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Abstract

Mediator of IRF3 activation (MITA, also known as STING and ERIS) is an essential adaptor

protein for cytoplasmic DNA-triggered signaling and involved in innate immune responses,

autoimmunity and tumorigenesis. The activity of MITA is critically regulated by ubiquitination

and deubiquitination. Here, we report that USP49 interacts with and deubiquitinates MITA

after HSV-1 infection, thereby turning down cellular antiviral responses. Knockdown or

knockout of USP49 potentiated HSV-1-, cytoplasmic DNA- or cGAMP-induced production

of type I interferons (IFNs) and proinflammatory cytokines and impairs HSV-1 replication.

Consistently, Usp49-/- mice exhibit resistance to lethal HSV-1 infection and attenuated HSV-

1 replication compared to Usp49+/+ mice. Mechanistically, USP49 removes K63-linked ubi-

quitin chains from MITA after HSV-1 infection which inhibits the aggregation of MITA and

the subsequent recruitment of TBK1 to the signaling complex. These findings suggest a criti-

cal role of USP49 in terminating innate antiviral responses and provide insights into the com-

plex regulatory mechanisms of MITA activation.

Author summary

Mediator of IRF3 activation (MITA) is an essential adaptor protein in mediating innate

immune responses to DNA viruses. The activation of MITA requires K63-linked ubiquiti-

nation and oligomerization which promotes the recruitment of downstream kinases and

phosphorylation of transcription factors to induce expression of downstream genes. In

our study, we have discovered that the deubiquitinating enzyme USP49 interacts with and

removes K63-linked polyubiquitin chains from MITA to downregulate antiviral signaling.

USP49 deficiency results in enhanced production of antiviral cytokines and attenuated
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virus replication after HSV-1 infection in cells and in vivo. Our study thus reveals a nega-

tive feedback regulation of MITA activity and cellular antiviral responses.

Introduction

The innate immune system is the first line of defense against invading pathogens and innate

immune response to microbial species is initiated by the recognition of pathogen-associated

molecular patterns (PAMPs) by germline-encoded pattern-recognition receptors (PRRs)[1].

Viral nucleic acid including RNA, DNA and RNA-DNA hybrid constitutes classical PMAPs

that are detected by Toll-like receptors (TLRs), retinoic acid–inducible gene I protein (RIG-I)-

like receptors (RLRs) and a variety of cytoplasmic DNA sensors [2–5]. Upon binding to the

PAMPs, these PRRs recruit adaptor proteins or catalyze second messenger molecules for adap-

tor proteins activation, trigger a series of signaling cascades and eventually induce expression

of an array of downstream genes such as type I interferons (IFNs) and proinflammatory cyto-

kines to elicit antiviral immune responses.

Mediator of IRF3 activation (MITA, also known as STING and ERIS) is an adaptor protein

essential for cytoplasmic DNA-triggered signaling and host defense against HSV-1 and Listeria
monocytogenes [6–10]. Structural and biochemical studies demonstrate that MITA is activated

by binding to cyclic dinucleotides such as cyclic di-GMP which is generated by invading bacte-

ria and cyclic GMP-AMP (cGAMP) which is generated by cGAMP synthase (cGAS) upon

binding to cytoplasmic DNA either from invading DNA viruses and retroviruses or from self-

damaged genomic or mitochondrial DNA [11–18]. In addition, several studies have shown

that an array of cytoplasmic DNA sensors such as DAI, IFI16 and DDX41 directly recruit and

activate MITA in a ligand and/or cell-type specific manner and the mechanisms are less clear

[19–21]. Activated MITA undergoes oligomerization and traffics to the ER-Golgi intermediate

compartment (ERGIC) to activate the transcription factors IRF3 and NF-κB, in which iRhom2

plays an essential role [22, 23]. Activated IRF3 and NF-κB enter nucleus to initiate transcrip-

tion of a large number of downstream genes.

In addition to mediating immune responses against viruses or bacteria, MITA is also impli-

cated in autoimmunity and tumor immunity. Various gain-of-function mutants and noncod-

ing SNPs of MITA are found in patients with MITA-associated vasculopathy with onset in

infancy (SAVI) and systemic inflammatory or autoimmune diseases characterized by elevated

expression of type I IFNs, IFN-stimulated genes (ISGs) and proinflammatory cytokines [24–

27]. Ablation of MITA in Trex1-/- mice or Rnaseh2 loss-of-function mutation knock-in mice

significantly reduces systemic inflammation and lethality [28–30]. In contrast, inflammatory

responses are significantly elevated by deficiency of MITA in the model of MRL. Faslpr lupus

and 2,6,10,14-tetramethylpentadecane (TMPD)-mediated peritonitis as a result of diminished

MITA-mediated expression of suppressive molecules [31], indicating that proper activity and

availability of MITA are essential for the balance of protective immunity and excessive autoim-

munity. In addition, it has been observed that MITA is activated by tumor DNAs in APCs to

promote type I IFN induction, tumor antigen cross presentation and CD8+ T cell activation

and therapeutic activation of MITA results in plausible tumor regression [32]. However, ago-

nist-mediated abnormal activation of MITA may also contribute to induction of ISGs in

tumor cells previously linked with chemoresistance [33–35]. Thus, the activity of MITA should

be strictly regulated under physiological conditions and normalization of MITA activity may

contribute to improved outcome of anti-tumor immunity or autoimmunity.
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Various posttranslational modifications have been reported to modulate the activity of

MITA. TBK1 phosphorylates the pLxLS motif of MITA which leads to the recruitment and

subsequent phosphorylation of IRF3, whereas ULK1 phosphorylates MITA to promote its deg-

radation [36, 37]. TRIM38 and SENP2 mediate sumoylation and desumoylation of MITA

which stabilize MITA and promote the chaperone-mediated autophagy (CMA) pathway-

dependent degradation of MITA at the early and late phase of HSV-1 infection, respectively

[38]. The E3 ubiquitin ligases including RNF5, TRIM30α and TRIM29 catalyze K48-linked

ubiquitination and degradation of MITA [39–42] whereas AMFR promotes K27-linked ubi-

quitination and activation of MITA [43], which are reversed and controlled by USP18 or

USP21 and USP13, respectively [44–46]. Alternatively, MITA undergoes K63-linked ubiquiti-

nation by TRIM56, TRIM32 or MUL1 for activation [47–49]. Whether and how such a modifi-

cation of MITA is regulated remain to be investigated.

Deubiquitinating enzymes counteract with ubiquitination by cleaving poly- or mono-ubi-

quitin from target proteins and play essential roles in various physiological processes [50]. In

an unbiased screening of MITA-interacting DUBs, we have found that USP49 interacts with

MITA [45]. USP49 has been reported to deubiquitinate H2B, FKBP51, p53 and DUSP1 and

function in pre-mRNA splicing, tumorigenesis and ischemia-reperfusion-induced cell viability

[51–54]. In this study, we found that USP49 deconjugates K63-linked polyubiquitin chains

from MITA and thereby inhibits the oligomerization and subsequent recruitment of TBK1

after HSV-1 infection. Consistently, USP49 deficiency potentiates HSV-1- or cytoplasmic

DNA-triggered signaling and impairs replication of HSV-1 in vitro and in vivo. These findings

uncover a complex regulatory mechanism of MITA by USP49 to prevent excessive immune

responses and uncontrolled inflammation.

Results

USP49 interacts with MITA and inhibits MITA-mediated signaling

MITA is a critical adaptor protein involved in innate immune signaling, autoimmunity and

tumor immunity and the ubiquitination of MITA critically regulates its activation and stabili-

zation [55]. We thus speculated that DUBs-mediated deubiquitination of MITA was as equally

important. To test our hypothesis, we conducted an unbiased screening of MITA-interacting

DUBs by cotransfection and immunoprecipitation assays and found that USP49 interacted

with MITA [45]. Endogenous immunoprecipitation analysis further confirmed that there was

an association between USP49 and MITA in human monocytic THP-1 and U937 cells and

human foreskin fibroblast (HFF) after HSV-1 infection or transfection of interferon-stimulat-

ing DNA (ISD) or cGAMP (Figs 1A and S1A). Domain mapping analysis suggested that the

UCH domain of USP49 and the second transmembrane domain (aa41-110) of MITA are

responsible for their association (Fig 1B). Results from reporter assays suggested that overex-

pression of USP49 inhibited MITA- or cGAS and MITA- but not TBK1- or IRF3-mediated

activation of ISRE, whereas knockdown of USP49 potentiated MITA- but not IRF3-mediated

activation of ISRE (S1B and S1C Fig), indicating that USP49 might function at the level of

MITA to regulate innate antiviral signaling.

To further confirm the regulatory role of USP49 in cellular antiviral signaling, we generated

USP49 KO THP-1 cells by CRISPR/Cas9-mediated gene editing. As shown in Fig 1C and 1D,

knockout of USP49 in THP-1 cells significantly potentiated the expression of IFNB, IFNA4,

CCL5 and IL6 and the phosphorylation of IRF3, IκBα and TBK1 after HSV-1 infection. In con-

trast, SeV-induced IFNB, IFNA4, CCL5 and IL6 and phosphorylation of IRF3, IκBα and TBK1

were not affected by knockout of USP49 in THP-1 cells (Fig 1C and 1D). These data together

suggest that USP49 interacts with MITA and inhibits MITA-mediated signaling.
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Knockout of USP49 potentiates HSV-1-triggered signaling

To further investigate the role of USP49 in antiviral signaling in vivo, we generated USP49-de-

ficient mice by CRISPR/Cas9-mediated genome editing (S2A Fig). Results from sequencing

showed that there was a deletion of 182 bp of the third exon of Usp49 gene, which caused a

reading frame shift and led to an early translational termination of USP49 (S2B Fig). The

Usp49-/- mice bred normally with the Mendelian inheritance ratio and did not show any devel-

opmental defect until 16-week old compared to the wild-type littermates (S2B Fig). The num-

bers and percentages of various immune cells in thymus, spleen or peripheral lymph nodes

were comparable between the Usp49+/+ and Usp49-/- mice (S2C–S2E Fig). The differentiation

of Usp49-/- bone marrow cells into BMDCs and BMDMs was similar to the wild-type counter-

parts in the presence of GM-CSF and M-CSF, respectively (S2F Fig), indicating that USP49 is

dispensable for development and homoeostasis of immune cells.

We next examined virus-triggered induction of downstream genes in Usp49+/+ and

Usp49-/- cells. Interestingly, HSV-1-, cytoplasmic DNA- or cGAMP- but not SeV-induced

expression of Ifnb, Ifna4, Ifnan or Il6 and the production of IFN-β and IL-6 were enhanced in

Usp49-/- BMDCs, BMDMs and MLFs compared to the Usp49+/+ counterparts (Figs 2A–2C and
S3 and S4A). Consistent with these observations, HSV-1- but not SeV-induced phosphoryla-

tion of IRF3, IκBα and TBK1 was potentiated in Usp49-/- BMDMs and MLFs compared to the

Usp49+/+ counterparts (Figs 2D and S4B). Moreover, the replication of HSV-1 or H129-G4 (a

GFP-tagged HSV-1) [56] was suppressed in Usp49-/- BMDCs, BMDMs or MLFs compared to

the Usp49+/+ counterparts as monitored by the HSV-1 titers in the supernatants and the GFP

percentages or intensities (Fig 2E and 2F). These data together illustrate that USP49 negatively

regulates DNA virus-triggered signaling in various primary mouse cells.

Usp49-/- mice exhibit increased resistance to lethal HSV-1 infection

To investigate the function of USP49 in host defense against virus infection in vivo, we moni-

tored survival of Usp49+/+ and Usp49-/- mice after intravenous (i.v.) injection of HSV-1. As

shown in Fig 3A, Usp49-/- mice exhibited a later onset of death and a higher survival rate com-

pared to the wild-type littermates. All the wild-type mice exhibited severe lethargy and died

within 10 days. In contrast, 25% (4 out of 16) Usp49-/- mice survived after injection (Fig 3A).

Consistently, the concentrations of IFN-β and IL-6 in the sera of Usp49-/- mice were signifi-

cantly increased compared to those in the Usp49+/+ littermates 12 hours after HSV-1 infection

(Fig 3B). Furthermore, we observed that the expression of Ifnb, Il6, and Ifnan was potentiated

and the expression of HSV-1-UL30 gene was inhibited in the lungs from Usp49-/- mice com-

pared to Usp49+/+ mice at 24 hours after HSV-1 infection (Fig 3C). In addition, we analyzed

the expression of cytokines and viral titers in the brains 4 days after HSV-1 infection. The

results showed that the expression of Ifnb and Ifna4 was increased, whereas the expression of

HSV-1-UL30 gene and the replication of HSV-1 was suppressed in the brains from Usp49-/-

mice compared to those from Usp49+/+ mice (Fig 3D). Collectively, these data demonstrate

Fig 1. USP49 interacts with MITA and inhibits MITA-mediated signaling. (A) Immunoprecipitation (with anti-MITA) and

immunoblot analysis (with anti-MITA or anti-USP49) of THP-1 or U937 cells infected with HSV-1, or transfected with ISD (10 μg)

or cGAMP (4 μg) for the indicated time points. (B) Immunoprecipitation (with anti-Flag) and immunoblot analysis (with anti-

FLAG or anti-HA) of HEK293 cells transfected with plasmids encoding HA-MITA and FLAG-tagged USP49 or USP49 truncates

for 24 h or transfected with plasmids encoding FLAG-USP49 and HA-MITA or MITA truncates for 24 h. (C) qRT-PCR analysis of

IFNB, IFNA4, CCL5 and IL6 in control and USP49 KO THP-1 cells infected with HSV-1 or SeV for 0–6 h. (D) Immunoblot

analysis of phosphorylated and total IRF3, IκBα, TBK1 and Tubulin in control and USP49 KO THP-1 cells infected with HSV-1 or

SeV for 0–6 h. �P< 0.05; ��P< 0.01; ���P<0.001 (analysis of two-way ANOVA followed by Bonferroni post-test). Data are

representative of three independent experiments (mean ± S.D. in C).

https://doi.org/10.1371/journal.ppat.1007680.g001
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that loss of USP49 protects mice from HSV-1 infection by promoting the induction of type I

IFNs and proinflammatory cytokines.

The DUB activity of USP49 is required for inhibition of HSV-1-triggered

signaling

We next examined whether the enzyme activity of USP49 was required for the suppression of

antiviral signaling. The empty vector, USP49 or its enzymatic inactive mutant USP49 (C262A)

was reconstituted into Usp49-/- cells followed by HSV-1 infection. Results from qRT-PCR and

ELISA analysis showed that HSV-1-induced expression of Ifnb, Ifna4, Il6 or Ccl5 and the pro-

duction of IFN-β and CCL5 were significantly inhibited in Usp49-/- MLFs reconstituted with

USP49 but not in those reconstituted with USP49 (C262A) (Fig 4A and 4B). Moreover, we

found that HSV-1-induced phosphorylation of IRF3, IκBα and TBK1 was impaired by

Fig 2. Knockout of USP49 potentiates HSV-1-triggered signaling. (A) qRT-PCR analysis of Ifnb, Ifna4, lfnan and Il6 mRNA in Usp49+/+ and Usp49-/- MLFs (upper),

BMDCs (middle) and BMDMs (lower) left mock transfected (Lipo) or transfected with ISD45, HSV60, DNA90 for 0–6 h. (B) qRT-PCR analysis of Ifnb, IP10,and Ccl5
mRNA in Usp49+/+ and Usp49-/- MLFs (upper), BMDCs (middle) and BMDMs (lower) infected with HSV-1 for 0–6 h. (C) ELISA analysis of IFN-β and IL-6 in the

supernatants of Usp49+/+ and Usp49-/- BMDMs infected for 0–24 hours or mock transfected (Lipo) or transfected with ISD45, HSV60, DNA90 for 4–8 h. (D)

Immunoblot analysis of phosphorylation of IRF3, IκBα, TBK1, total IRF3, IκBα, TBK1 and β-Actin in Usp49+/+ and Usp49-/- MLFs (left) and BMDCs (middle) infected

with HSV-1 for 0–6 hours. qRT-PCR analysis of Usp49 mRNA in Usp49+/+ and Usp49-/- MLFs and BMDCs infected with HSV-1 for 0–6 h (right). (E) Plaque assay of

HSV-1 replication in the supernatants of Usp49+/+ and Usp49-/- MLFs, BMDCs and BMDMs infected with HSV-1(MOI of 0.4) for 1 h followed by twice PBS wash and

cultured in full medium for 60 h. (F) Flow cytometry analysis (left), microscopy imaging (right) of Usp49+/+ and Usp49-/- BMDMs infected with H129-G4 for 0–24 h.
�P< 0.05; ��P< 0.01; ���P<0.001 (analysis of two-way ANOVA followed by Bonferroni post-test). Data are representative of three independent experiments

(mean ± S.D. in A-E).

https://doi.org/10.1371/journal.ppat.1007680.g002

Fig 3. Usp49-/- mice exhibit resistance to lethal HSV-1 infection. (A) Survival (Kaplan-Meier curve) of Usp49+/+ (n = 16) and

Usp49-/- (n = 16) intravenously injected with HSV-1 (2.5×106 PFU per mouse) monitored survival for 14 days. (B) ELISA

analysis of IFN-β and IL-6 in the serum of Usp49+/+ and Usp49-/- mice(n = 3) intravenously injected with HSV-1 (2.5×106 PFU

per mouse) for 12 hours. (C) qRT-PCR analysis of Ifnb, Il6, Ifnan and HSV-1-UL30 mRNA in the lungs (n = 3) from Usp49+/+

and Usp49-/- mice intravenously injected with HSV-1 (2.5×106 PFU per mouse) for 24 hours. (D) qRT-PCR analysis of Ifnb,

Ifna4, HSV-1-UL30 mRNA and plaque assay of the brains (n = 3) from Usp49+/+ and Usp49-/- mice intranasally injected with

HSV-1 (2.5×106 PFU per mouse) for 4 days. �P< 0.05; ��P< 0.01; ���P<0.001 (two-tailed t-test). Data are representative of

three independent experiments (mean ± S.D. in B-D).

https://doi.org/10.1371/journal.ppat.1007680.g003
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reconstitution of USP49 but not USP49 (C262A) into Usp49-/- MLFs (Fig 4C). Consistently,

replication of HSV-1 was potentiated in Usp49-/- MLFs reconstituted with USP49 but not in

Fig 4. The DUB activity of USP49 is required for inhibition of HSV-1-triggered signaling. (A, B) qRT-PCR analysis of Ifnb, Ifna4,

Ifnan and Ccl5 mRNA (A), and ELISA analysis of IFN-β, Ccl5 (B) in Usp49-/- mice MLFs reconstituted with empty vector (Usp49-/- +vec),

Usp49 (Usp49-/- + Usp49) or Usp49CA (Usp49-/- + Usp49(CA)) infected with ISD45 for 0–6 hours (A), HSV-1 for 0–3 hours (A) or 0–10

hours (B). (C, D) Immunoblot (C), flow cytometry(D, upper graphs), microscopy imaging (D, lower graphs) and plaque assay (E) of

Usp49-/- mice MLFs reconstituted with empty vector (Usp49-/- +vec), Usp49 (Usp49-/- + Usp49) or Usp49CA (Usp49-/- + Usp49(CA))
infected with HSV-1 for 0–4 hours (C), 12 hours (D) or 1 hour (E). �P< 0.05; ��P< 0.01; ���P<0.001 (analysis of two-way ANOVA

followed by Bonferroni post-test). Data are representative of two (C) or three (A, B, D, E) independent experiments (mean ± S.D. in A, B,

E).

https://doi.org/10.1371/journal.ppat.1007680.g004
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those reconstituted with USP49 (C262A) as monitored by the GFP signals or HSV-1 titers in

the supernatants (Fig 4D and 4E). These data suggest that the DUB activity of USP49 is

required for inhibition of HSV-1 triggered signaling.

USP49 deconjugates K63-linked ubiquitination and aggregation of MITA

Since USP49 is a MITA-interacting DUB and its deubiquitinating enzymatic activity is

required for regulating antiviral signaling, we hypothesized that USP49 may eliminated polyu-

biquitin chains from MITA. As expected, we found that USP49 but not the enzymatic inactive

mutant USP49 (C262A) catalyzed deubiquitination of MITA in cells or in vitro (Figs 5A and
S5A). To examine the type of ubiquitin linkage on MITA that was regulated by USP49, we

transfected MITA together with wild-type ubiquitin, or their mutants either retaining a single

lysine residue (KO) or retaining all but one lysine residues (KR) in the presence or absence of

USP49 followed by deubiquitination assays. The results showed that USP49 removed K63O-

or K48R-linked but not K27O-, K48O- or K63R-linked polyubiquitin chains from MITA in

cells (S5B and S5C Fig), indicating that USP49 primarily removes K63- but not K48-linked ubi-

quitination of MITA. Consistently, we observed that USP49 inhibited K63-linked ubiquitina-

tion of MITA in cells and in vitro by using an anti-Ub(K63-specific linkage) antibody (Figs 5A
and S5A). We have previously demonstrated that USP18 recruits USP20 to remove K48-linked

polyubiquitin chains from MITA[45]. Interestingly, we found that knockdown of USP18 did

not affect USP49-mediated deubiquitinaton of MITA (S5D Fig), suggesting different regula-

tory mechanisms of K48- and K63-linked ubiquitination of MITA. We next adopted a strategy

called Tandem Ubiquitin Binding Entity (TUBE) to examine the effects of USP49 on ubiquiti-

nation of MITA [44, 57–60]. As shown in Fig 5B, Pan-Ub-TUBE- and K63-Ub-TUBE-pull-

down MITA were decreased by overexpression of USP49 but not USP49(C262A), suggesting

that K63-linked polyubiquitin-modified MITA was deonjugated by USP49.

To further substantiate the conclusion, we next examined virus-triggered ubiquitination of

MITA in the absence of USP49 and found that HSV-1 infection enhanced K63-linked ubiqui-

tination of MITA more profoundly in Usp49-/- MLFs than in the wild-type MLFs (Fig 5C and
5D). Furthermore, we found that reconstitution of USP49 but not USP49 (C262A) into

Usp49-/- MLFs inhibited HSV-1-induced K63-linked ubiquitination of MITA (Fig 5E). It has

been reported that E3 ligases promote aggregation of signaling adaptor proteins through

K63-linked ubiquitin [61]. Because USP49 removed K63-linked polyubiquitin from MITA, we

examined whether USP49 affected the aggregation of MITA. As expected, USP49 deficiency in

MLFs promoted the aggregation of MITA and reconstitution of USP49 but not USP49

(C262A) into Usp49-/- MLFs impaired the aggregation of MITA after HSV-1 infection (Fig
5F). The aggregation of MITA provides a platform to recruit kinase TBK1 which is essential

for phosphorylation of MITA and subsequent recruitment of IRF3 [36]. Consistent with this

notion, USP49 deficiency led to increased TBK1-MITA association and phosphorylation of

MITA after HSV-1 infection (Fig 5G). Together these data demonstrate that USP49 deconju-

gates K63-linked polyubiquitin chains from MITA and inhibits MITA aggregation and the

recruitment of TBK1 to the signaling platform.

Discussion

Ubiquitination and deubiquitination are reversible posttranslational modifications involved in

various biological or pathological processes [62, 63]. MITA is an adaptor protein critically

mediating innate immune signaling in response to cytoplasmic DNA challenge. The ubiquiti-

nation of MITA is essential for its function and stability which should be properly controlled

to elicit protective immunity and avoid excessive harmful immunity [55]. AMFR promotes
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Fig 5. USP49 deubiquitinates and inhibits aggregation of MITA. (A) Denature-immunoprecipitation (Denature-IP) (with anti-FLAG or IgG as a control) and

immunoblot analysis (with anti-FLAG, anti-HA, anti-K63-linked ubiquitin or anti-GFP) of HEK293 cells transfected with plasmids encoding FLAG-MITA,

HA-Ubiquitin and empty vector or GFP-USP49 or GFP-USP49 (CA) for 24 h. (B) Pulldown (with GST beads and GST-TUBEs) and immunoblot analysis (with anti-

FLAG, anti-HA or anti-GFP) of HEK293 cells transfected with plasmids encoding FLAG-MITA, HA-Ubiquitin and empty vector or GFP-USP49 or GFP-USP49 (CA)

for 24 h. (C) Denature-IP (with anti-MITA) and immunoblot analysis (anti-K63-linked ubiquitin, anti-MITA or anti-β-Actin) of Usp49+/+ and Usp49-/- MLFs infected
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K27-linked ubiquitination and activation of MITA [43], whereas RNF5, TRIM30α and

TRIM29 induce K48-linked ubiquitination and proteasomal degradation of MITA [39–42],

which is counteracted by USP13 and USP18, USP21 or EIF3S5, respectively [23, 44–46]. Multi-

ple E3 ligases including TRIM56, TRIM32 and MUL1 have been reported to promote

K63-linked ubiquitination and aggregation of MITA [47–49]. However, the counteracting

deubiquitination process is unclear. In this study, we demonstrated that USP49 interacted

with MITA and deconjugated K63-linked polyubiquitin chains from MITA after HSV-1 infec-

tion, thereby downregulating MITA activation and turning down immune responses (Fig 6).

Consistent with this notion, we found that HSV-1-induced K63-linked ubiquitination and

aggregation of MITA and subsequent recruitment of TBK1 to MITA was substantially

enhanced in USP49 deficient cells. USP49 deficiency also resulted in resistance to lethal HSV-

1 infection, enhanced phosphorylation of TBK1, IRF3 and IκBα, increased production of type

I IFNs and proinflammatory cytokines and compromised HSV-1 replication after HSV-1

infection. These findings together suggest an essential role of USP49 in the regulation of innate

antiviral signaling by modulating K63-linked ubiquitination of MITA.

MITA has been implicated in defense against RNA viruses in human cell lines such as

HEK293 and HeLa cells in a manner dependent on TRIM56- and/or TRIM32-mediated

K63-linked ubiquitination of MITA [47, 48]. However, gene knockout studies show that nei-

ther TRIM56 nor TRIM32 deficiency in mice has any obvious effects on SeV-triggered signal-

ing [64, 65]. Whether TRIM56 and TRIM32 function redundantly to ubiquitinate MITA and

regulate RNA virus-triggered signaling remains unclear. Furthermore, infection with RNA

viruses in telomerase-immortalized human foreskin fibroblasts (hTERT-BJ1) or MEFs fails to

induce ubiquitination or activation of MITA [49], indicating that K63-linked ubiquitination of

MITA is not required for innate immune signaling in response to RNA virus infection. Consis-

tent with this notion, we found that knockout of USP49 had no effect on SeV-induced phos-

phorylation of IRF3 or IκBα and expression of downstream genes in mouse cells. In this

context, it has been shown that MITA restricts RNA virus replication through inhibition of

viral mRNA translation or promotion of membrane fusion-stimulated IFN production but

independent of cGAMP-mediated dimerization or oligomerization [66, 67].

Although the direct genetic evidence of E3s that are responsible for K63-linked ubiquitina-

tion of MITA is still lacking, our data suggest that the K63-linked ubiquitination of MITA is

essential for innate antiviral responses against HSV-1 infection. In this context, it has been

reported that HSV-1 infection or cytoplasmic DNA challenge strongly induces K63-linked

ubiquitination of MITA prior to its phosphorylation and translocation in both human and

mouse cells [36]. Consistently, we found that knockout of USP49 potentiated HSV-1-induced

K63-linked ubiquitination, aggregation and phosphorylation of MITA. Our data support and

add a previously uncharacterized component in the step-wise model of MITA full activation:

(i) cGAMP binding to MITA initiates dimerization of MITA; (ii) MUL1- or USP49-mediated

balanced K63-linked ubiquitination of MITA modulates its aggregation and migration to

ERGIC to from puncta; (iii) TBK1 is recruited to the MITA aggregate platform where TBK1

phosphorylates MITA; and (iv) such a phosphorylation leads to recruitment of IRF3 and sub-

sequent phosphorylation by TBK1. However, it is so far unclear why USP49 interacts and

with HSV-1 for 0–3 h. (D) Pulldown (with GST beads and TUBE) and immunoblot analysis (anti-K63-linked ubiquitin, anti-MITA or anti-β-Actin) of Usp49+/+ and

Usp49-/- MLFs infected with HSV-1 for 0–3 h. (E) Denature-IP (with anti-MITA) and immunoblot analysis (with anti-K63-linked Ub, anti-MITA, anti-FLAG or anti-

anti-β-Actin) of Usp49-/- MLFs reconstituted with empty vector, USP49 or USP49 (CA) infected with HSV-1 for 0–3 h. (F) Native–PAGE analysis and SDS–PAGE of

the aggregation of MITA in Usp49+/+ and Usp49-/- MLFs or Usp49-/- MLFs reconstituted with empty vector, USP49 or USP49 (CA) infected with HSV-1 for 0–4 h. (G)

Immunoprecipitation (with anti-MITA) and immunoblot analysis (with anti-TBK1, anti-MITA, anti-USP49 or anti-β-Actin) MLFs infected with HSV-1 for 0–4 h. Data

are representative of at least three independent experiments.

https://doi.org/10.1371/journal.ppat.1007680.g005
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counteracts K63-linked ubiquitination of MITA at early time after HSV-1 infection. A simplest

explanation for this is that MITA is hyperactivated at the very early time in such a system in

our study and USP49 functions as a corrector to erase the overubiquitination on MITA as a

protective mechanism.

MITA-mediated signaling plays important roles in autoimmunity and tumor immunity

[35, 68]. Gain-of-function mutations of MITA are found in patients with various systemic

inflammatory or autoimmune diseases. A recent study on exome sequencing indicates that

USP49 is one of the frequently mutated genes associated with obesity which is recognized as a

chronic inflammatory disease related to cardiovascular and respiratory diseases, type II diabe-

tes, and cancers [69]. MITA activation by tumor DNA elicits anti-tumor immunity by type I

Fig 6. A model on USP49-mediated regulation of antiviral responses. HSV-1 infection induces production of

cGAMP that binds to MITA and leads to K63-linked ubiquitination and oligomerization of MITA. USP49 removes

K63-linked ubiquitin chains from MITA and thereby inhibits the oligomerization. Such a deubiquitination impairs the

subsequent recruitment of TBK1 and phosphorylation of IRF3 after HSV-1 infection.

https://doi.org/10.1371/journal.ppat.1007680.g006
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IFN induction and tumor antigen presentation by DCs [32], whereas MITA-mediated inflam-

mation promotes tumorigenesis in an inflammation-induced skin cancer model [70]. Interest-

ingly, an SNP of a large linkage disequilibrium block containing USP49 gene is associated with

breast cancer survival and USP49 functions as a tumor suppressor in pancreatic cancer [53,

71]. The Usp49-/- mice did not exhibit any autoimmune symptoms at 8 months of age which

might be due to a lack of inducer of MITA activation in our housing conditions. In this con-

text, we observed that USP49-MITA association was induced by HSV-1 infection and the basal

expression of type I IFNs or proinflammatory cytokines was comparable between the wild-

type and Usp49-/- cells. Whether and how the USP49-MITA axis regulates inflammatory dis-

eases such as colitis and tumorigenesis such as colon cancer is of great interest and requires

future investigations.

Methods

Mice

The Usp49-/- mice on the C57BL/6 background were generated by Nanjing Biomedical

Research Institute of Nanjing University through CRISPR/Cas9-mediated gene editing. In

brief, Cas9 mRNA and guide RNA (5’-AGACCACATGACTCGGAAGAGGG-3’ and 5’-AGC

CACGGAAGGCGGGAATCAGG-3’) were in vitro transcribed followed by injection into the

fertilized eggs that were transplanted into pseudopregnant mice. The tail DNA of F0 mice was

amplified with PCR and sequenced and the chimeras were crossed with wild-type C57BL/6

mice to obtain the Usp49+/- mice. The F1 Usp49+/- mice were further crossed with wild-type

C57BL/6 mice for at least three generations. The genotyping of the Usp49-/- mice was con-

firmed by sequencing of the PCR fragments amplified from the genomic DNA isolated from

tails using the following primers: Forward 50-CAGAGTTGTCAGTAAGGAGT -30 and

Reverse 50-ACCCAAGTTCACCTACACGG-30. The age- and sex-matched Usp49+/+ and

Usp49-/- littermates were randomized into groups for animal studies.

Ethics statement

All mice were housed in the specific pathogen-free animal facility at Wuhan University and all

animal experiments were in accordance with protocols were adhered to the Chinese National

Laboratory Animal-Guideline for Ethical Review of Animal Welfare and approved by the

Institutional Animal Care and Use Committee of Wuhan University (NO. 16040B and

16060F). The mice were euthanatized with CO2 followed by various studies.

Reagents and antibodies

Mouse control IgG (Santa Cruz Biotechnology, sc-2025) and rabbit control IgG (Millipore,

12–370), HRP-conjugated goat-anti mouse or rabbit IgG (Thermo Scientific, PA1-86717 and

SA1-9510) (1:3000), HRP-conjugated mouse anti-FLAG (Sigma, A8592)(1:1000), mouse anti-

FLAG (Sungene, KM8002)(1:2000), anti-GFP (Sungene, KM8009)(1:2000) anti-β-Actin

(KM9001)(1:2000), anti-Tubulin (KM9003), anti-GAPDH(KM9002), anti-HA (COVANCE,

MMS-101R)(1:2000), anti-Ubiquitin (sc-8017)(1:500), anti-ubiquitin K63-specific linkage

(Millipore 05–1308)(1:500), rabbit anti-TBK1(Abcam, 96328–11), anti-p-TBK1(Abcam,

109272), anti-IRF3 (sc-9082)(1:1000), anti-p-IRF3 (Cell Singling Technologies, 4947S)

(1:1000), anti-IκBα (sc-371)(1:1000), anti-p-IκBα (Cell Singling Technologies, 9246L)(1:1000),

anti-USP49 (proteintech,18066-1-AP), anti-mouse MITA and anti-human MITA (Cell Sin-

gling Technologies,13647) (proteintech, 19851-1-AP) were purchased from the indicated man-

ufactures. ISD45, DNA90, and HSV120 were previously described [44, 45, 72, 73]. ISD45: 5’-T

USP49 deubiquitinates MITA

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007680 April 3, 2019 13 / 22

http://www.ptgcn.com/products/TMEM173-Antibody-19851-1-AP.htm
https://doi.org/10.1371/journal.ppat.1007680


ACAGATCTACTAGTGATCTATGACTGATCTGTACATGATCTACA-3’; DNA90: 5’-TAC

AGATCTACTAGTGATCTATGACTGATCTGTACATGATCTACATACAGATCTACTA

GTGATCTATGACTGATCTGTACATGATCTACA-3’; HSV120: 5’-AGACGGTATAT

TTTTGCGTTATCACTGTCCCGGATTGGACACGGTCTTGTGGGATAGGCATGCCCA

GAAGGCATATTGGGTTAACCCCTTTTTATTTGTGGCGGGTTTTTTGGAGGACTT-3’.

Generation of USP49 KO THP-1 Cells

The plasmid lentiCRISPRv2-puro (Addgene#98290) was kindly provided by Drs. Hao Yin and

Ying Zhang (Wuhan University). The oligos encoding gRNA (sgRNA#1:5’-CACCGGCCT

GCGGCCGCTATATTG-3’; sgRNA#2:5’-AAACCAATATAGCGGCCGCAGGCC-3’) were

annealed and inserted into the lentiCRISPRv2-puro vector. The reconstituted plasmid was

transfected into HEK293 cells along with the packaging vectors pSPAX2 and pMD2G. The

medium was changed with fresh full medium (10% FBS, 1% streptomycin-penicillin and

10 μM β-mercaptoethanol) at 8 hours after transfection. Forty hours later, the supernatants

were harvested to infect THP-1 cell lines followed by puromycin selection for two weeks for

various analyses.

Constructs

Various reporter plasmids and expression plasmids for MITA, MITA truncations, ubiquitin

and ubiquitin mutants were previously described[38, 44, 45, 72, 73]. Human expression plas-

mids for USP49, USP49 mutants and truncations were constructed by standard molecular biol-

ogy techniques. The shRNAs were synthesized and transfected with Lipofectamine 2000

according to the manufacture’s manual. Thirty-six hours after transfection, cells were harvested

or stimulated followed by immunoblot or qPCR. The shRNA sequences are listed as follows:

Control, 5’- CCGGGCTGAGATGTTCCTTAGTAATCTCGAGATTACTAAGGAACA

TCTCAGCTTTTT-3’; shUSP49, 5’-CCGGGCCGTAATCATCGAGAGAAGACTCGAGTCT

TCTCTCGATGATTACGGCTTTTT-3’;

Quantitative RT-PCR and ELISA

Total RNA was extracted from cells or tissues using TRIzol (Invitrogen), and the first-strand

cDNA was reversed-transcribed with All-in-One cDNA Synthesis SuperMix (Biotool). Gene

expression was examined with a Bio-Rad CFX Connect system by a fast two-step amplification

program with 2x SYBR Green Fast qPCR Master Mix (Biotool). The value obtained for each

gene was normalized to that of the gene encoding β-Actin. The ELISA kits for IFN-β, IL-6 and

CCL5 (BioLegend) were used to detect the indicated cytokines in the sera or cell culture

supernatants.

Co-immunoprecipitation and immunoblot analysis

The experiments were performed as previously described [44, 45, 72, 73]. In brief, cells were

lysed in Nonidet P-40 lysis buffer containing 150 mM NaCl, 1 mM EDTA,1% Nonidet P-40,

and 1% protease and phosphatase inhibitor cocktail (Biotool). Cell lysates were subjected to

SDS-PAGE and immunoblot analysis was performed with the appropriate antibodies. For

immunoprecipitation assays, the lysates were immunoprecipitated with IgG or the appropriate

antibodies, and the precipitants were washed three times with lysis buffer containing 150 mM

NaCl, followed by immunoblot analysis. The antibodies were diluted in 3–5% (wt/vol) fat-free

milk (BD Biosciences) or 1% BSA (Sigma) in TBS (1:500–1:2,000).
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Native PAGE

The gel was pre-run with 25mm Tris and 192mm glycine, pH8.4 with 1% deoxycholate at 70

mA for 30 min. Samples in the native sample buffer (10 μg protein, 62.5 mm Tris-Cl, pH6.8,

15% glycerol and 1% DOC) were applied to the gel and electrophoresed for 30min at 70mA

and 1h at 120 mA.

Deubiquitination assays

The experiments were performed as previously described [44, 45, 72]. For deubiquitination

assays in cells, cells were lysed with the lysis buffer (100 μl) and the supernatants were dena-

tured at 95˚C for 5 min in the presence of 1% SDS by lysates. The denatured lysates were

diluted with lysis buffer until the concentration of SDS reduced below 0.1% followed by immu-

noprecipitation (denature-IP) with the indicated antibodies. The immunoprecipitants were

subject to immunoblot analysis with anti-ubiquitin, or anti-K63-linked ubiquitin chains. For

in vitro deubiquitination aasays, FLAG-tagged MITA and HA-tagged ubiquitin were cotrans-

fected into HEK293 (human embryonic kidney 293, from ATCC) cells. Denature-IP was per-

formed and the precipitants were eluted by 3 x FLAG peptide (sigma) to obtain ubiquitin-

modified MITA. USP49 and USP49 (C262A) were obtained by a TNT in vitro transcription /

translation kit (Promega). The ubiquitinated MITA were incubated with in vitro synthesized

proteins at 37˚C for 2 hours followed by overnight incubation at 16˚C in the presence of 1 μM

ATP. The mixture was analyzed by immunoblot with the indicated antibodies.

The plasmid encoding GST-Pan-Ub-TUBE was previously described and kindly provided

by Dr. Mads Gyrd-Hansen (University of Oxford) [57]. K63-Ub-TUBE was amplified from

Pet28a-Rx3(A7) (Addgene, #35525) and cloned into pGEX-T4 [58, 59]. GST-Pan-Ub-TUBE

and GST-K63-Ub-TUBE were expressed in E. Coli(DE3) and purified with a GST column as

previously described [44, 60, 73]. To analyze ubiquitinated MITA, GST-Pan-Ub-TUBE or

GST-K63-Ub-TUBE were incubated with cell lysates and pulled down by GST beads. The GST

beads were washed with lysis buffer containing 500 mM NaCl for three times and subject to

PAGE electrophoresis and immunoblot analysis.

Cell culture

The Usp49+/+ and Usp49-/- MLFs were isolated and cultured as previously described [44, 45,

72, 73]. Bone marrow cells were isolated from femurs of Usp49+/+ and Usp49-/- mice. The cells

were cultured in DMEM containing 10% (vol/vol) FBS, 1% streptomycin-penicillin and 10 μM

β-mercaptoethanol. GM-CSF and M-CSF were added to the bone marrow culture for differen-

tiation of BMDCs and BMDMs respectively. THP-1 (human monocyte; acute monocytic leu-

kemia), U937 (human monocytic leukemia) and HEK293 cells were from the American Type

Culture Collection, authenticated by STR locus analysis and tested for mycoplasma contami-

nation. HFF (human forehead fibroblasts) cells were kindly provided by Dr. Yan-Yi Wang

from Wuhan Institute of Virology, Chinese Academy of Sciences.

Digitonin permeabilization

The cells were treated with cGAMP (1 μg) in digitonin permeabilization solution (50 mM

HEPES pH 7.0, 100 mM KCl, 3 mM MgCl2, 0.1 mM DTT, 85 mM Sucrose, 0.2% BSA, and

10 μg/ml digitonin) at 37˚C for 30 minutes. The cells were then replaced with regular medium

and incubated for 0–3 h followed by immunoblot or qRT-PCR analysis.
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Transfection and reporter gene assays

HEK293 cells were transiently transfected with firefly luciferase reporter (100 ng) and TK

Renilla luciferase reporter (20 ng) and indicated plasmids or empty vector (100 ng) using stan-

dard calcium phosphate precipitation. After 24 h, luciferase assays were performed with a

dual-specific luciferase reporter kit (Promega). The activity of firefly luciferase was normalized

by that of Renilla luciferase to obtain relative luciferase activity.

Viral infection

For qRT-PCR or immunoblot analysis, cells seeded into 24-well plates (2-5x105 cells per well)

or six-well plates (1x106-1x107 cells per well) were infected with various viruses for the indi-

cated time points. For viral replication assays, cells (2-5x105) were infected with HSV-1 or

H129-G4 [56]. One hour later, the supernatants were removed and cells were washed with pre-

warmed PBS (1 ml) twice followed by culture in full medium for 24 hours. Viral replication

was analyzed by flow cytometry, fluorescent microscopy or qRT-PCR analysis. For mice infec-

tion, age- and sex-matched Usp49+/+ and Usp49-/- were intravenously or intranasally injected

with HSV-1 (2.5 x106 PFU per mouse) and the survival of animals was monitored every day.

The lungs or brains were collected for qRT-PCR analysis or plaque assays at 24 hours or 4 days

after infection, respectively.

Plaque assay

The supernatants of BMDCs or MLFs cultures and the homogenates of brains from infected

mice (or the serial dilutions) were used to infect monolayers of Vero cells. One hour later, the

supernatants or homogenates were removed and the infected Vero cells were washed with pre-

warmed PBS twice followed by incubation with DMEM containing 2% methylcellulose for 48

h. The cells were fixed with 4% paraformaldehyde for 15min and stained with 1% crystal violet

for 30min before counting the plaques.

Lentivirus -mediated gene transfer

HEK293 cells were transfected with pLKO.1-shControl, pLKO.1-shUSP49, phage-6tag-USP49,

phage-6tag-USP49(C262A) or the empty vector along with the packaging vectors pSPAX2 and

pMD2G. The medium was changed with fresh full medium (10% FBS, 1% streptomycin-peni-

cillin and 10 μM β-mercaptoethanol) after 8 hours. Forty hours later, the supernatants were

harvested to infect Usp49+/+ and Usp49-/- MLFs, BMDMs or BMDCs followed by various

analyses.

Statistical analysis

Differences between experimental and control groups were tested using Student’s t-test or

two-way ANOVA with Bonferroni post-test. P values less than 0.05 were considered statisti-

cally significant. For animal survival analysis, the Kaplan–Meier method was adopted to gener-

ate graphs, and the survival curves were analyzed with log-rank analysis.

Supporting information

S1 Fig. USP49 functions at the level of MITA. (A) Immunoprecipitation (with anti-MITA)

and immunoblot analysis (with anti-MITA or anti-USP49) of HFF infected with HSV-1 for

0–6 hours (left panels) or U937 cells transfected with cGAMP (4 μg) for 0–2 hours (right pan-

els).

(B) Luciferase assay analyzing ISRE promoter activity in HEK293 cells transfected with empty
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vector or plasmids encoding MITA, MITA plus cGAS, TBK1 or IRF3 with an empty vector or

FLAG-USP49.

(C) Luciferase assay analyzing ISRE promoter activity in HEK293 cells transfected with empty

vector or plasmids encoding MITA, MITA plus cGAS, TBK1 or IRF3 with an empty vector or

shRNA for 24 hours (left graph). Immunoblot analysis (with anti-FLAG or anti-HA) of

HEK293 cells transfected for 36 h with plasmids encoding FLAG-tagged USP49 and HA-β-

Actin and either USP49-targeting shRNA or control shRNA (Con) (right panels).

Data are representative of three independent experiments (Graphs show mean ± S.D. in B and

C).

(TIF)

S2 Fig. Generation of Usp49 deficient mice. (A) A scheme for CRIPSR/Cas9-mediated

genome editing of the Usp49 gene locus (left). Genotyping of Usp49 from Usp49+/+ and

Usp49-/- mice (right).

(B) Gene sequence and reading frame of Usp49+/+ and Usp49-/- mice (left). Mice numbers of

each genotype (right).

(C-E) Flow cytometry analysis of immune cells and quantitative data in thymus (C), spleen

(D) and peripheral lymph nodes (E) from Usp49+/+ and Usp49-/- mice (n = 3).

(F) Flow cytometry analysis of GM-CSF or M-CSF induced DCs or Macrophages from

Usp49+/+ and Usp49-/- mice.

Data are representative of two independent experiments (Graphs show mean ± S.D. in D-F,

n = 3).

(TIF)

S3 Fig. USP49 deficiency potentiates cGAMP-induced expression of downstream genes.

qRT-PCR analysis of Ifnb, Tnf and Ifna4 mRNA in Usp49+/+ and Usp49-/- MLFs treated with

digitonin-mediated cGAMP permeabilization for 0–3 h.
��P< 0.01; ���P<0.001 (analysis of two-way ANOVA followed by Bonferroni post-test). Data

are representative of three independent experiments (mean ± S.D.).

(TIF)

S4 Fig. Knockout of USP49 has minimal effects on SeV-triggered signaling. (A) qRT-PCR

analysis of Ifnb, Ifna4, Ccl5 and Tnf mRNA in Usp49+/+ and Usp49-/- MLFs, BMDCs and

BMDMs infected with HSV-1 for 0–8 h.

(B) Immunoblot analysis of phosphorylation of IRF3, IkBa, TBK1 or total IRF3, IkBa, TBK1

and β-Actin in Usp49+/+ and Usp49-/- MLFs and BMDCs infected with HSV-1 for 0–6 hours.

qRT-PCR analysis of Usp49 mRNA in Usp49+/+ and Usp49-/- MLFs and BMDMs infected with

HSV-1 for 0–8 h.

Data are representative of three independent experiments (Graphs show mean ± S.D. in A and

B).

(TIF)

S5 Fig. USP49 deconjugates K63-linked ubiquitin chains from MITA. (A) In vitro deubiqui-

tination analysis of ubiquitin-modified MITA eluted from anti-FLAG precipitates by FLAG

peptide of HEK293 cells transfected with FLAG-MITA and HA-ubiquitin incubated with in

vitro generated USP49 or USP49(C262A) obtained from an in vitro transcription and transla-

tion kit.

(B) Denature-IP (with anti-FLAG) and immunoblot analysis (with anti-FLAG, anti-HA or

anti-GFP) of HEK293 cells transfected with plasmids encoding FLAG-MITA, HA-tagged ubi-

quitin mutants and either the empty vector, GFP-USP49 or GFP-USP49(CA) for 24 h.

(C) Denature-IP (with anti-FLAG) and immunoblot analysis (with anti-FLAG, anti-HA or

USP49 deubiquitinates MITA

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007680 April 3, 2019 17 / 22

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007680.s002
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007680.s003
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007680.s004
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007680.s005
https://doi.org/10.1371/journal.ppat.1007680


anti-GFP) of HEK293 cells transfected with plasmids encoding FLAG-MITA, HA-tagged ubi-

quitin mutants and either the empty vector or GFP-USP49 for 24 h.

(D) Denature-IP (with anti-FLAG) and immunoblot analysis (with anti-FLAG, anti-HA or

anti-GFP) of HEK293 cells transfected with plasmids encoding FLAG-MITA, HA-tagged ubi-

quitin, the empty vector or GFP-USP49 and either the control shRNA or shUSP18 for 36 h.

Data are representative of three independent experiments.

(TIF)
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