction
velocity was partially improved by treating diabetic rats with
enalapril and to a greater extent by treating diabetic rats with
a diet enriched with menhaden oil.

Sensitivity to a thermal stimulus was significantly
impaired in diet induced obese rats and diabetic rats (Table 3).
Placing diet induced obese rats on a normal diet and to a
greater extent treating them with enalapril or with a diet
enriched in menhaden oil improved thermal nociception.
Placing diabetic rats on a normal diet did not improve
thermal sensitivity compared to untreated diabetic rats. In
contrast, thermal nociception was significantly improved
when diabetic rats were treated with enalapril or with a
diet enriched in menhaden oil. Intraepidermal nerve fiber
density was significantly decreased in diet induced obese
rats and diabetic rats compared to control rats (Table 3).
Placing diet induced obese rats on a normal diet did not
significantly improve intraepidermal nerve fiber density. In
contrast, treating diet induced obese rats with enalapril or a
diet enriched with menhaden oil did significantly improve
intraepidermal nerve fiber density. Placing diabetic rats on
a normal diet and to a greater extent treating diabetic rats
with enalapril or a diet enrichedwithmenhaden oil improved
intraepidermal nerve fiber density.
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4. Discussion

The major findings from this study were that replacing
the high fat diet in diet induced obese rats with normal
diet improved glucose utilization and reduced fatty liver.
However, the neuropathic endpoints were not improved.
Placing type 2 diabetic rats on a normal diet also reduced
fatty liver and trended to improve glucose utilization but did
not correct peripheral neuropathy. In contrast, treating diet
induced obese rats or type 2 diabetic rats with enalapril and
to a greater extent with a menhaden oil enriched diet slowed
progression and/or improved peripheral neuropathy so that
at the end of the study there was a significant difference
between untreated and treated rats in most neuropathy
endpoints, although these treatments had a lesser effect on
improving glucose utilization.

Placing diet induced obese rats on a normal diet for
12 weeks, after 12 weeks of a high fat diet, induced weight
loss and at the end of the study period these rats weighed
the same as the control rats. Feeding rats a high fat diet
causes a progressive impairment in vascular and neural
function and after 24–32 weeks of a high fat diet there is a
significant decrease in sensory nerve conduction velocity and
intraepidermal nerve fiber density and thermal hypoalgesia
[18]. When the diet of rats fed high fat diet for 12 weeks was
replaced with a normal diet and analyses performed 12 weeks
later, sensory nerve conduction velocity and intraepidermal
nerve fiber density were significantly decreased. Thermal
latency was increased but was not significantly different from
either control or rats fed a high fat diet for 24 weeks. This
suggests that even after replacing the high fat diet with a
normal diet prior to a significant decrease in sensory nerve
endpoints, there is no notable improvement in peripheral
neuropathy even though glucose utilization and steatosis
were corrected [18]. Since for some of the neural endpoints
examined there was a trend toward improvement when diet-
induced obese and diabetic rats were placed on a normal
diet it is possible that neural function would have improved
further if the normal diet was allowed to continue for a
longer duration. Nonetheless, these results demonstrate that
any recovery in neural function is a slow process.

In obese patients with type 2 diabetes a year after having
undergone gastric bypass surgery there was a significant
improvement in weight, blood glucose, hemoglobin A

1
C,

and insulin resistance and the percentage of patients with
neuropathy was lower than the number of cases at baseline
[34]. Management of weight and physical activity has been
shown to prevent or delay the development of type 2 diabetes
[35, 36]. This study did not examine the combined effects of
weight loss with exercise but it has been shown that exercise
can increase the cutaneous nerve density in diabetic patients
without neuropathy and reinnervation capacity in patients
with metabolic syndrome [37, 38]. Others have shown that
moderate aerobic exercise can help disrupt the progression of
peripheral neuropathy in type 2 diabetic patients but animal
studies suggest that exercise alone cannot prevent peripheral
nerve damage from hyperglycemia [39, 40].

Our study demonstrated that the progression of the effect
of a high fat diet on neurological endpoints can be slowed

or perhaps improved by treating diet induced obese rats after
12 weeks on a high fat diet. Treating diet-induced obese rats
with a high fat diet containing enalapril or enriched with
menhaden oil normalized sensory nerve conduction veloc-
ity and intraepidermal nerve fiber density and sensitivity
[32].

Once hyperglycemia occurs reversal of neurological
deficits is more difficult [41]. In this study placing type 2 dia-
betic rats on a normal diet for 12 weeks after 12 weeks of a high
fat diet with 4 weeks of hyperglycemia corrected steatosis,
improved glucose utilization and serum lipid levels. However,
there was little improvement in neurological endpoints. As
previously reported, treating type 2 diabetic rats with a high
fat diet containing enalapril and to a greater extentwith a high
fat diet enrichedwithmenhaden oil slowed the progression or
improved diabetic neuropathy endpoints [1, 30]. In previous
studies we have shown that treating diet-induced obese
rats with enalapril or diabetic rodents with enalapril or
menhaden oil reduces oxidative and inflammatory stress and
menhaden oil is a source of production of n-3 fatty acid
metabolites that have neuroprotective properties [1, 4, 5, 15–
17, 30, 32, 42]. Replacing the high fat diet with a normal
diet was more effective than treating type 2 diabetic rats with
enalapril or menhaden oil on improving glucose utilization
and normal diet replacement or treatment with enalapril was
more effective than menhaden oil in improving steatosis.
Thus, from this study it would seem that weight loss alone
through dietary management is insufficient in delaying the
progression of diabetic neuropathy.

5. Conclusions

Complications linked to diet induced obesity such as
impaired glucose utilization and fatty liver can be improved
by reducing fat consumption and inducing weight loss.
However, this approach is less effective in improving neural
deficits. Once hyperglycemia has developed reducing fat
intake through the diet was found to still improve steatosis
but was less effective in improving glucose utilization and
diabetic peripheral neuropathy.This suggests that an effective
treatment for peripheral neuropathy associated with either
prediabetes or diabetes is needed and to be efficacious will
likely require early detection followed by a combination of
lifestyle changes, diet management, and treatments designed
to counteract the effects of hyperglycemia and hyperlipi-
demia.
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