
September 2017 | Volume 8 | Article 2241

Review
published: 01 September 2017

doi: 10.3389/fendo.2017.00224

Frontiers in Endocrinology | www.frontiersin.org

Edited by: 
Maximilian Michel,  

University of Michigan,  
United States

Reviewed by: 
Elisabeth Eppler,  

University of Basel, Switzerland  
Jon Ramsey,  

University of California, Davis,  
United States

*Correspondence:
Benjamin J. Renquist 

bjrenquist@email.arizona.edu

Specialty section: 
This article was submitted to 
Experimental Endocrinology,  

a section of the journal  
Frontiers in Endocrinology

Received: 30 January 2017
Accepted: 18 August 2017

Published: 01 September 2017

Citation: 
Geisler CE, Kentch KP and 

Renquist BJ (2017) Non-Mammalian 
Vertebrates: Distinct Models  

to Assess the Role of Ion  
Gradients in Energy Expenditure. 

Front. Endocrinol. 8:224. 
doi: 10.3389/fendo.2017.00224

Non-Mammalian vertebrates: 
Distinct Models to Assess the Role of 
ion Gradients in energy expenditure
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Animals store metabolic energy as electrochemical gradients. At least 50% of mam-
malian energy is expended to maintain electrochemical gradients across the inner 
mitochondrial membrane (H+), the sarcoplasmic reticulum (Ca++), and the plasma mem-
brane (Na+/K+). The potential energy of these gradients can be used to perform work  
(e.g., transport molecules, stimulate contraction, and release hormones) or can be 
released as heat. Because ectothermic species adapt their body temperature to the 
environment, they are not constrained by energetic demands that are required to main-
tain a constant body temperature. In fact, ectothermic species expend seven to eight 
times less energy than similarly sized homeotherms. Accordingly, ectotherms adopt low 
metabolic rates to survive cold, hypoxia, and extreme bouts of fasting that would result in 
energy wasting, lactic acidosis and apoptosis, or starvation in homeotherms, respectively. 
Ectotherms have also evolved unique applications of ion gradients to allow for localized 
endothermy. Endothermic avian species, which lack brown adipose tissue, have been 
integral in assessing the role of H+ and Ca++ cycling in skeletal muscle thermogenesis. 
Accordingly, the diversity of non-mammalian vertebrate species allows them to serve as 
unique models to better understand the role of ion gradients in heat production, metabolic 
flux, and adaptation to stressors, including obesity, starvation, cold, and hypoxia.

Keywords: ectotherm, endotherm, energy expenditure, membrane potential, mitochondrial membrane potential, 
H+ gradient, Ca++ gradient, Na+/K+ gradient

iNTRODUCTiON

The ease of genetic manipulation, the standard husbandry demands, and the well-established experi-
mental methods have resulted in rodent model predominating the obesity field. Yet, the diversity 
of non-mammalian vertebrates, including both endothermic (birds and some fish) and ectothermic 
(amphibians, reptiles, and fish) species that have adapted to a variety of environments, provides 
unique opportunities to better understand the regulation of energy expenditure. The heterogeneity 
of species and environments to which they have adapted yield an abundance of unique attributes that 
can better help us understand energy expenditure. Herein, we review research in non-mammalian 
vertebrate control of electrochemical gradients and application of this work to mammalian species.

Basal metabolic rate is seven- to eightfold higher in mammals than in similarly sized ectotherms 
maintained at 37°C (1, 2). Because ectothermic species have low levels of basal heat production, they 

Abbreviations: UCP, uncoupling protein; ANT, adenine nucleotide translocase; NADH, nicotinamine adenine dinucleotide; 
ATP, adenosine triphosphate; ADP, adenosine diphosphate.
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FiGURe 1 | Schematic representation of the Ca++ gradient at the sarcoplasmic reticulum, H+ gradient at the inner mitochondrial membrane, and Na+/K+ gradient at 
the plasma membrane. Flames indicate sites of heat generation from ion leak and non-functional adenosine triphosphate (ATP) hydrolysis. Abbreviations: SERCA, 
sarco/endoplasmic reticulum Ca++ ATPase; RYR, ryanodine receptor; SLN, sarcolipin; ETC, electron transport chain; UCP, uncoupling protein; ANT, adenine 
nucleotide translocase.
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are sensitive models to identify the role of ion flux in altering heat 
production and basal metabolic rate. For example, egg brooding 
female pythons use whole body skeletal muscle contractions to 
facilitate endothermy and maintain a body temperature 9–13°C 
above ambient temperature (3, 4). This contraction-induced 
thermogenesis increases the oxygen consumption 22 times above 
baseline (5). In rat pups (22  days), maintenance of body tem-
perature in an environment 9–13°C, colder than thermoneutral, 
increases oxygen consumption just two times above baseline (6). 
While in penguin chicks, a temperature drop of 10°C below the 
shivering threshold only increases oxygen consumption by 27%, 
while a temperature 25°C below the shivering threshold doubles 
oxygen consumption (7). Thus, the low basal metabolic rate of 
ectothermic vertebrate species allow for a uniquely sensitive 
model to perturbations in metabolic rate, while the endothermic 
bird provides a comparative model to better understand per-
turbations and adaptations that affect whole body and skeletal 
muscle energy expenditure in the absence of endothermic brown 
adipose tissue.

Herein, we review the lower vertebrate literature on energy 
expenditure with a focus on three ion gradients: the H+ gradi-
ent at the inner mitochondrial membrane, the Ca++ gradient of 
the sarcoplasmic reticulum, and the Na+/K+ gradient across the 
plasma membrane. We further apply findings from the lower 
vertebrate literature to our current understanding of mammalian 
energy expenditure and its potential application to human health.

H+ GRADieNT

The H+ gradient is maintained in the inter-mitochondrial 
membrane space, created by electron transport chain activity 

(Figure 1). This gradient is dissipated by H+ ion leak across the 
inner mitochondrial membrane, which can be exacerbated by 
uncoupling proteins (UCP) and adenine nucleotide translocases 
(ANT), or production of adenosine triphosphate (ATP) through 
ATP synthase. Accordingly, the mitochondrial density, inner-
mitochondrial membrane surface area, expression and activity of 
electron transport chain proteins, and the expression of UCPs and 
ANTs that allow for H+ leak across the inner mitochondrial mem-
brane are integral to heat production and energy expenditure.

Compared to endotherms, reptilian tissues have fewer mito-
chondria with less inner mitochondrial membrane surface area 
per mitochondria, resulting in 50% less inner mitochondrial 
membrane across which H+ can leak (1). Because the organs 
that are rich in mitochondria are smaller in ectotherms, whole 
body mitochondrial membrane surface area is four times greater 
in mammals than in reptiles of the same body size (8). The H+ 
gradient is established by electron transport chain activity and 
depressed by the release of H+ out of the inter-mitochondrial 
membrane space. With four times less membrane surface area, 
ectotherms have lower electron transport chain activity and H+ 
ion leak.

electron Transport Chain
The decreased electron transport chain activity in ectotherms is 
not a result of decreased activity of proteins integral to oxidative 
phosphorylation (2, 9). ATP synthesis, expressed as a percentage 
of mitochondrial respiration, is similar in reptiles and mammals 
at similar body temperature (2). Inner mitochondrial membrane 
cytochrome C oxidase (complex IV) content and activity is also 
similar in fish and cattle (9). Moreover, when corrected for tis-
sue protein content, cytochrome C oxidase activity is similar in 
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reptiles and mammals (10). Thus, the decreased electron transport 
chain activity in ectotherms is a result of decreased mitochondria 
numbers, mitochondrial size, mitochondrial membrane area, and 
a resulting decrease in total electron transport proteins rather 
than altered activity of the mitochondrial machinery.

The electron transport chain represents an important 
point of manipulation for energy expenditure in ectotherms. 
During hypoxia and cold exposure, electron transport chain 
activity can be depressed to accommodate the decreased cel-
lular energy demand imposed by these conditions. Thus, in 
species not dependent on internal heat production, limiting cel-
lular respiration is an adaptive response to environmental stress.  
In fact, ectothermy allows for adaptive whole body cooling and 
metabolic depression to prevent metabolic acidosis in response to 
hypoxia (11). Four months of in vivo hypoxia results in a severe 
decrease in adenosine diphosphate (ADP) stimulated respiration 
(State 3) and a decrease in ADP-independent respiration (State 4;  
H+ leak) from isolated skeletal muscle mitochondria (12). 
Hypoxia induces a characteristic rise in plasma lactate in frogs 
maintained at 7°C, while there is no change in plasma lactate in 
frogs maintained at 1.5°C (13). The rise in lactate at 7°C is a result 
of glycolytic flux exceeding the mitochondrial capacity for oxida-
tion under hypoxic conditions. In turn, frogs or toads challenged 
with hypoxia chose to reside at lower temperatures, decrease their 
metabolic rate, and limit the metabolic disturbances associated 
with a lack of oxygen (13–15). In alligators, hypoxia leads to 
hypothermia in an adaptive effort to depress metabolic demands 
(16). Long-term exposure to hypoxia and 3°C water results in 
an adaptive decrease in skeletal muscle mitochondrial oxygen 
consumption by inhibiting flux through the electron transport 
chain and limiting H+ ion leak across the inner mitochondrial 
membrane (12, 17–19). Indeed, ectothermic species exploit the 
decrease in metabolic demand that accompanies low body tem-
peratures to adapt to acute or chronic hypoxic environments (14).

Chronic hypoxia, due to a high altitude habitat, also regulates 
mitochondrial respiration. In a comparison of two closely related 
lizard species that live at different elevations, species adapted 
to high elevations had lower oxidative capacity and less ADP-
independent respiration than species that inhabit lower elevations 
(20). Thus, adaptation to chronic hypoxia increased the efficiency 
of H+ ion gradient energy capture as ATP. Of note, mitochondria 
from lizards adapted to high elevations are less able to increase 
respiration in response to an increase in incubation temperature 
(20). Suggesting that there is an adaptive cost to the tight coupling 
between the H+ ion gradient and ATP synthesis.

In endotherms, cold exposure increases electron transport 
chain activity to promote endogenous heat production. Acute, 
24 h, cold exposure in the chick increases expression of cytochrome 
C oxidase and NADH ubiquinone oxidoreductase (complex I)  
(21). Chronic cold exposure similarly increases cytochrome C 
oxidase activity as a result of increased mitochondria number and 
increased inner mitochondrial membrane area/mitochondrial 
volume (22). In small mammals, the primary thermogenic organ 
is brown adipose tissue. Chronic, 4 week, cold exposure in the tree 
shrew increases the cytochrome oxidase activity in brown adipose 
tissue to six times that observed in thermoneutral conditions (23). 
The same 4-week cold exposure increases liver cytochrome oxidase 

activity 2.7 times (23). In mice, skeletal muscle electron transport 
activity is increased by cold acclimation (24). Mice that lack UCP1 
and the thermogenic potential of brown adipose tissue, display 
an increase in skeletal muscle mitochondria to accommodate an 
increased thermogenic role for skeletal muscle (24). Together these 
studies suggest that cold exposure increases electron transport 
chain activity and mitochondrial density similarly in endothermic 
avian and mammalian systems. The necessity to use a UCP1 
knockout mouse to better assess the role of skeletal muscle in 
thermogenesis recommends that birds, which lack brown adipose 
tissue, may be better suited models to understand the role of skel-
etal muscle thermogenesis in response to environmental or dietary  
stimuli.

H+ Leak
H+ leak across the inner mitochondrial membrane uncouples the 
electron transport chain from oxidative phosphorylation, pre-
venting the capture of energy as ATP and enhancing its release as 
heat. In rodent-based studies, heat production through H+ leak is 
primarily associated with the inducible thermogenesis observed 
in brown adipose tissue. However, the leak of H+ in liver and skel-
etal muscle mitochondria has been estimated to be responsible 
for 20% of basal energy expenditure in the rat (25). In fact, it 
accounts for 50% of respiration in perfused rat skeletal muscle 
(25). By comparing the respiration rate of mitochondria collected 
from rat and frog heart in the absence of ADP, Akhmerov showed 
that H+ ion leak was six- to sevenfold greater in isolated rat mito-
chondria than in isolated frog mitochondria (26). This may be 
in part explained by the inner mitochondrial membrane surface 
area per mitochondria being larger in mammals than in reptiles 
of a similar size (1). However, it may also be due to differences in 
the H+ gradient and membrane lipid composition.

Proton leak increases with mitochondrial membrane potential 
across species. Still, at the same mitochondrial membrane poten-
tial, H+ ion leak is approximately fivefold greater in the rat than in 
the bearded dragon (2). Other ectothermic species mute H+ leak 
by maintaining a lower mitochondrial membrane potential. In the 
rainbow trout, mitochondrial proton leak at a given membrane 
potential is higher than that observed in mitochondria from rat 
or pigeon (27). This is because membranes in cold-water fish 
species have a high degree of polyunsaturated fatty acyl groups 
to maintain membrane fluidity at low temperatures. The increase 
in polyunsaturation also increases ion permeability (28). To 
limit proton leak, the rainbow trout has low electron transport 
chain activity eliciting a low mitochondrial membrane potential. 
Accordingly, total proton leak is lower in the rainbow trout than 
in the endothermic rat and pigeon. Thus, proton leak can be 
manipulated by either altering electron transport chain activity 
and mitochondrial membrane potential or by changing H+ ion 
permeability.

Although proton leak is typically associated with heat pro-
duction, increasing proton leak can also allow for metabolic 
flexibility. Accordingly, fish express UCP1, 2, and 3 (29, 30).  
In the carp, UCP1 is primarily expressed in the liver and expres-
sion is downregulated by a decrease in water temperature (30). 
The liver plays a central role in synthesizing and distributing 
glucose, ketones, and lipids to the rest of the body. Therefore, 
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an increase in water and body temperature would increase 
the metabolic demand of non-hepatic tissues and necessitate 
expression of UCP1 to regenerate FAD+ and NAD+. In line with 
increased gluconeogenic demand, hepatic phosphoenolpyruvate 
carboxykinase (PEPCK) enzyme activity, essential for greater glu-
coneogenic flux, is increased in the Antarctic eelpout in response 
to a 5°C increase in water temperature (31). Thus, the direct 
relationship between temperature and UCP1 expression may 
encourage the regeneration of hepatic FAD+ and NAD+, essential 
for flux through β-oxidation to produce the acetyl-CoA necessary 
for ketogenesis while sparing amino acid oxidation. Accordingly, 
in the fish upregulation of UCP1 is not an adaptation to increase 
hepatic heat production, but instead to promote metabolic flex-
ibility. Skeletal muscle primarily expresses UCP3 in both fish and 
rodents (30, 32). Interestingly, UCP3 is also similarly upregulated 
by fasting in both rodents and fish, while fasting increases proton 
leak from skeletal muscle mitochondria in the cane toad (15). 
As we proposed for UCP1 in liver, it has been proposed that 
this upregulation of UCP3-mediated H+ leak is essential for the 
increased reliance on fatty acid oxidation during a fast (32). Thus, 
studies of UCP regulation in fish can improve our understanding 
of UCP-mediated changes in metabolic flux without the demand 
for heat generation.

Conversely, some ectothermic fish species appear to manipulate 
H+ leak to warm-specific tissues above environmental temperature. 
Indeed, cold acclimation increases UCP1 expression in the optic 
tectum, a brain region important for sight, in the carp (33). This 
warms the brain’s optic center to maintain eyesight in cold envi-
ronments, through a mechanism similar to the Ca++ cycling-based 
heater organ in deep diving marine species (34, 35). In sharks, 
skeletal muscle endothermy is thought to increase swimming rate, 
allow for thermal niche expansion, and increase digestive enzyme 
activity and digestive system passage (36). The mako shark uses red  
muscle fibers for endothermia. Mitochondria from mako shark 
red muscle fibers and liver display increased succinate stimulated 
respiration and maintain membrane potentials that exceed that of 
mitochondria from two ectothermic sharks. Although mitochon-
dria from all of these shark species have similar levels of proton 
leak at a given membrane potential, the increased proton gradient 
in mako sharks drives H+ leak and heat production (37). Together 
these studies suggest that heat production through H+ leak may 
be used in some ectothermic species to warm specific tissues or 
maintain a set minimal body temperature required for survival.

In endotherms (birds and mammals), proton leak decreases 
with increasing body mass and explains 67% of the variability 
in standard metabolic rate (27, 38, 39). Proton leak is robust in 
birds. In fact, liver mitochondrial proton leak in all birds studied, 
including the much larger emu and goose, exceeded that of 
the rat (39). Across bird species, the ratio of monounsaturated 
fatty acids in phospholipids increases with body mass (39). The 
increase in monounsaturated fatty acyl groups may play a role in 
the decreased proton leak associated with increased body mass. 
In fact, membranes rich in monounsaturated fatty acyl groups 
are typical in ectothermic species with low levels of membrane 
ion permeability (40).

In rodents, studies aimed at understanding the endothermic 
response to cold have focused on the role of UCP1-mediated H+ 

ion leak in brown adipose tissue (41). Brown adipose tissue is 
integral to the maintenance of homeothermy in newborn infants 
(42–44). However, in humans, the passage from newborn through 
childhood and into adulthood results in a decrease in the amount 
of UCP in adipose tissue, suggestive of a reduction in metaboli-
cally active brown adipose tissue (45). The recent identification of 
brown adipose tissue depots near the clavicle in the adult human 
has spurred a resurgence in research aimed at better understand-
ing the role of brown adipose tissue in energy expenditure of 
adult humans (46, 47). Yet the relative mass of brown adipose 
tissue in the adult human is minimal (168 ± 56 cm3). Accordingly, 
animal models that lack brown adipose tissue may provide a bet-
ter understanding of the role of H+ leak in the thermogenesis of 
other tissues (48).

Birds, which lack brown adipose tissue, are uniquely suited 
to address the role of H+ leak in the endothermic response to 
environmental stimuli (cold or fasting). Avian UCP is expressed 
in skeletal muscle and increases in cold acclimated ducklings and 
penguins (49, 50). Proton leak across the inner mitochondrial 
membrane is higher in skeletal muscle from penguins that have 
been exposed repeatedly to cold water over 20 days. Teulier et al. 
observed that cold exposure of ducklings increased whole animal 
metabolic rate and ADP-stimulated oxidative phosphorylation. 
Surprisingly, despite the upregulation of avian UCP expression, 
there was no effect of cold acclimation on the efficiency of ATP 
synthesis or non-phosphorylating respiration. Accordingly, 
Teulier et  al. propose that avian UCP primarily increases heat 
production by increasing aerobic skeletal muscle metabolic flux, 
rather than enhancing H+ leak (51).

In addition to the UCPs, the ANT may encourage proton leak 
through the inner mitochondrial membrane (52). Avian ANT 
protein expression increases in response to repeated cold water 
immersion (50). Therefore, both ANT and UCP are upregulated 
in cold acclimated birds and may be integral to the maintenance 
of body temperature through upregulated skeletal muscle ther-
mogenesis. During a fast, the maintenance of body temperature 
may partially depend on mitochondrial H+ leak. Skeletal muscle 
avian UCP expression increases with glucagon treatment in 
ducklings (49). In the hummingbird, which undergoes torpor 
every night to endure an extended fast, skeletal muscle UCP 
expression increases during torpor and likely serves to help the 
bird re-warm from the torpid state (53). Thus, skeletal muscle is 
an integral site of mitochondrial proton leak, a key source of heat 
production in endotherms.

Ca++ CYCLiNG

Non-mammalian vertebrates have been integral to understand-
ing the thermogenic potential of Ca++ cycling. Both fish and 
birds use Ca++ cycling to generate body heat independent of 
locomotion. To understand the unique physiological adaptations 
that each have evolved, we must first understand the basis of the 
Ca++ cycle. Within skeletal muscle the sarco/endoplasmic reticu-
lum Ca++ ATPase (SERCA) pumps Ca++ from the cytosol into 
the sarcoplasmic reticulum against the concentration gradient, 
while hydrolyzing an ATP to ADP and inorganic phosphate. The 
hydrolysis of ATP releases some energy as heat. The remainder 
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of the energy is released as heat when Ca++ leaks from the sar-
coplasmic reticulum into the cytosol down the electrochemical 
gradient (Figure 1). This cycle is essential for calcium oscillations 
in muscle that allow for contraction.

Marlin, swordfish, and tuna all have an endothermic 
“heater” organ that raises the temperature of the brain and eye  
(35, 54–56). This heater organ is a highly vascularized, modified 
eye muscle rich in mitochondria and cytochrome oxidase activity 
(35, 54–56). By maintaining the central nervous system and eyes 
at temperatures above ambient temperature, the heater organ 
improves eye sight and central nervous system function in cold 
ambient temperatures (35, 56–58). Warming the retina improves 
temporal resolution up to 10-fold, giving these deep diving, visual 
predators a crucial advantage over prey species (56). In addition 
to being mitochondria rich (68% of total cell volume), the heater 
organ contains a great deal of sarcoplasmic reticulum rich in 
SERCA1b and the ryanodine receptor 1 (34, 55). This encourages 
heat production from ATP hydrolysis as the SERCA pumps Ca++ 
into the sarcoplasmic reticulum and additional heat production 
as that Ca++ flows through the ryanodine receptor 1 down the 
concentration gradient back into the cytosol (34). The lack of 
contractile proteins uniquely positions the heater organ to take 
full advantage of heat generation by calcium cycling without 
motor consequence (58).

Cold exposure increases basal metabolic rate in birds, rodents, 
and humans (59–62). However, unlike rodents, which rely heav-
ily on brown adipose tissue for thermogenesis, birds lack brown 
adipose tissue and rely more heavily on skeletal muscle thermo-
genesis. In the Muscovy duck, in  vivo cold exposure increases  
ex vivo skeletal muscle oxygen consumption by 25% (63). Acute 
cold exposure of ducklings increases cardiac output and directs 
blood flow toward thermogenic sites, resulting in a 130% increase 
in skeletal muscle blood flow (64), indicating that skeletal muscle 
is the primary thermogenic organ in the duckling. In fact, birds 
rely on skeletal muscle calcium cycling to maintain body tem-
perature at low environmental temperatures. Accordingly, acute 
24-h cold-exposure increases skeletal muscle Ca++ ATPase activ-
ity (21). Cold acclimation over 5  weeks in ducklings increases 
sarcoplasmic reticulum SERCA1, SERCA2, and ryanodine recep-
tor expression and activity as evidenced by increased Ca++ uptake 
and ryanodine binding (65, 66). The increase in Ca++ cycling 
leads to an increased resting metabolic rate, ATP demand, and 
oxygen consumption in cold acclimated birds (63, 67, 68). This 
is accommodated by increased expression of components of the 
electron transport chain, including cytochrome C and NADH 
ubiquinone oxidoreductase (21).

Interestingly, cold exposure stimulates lipolysis in birds, 
rodents, and humans (21, 62, 69). Mobilized lipids provide a 
source of carbons to meet this increased metabolic demand 
associated with maintaining body temperature. Accordingly, in 
the mouse, fatty acid translocase (cd36) knockout prevents the 
maintenance of body temperature in response to cold exposure 
(70). Moreover, cold acclimation in the sparrow increases pecto-
ralis cd36 protein expression by 46% (71). In addition to acting 
as a carbon source, these lipids may modulate the degree of Ca++ 
cycling. Long-chain acyl carnitines accumulate in the skeletal 
muscle of cold acclimated ducklings. Palmitoyl (16 C) carnitine 

activates Ca++ release from duckling skeletal muscle sarcoplasmic 
reticulum (72). Thus, this skeletal muscle non-esterified fatty acid 
accumulation and the potential downstream consequences are 
conserved from birds to rodents and humans (62).

Data from the partially endothermic fish species and homeo-
thermic avian species has established the thermogenic potential of 
skeletal muscle and the role of skeletal muscle calcium cycling in 
heat generation and body temperature maintenance. More recently, 
studies focused on sarcolipin (SLN), a protein that uncouples ATP 
hydrolysis from sarcoplasmic reticulum Ca++ sequestration, have 
elucidated a mechanism by which mammals use this calcium 
sequestration machinery to generate heat (73). Normally, SERCA 
hydrolyzes ATP and uses the majority of that energy to pump 
Ca++ from the cytoplasm against a concentration gradient into 
the sarcoplasmic reticulum, while releasing the remaining energy 
as heat. By decreasing Ca++ sequestration, SLN increases the heat 
released per mol of ATP hydrolyzed by more than 50% (74–76). 
The Periasamy laboratory has conducted a set of elegant studies 
to investigate the role of SLN in the response to thermogenic and 
dietary challenges (77, 78). They first showed that UCP1 knockout 
mice, which lack the thermogenic potential of brown adipose 
tissue, express more SLN in skeletal muscle (78). SLN overexpres-
sion in skeletal muscle increases oxygen consumption (77). This 
increase in skeletal muscle oxygen consumption translates to 
whole body energy metabolism, as SLN overexpressing mice lose 
weight when pair fed with wild-type mice. Furthermore, when 
challenged with a high fat diet, these SLN overexpressing mice eat 
more yet gain less body weight than wild-type mice (77). These 
findings in the mouse may translate to humans, as obesity alters 
methylation in the promoter of the ryanodine receptor 1 gene (79). 
In fact, this effect on the RYR1 promoter is the most prominent 
methylation response to obesity, most heavily affected. Moreover, 
the normal pattern of methylation can be restored with weight  
loss (79).

Fish and birds have been essential in establishing the role of 
calcium cycling and the SERCAs in energy expenditure and heat 
production. Deep water fish have developed a unique tissue with 
specified function to maintain brain and eye temperatures dur-
ing exposure to deep cold ocean waters, while endothermic birds 
establish the potential for skeletal muscle to act as a thermogenic 
organ. New research reporting that calcium cycling is important 
for body weight regulation in rodents provides an exciting new 
avenue for drug development to combat obesity. Humans and 
birds both express higher levels of SLN than mice, recommending 
that birds may be a valuable model organism for assessing the role 
of SLN in body weight regulation.

PLASMA MeMBRANe POTeNTiAL

The maintenance of the plasma membrane potential is a critical 
component of cellular homeostasis and requires the tight regula-
tion of intracellular ion concentrations. Passive ion channels and 
active transport pumps establish Na+, K+, and Cl− electrochemi-
cal gradients across the plasma membrane that are essential for 
fundamental cellular processes. Transport of molecules both into 
and out of the cell, hormone secretion, muscle contraction, and 
neuronal communication are all dependent on the maintenance 
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of resting membrane potential and utilization of these energeti-
cally favorable ion gradients. The Na+/K+ ATPase is the primary 
active pump driving cellular membrane potential (Figure 1).

Na+/K+ ATPase activity represents a major cellular energy 
demand and significant portion of resting metabolic activity. At 
the whole animal level, the Na+/K+ ATPase accounts for ~25% 
of ATP consumption in mammals (80). However, this can vary 
widely by tissue. In the liver, Na+/K+ ATPase activity constitutes 
~10% of cellular energy use, while this rises to 60% in brain and 
kidney (81). Comparing the relative contribution of energy con-
suming processes between endotherms and ectotherms, 60 and 
54% of cellular respiration is directed toward ATP production, 
of which ~13.3 and ~18.5% is consumed by the Na+/K+ ATPase 
in rat and lizard hepatocytes, respectively (2, 82). Since the res-
piration rate of rat hepatocytes is about four times that of lizard 
hepatocytes, 5.6 times more ATP is allocated toward Na+/K+  
ATPase activity.

While endotherms and ectotherms maintain similar Na+/K+ 
ATPase densities across tissue type, the molecular activity of the 
pump is four to five times higher in endotherms (83). Accordingly, 
the plasma membrane passive permeability to both Na+ and K+ is 
four- to ninefold greater in endotherms than in ectotherms at the 
same temperature (84–86). Thus, to maintain established ion gra-
dients, the leakier cell membranes of endotherms require more 
active Na+/K+ ATPase. Increased total ion flux in endotherms may 
be an evolutionary adaptation to increase heat production. The 
resulting higher activity of the Na+/K+ ATPase, in part, accounts 
for the greater level of energy expenditure in endotherms.

The lipid composition of the plasma membrane has a primary 
role in regulating Na+/K+ ATPase activity. Among ectotherms, 
the degree of membrane polyunsaturation is significantly 
correlated with Na+/K+ ATPase activity (87). In membrane 
crossover experiments, reconstitution of the Na+/K+ ATPase of 
an ectotherm (cane toad or crocodile) in the more polyunsatu-
rated membrane of an endotherm (rat or cattle) increases pump 
activity by 40–180% while reconstitution in the reverse direction 
decreases Na+/K+ ATPase activity by 40–250% (88, 89). Thus, the 
inherent properties of the plasma membrane strongly regulate 
Na+/K+ ATPase activity. Interestingly, membranes of cold water 
fish have higher levels of unsaturated phospholipids than their 
warm water counterparts (90). In carp liver slices, exposure to 
decreasing temperatures immediately inhibits the synthesis 
of saturated fatty acids and stimulates desaturase activity (91). 
Across fish species, acclimation to low temperatures increases 
the degree of membrane fatty acyl unsaturation, stimulating Na+/
K+ ATPase activity to compensate for the cold-induced decline 
in enzyme activity (92). Ectotherms adapt to temperature by 
changing membrane composition, representing a key regulatory 
mechanism by which activity of membrane-integrated enzymes, 
including the Na+/K+ ATPase, are altered to maintain membrane 
potential in the face of variable environmental conditions. Still, 
temperature changes have a more robust effect on active pump 
processes than passive ion leak, giving rise to the possibility of 
temperature disrupted ion gradients. In fact, in skeletal muscle 
of cane toads, bullfrogs, and black racer snakes, intracellular Na+ 
concentrations are higher at 20°C compared to 30°C, suggestive of 
decreased Na+/K+ ATPase activity with increasing environmental 

temperature (93). In cold-adapted species, activity of the Na+/K+  
ATPase is less temperature sensitive, limiting temperature-
dependent changes in membrane potential. In fact, the molecular 
activity of the Na+/K+ ATPase from an Antarctic octopus is 400% 
greater than that of the temperate octopus at 10°C (94).

Many ectotherms that overwinter underground or are 
exposed to prolonged water submersion have developed strate-
gies to tolerate hypoxia. Turtles can spend over half of their life 
in an overwintering state and survive sustained periods of anoxia 
(95). In the western painted turtle hepatocyte, 28% of total cel-
lular ATP is utilized by the Na+/K+ ATPase in normoxia (96). 
In response to anoxia, the Na+/K+ ATPase activity decreases by 
75%, but accounts for nearly three-fourth of total cellular ATP 
turnover. Suppressed Na+/K+ ATPase activity is partially medi-
ated by adenosine signaling which is robustly stimulated during 
anoxia (97). Ion gradients and plasma membrane potential are 
maintained during anoxia. Thus, passive ion flux must be down-
regulated in anoxia to match the decrease in active ion transport. 
In the turtle, neurons adapt to low oxygen by limiting K+ leak 
through a fivefold reduction in the open probability of Ca++ gated 
K+ channels (98). However, not all ectotherms can maintain ion 
gradients when challenged with low oxygen. In rainbow trout 
hepatocytes, an anoxia-intolerant species, cellular ATP content, 
and Na+/K+ ATPase activity are rapidly reduced by anoxia while 
K+ efflux rates exceed K+ influx up to eightfold (99). In the 
anoxia-tolerant goldfish, anoxia diminishes K+ efflux to match 
the decline in Na+/K+ ATPase activity, resulting in a net flux of 
K+ close to 0. Therefore, downregulating ion leak and allocating a 
greater percentage of total cellular ATP to the Na+/K+ ATPase 
appear to be principal strategies in maintaining membrane 
potential during metabolic arrest in anoxia-tolerant species.

This comparison between anoxia tolerant and intolerant 
fish species recommends that hypoxia-induced cellular dam-
age may be limited by inhibiting K+ efflux channels within 
cells. Indeed, hypoxia induces K+ efflux in mammalian tissues 
(100–102). In fact, inhibition of K+ efflux across the plasma 
membrane prevents neuronal apoptosis in rats subjected to 
transient middle cerebral artery occlusion to induce hypoxia 
and ischemia or in serum-starved apoptosis-induced mouse 
neocortical neurons (103). In addition, the role of K+ efflux in 
hypoxia-induced apoptosis may be used to better understand 
the resistance of cancer to hypoxia-induced apoptosis. Several 
human cancers express low levels of K+ channels, preventing 
K+ efflux, and resulting in resistance to apoptosis (104). As in 
the anoxia tolerant goldfish, this diminished K+ efflux, allows 
cancer cells to maintain a nearly normal membrane potential 
in the face of depressed Na+/K+ ATPase activity. Thus, the 
strategies developed by anoxia tolerant species may be used to 
limit hypoxia induced tissue damage caused by cardiac arrest 
or arterial occlusion, while the sensitivity of anoxia intolerant 
species may provide insight into treatments that will diminish 
the hypoxia resistance observed in cancer.

CONCLUSiON

Maintaining ion gradients demands at least 50% of mamma-
lian resting metabolic energy expenditures. By adapting body 
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temperature to the environment, ectotherms are not reliant on 
ion flux down the mitochondrial membrane H+, sarcoplasmic 
reticulum Ca++, or plasma membrane Na+/K+ gradients for internal 
heat generation. Because they are not as stringently dependent on 
the energetic costs of endogenous thermoregulation, ectotherms 
can manipulate these ion gradients to adapt to a wide range of 
environments and stressors. Like mammals, avian species are 
constrained by the demands of homeothermy. Yet, they lack 
the endothermic brown adipose tissue depots that constrain 
interpretation of rodent-based findings. In turn, having adapted 
to a range of environments, avian species provide an ideal 
comparative model to understand the regulation of ion flux to 
manipulate heat generation. The diversity of non-mammalian 
vertebrate species and environmental niches to which they have 
adapted provide unique insight into ion gradients that are lacking 
in studies of mammalian species. Ectothermic fish manipulate H+ 
and Ca++ leak to warm-specific tissues, providing ideal models to 
further investigate the regulation of ion leak. Avian species have 
been essential in establishing the importance of skeletal muscle 
mitochondrial density and Ca++ ATPase activity in thermogen-
esis. Recent work highlighting the role of SLN in mammalian 
body weight homeostasis validates the application of these avian  
studies to understand mammalian physiology. Finally, studies that 
compare the ability of anoxia tolerant and intolerant fish species to 

maintain plasma membrane potential may be applied to prevent 
the damage associated with stroke- or cardiac arrest-induced 
hypoxia and ischemia. In addition, these studies can be applied 
to exacerbate sensitivity to hypoxia in cancer. The vast number 
of lower vertebrate species and the varied environments to which 
they have adapted allow for unique research opportunities that can 
be exploited to expand our knowledge of mechanisms underlying 
metabolic flux, energy expenditure, and body weight regulation.
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