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Abstract
Despite the ubiquity of pollutants in the environment, their long-term ecological con-
sequences are not always clear and still poorly studied. This is the case concerning 
the radioactive contamination of the environment following the major nuclear acci-
dent at the Chernobyl nuclear power plant. Notwithstanding the implications of evo-
lutionary processes on the population status, few studies concern the evolution of 
organisms chronically exposed to ionizing radiation in the Chernobyl exclusion zone. 
Here, we examined genetic markers for 19 populations of Eastern tree frog (Hyla ori-
entalis) sampled in the Chernobyl region about thirty years after the nuclear power 
plant accident to investigate microevolutionary processes ongoing in local popula-
tions. Genetic diversity estimated from nuclear and mitochondrial markers showed an 
absence of genetic erosion and higher mitochondrial diversity in tree frogs from the 
Chernobyl exclusion zone compared to other European populations. Moreover, the 
study of haplotype network permitted us to decipher the presence of an independent 
recent evolutionary history of Chernobyl exclusion zone's Eastern tree frogs caused 
by an elevated mutation rate compared to other European populations. By fitting to 
our data a model of haplotype network evolution, we suspected that Eastern tree 
frog populations in the Chernobyl exclusion zone have a high mitochondrial mutation 
rate and small effective population sizes. These data suggest that Eastern tree frog 
populations might offset the impact of deleterious mutations because of their large 
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1  |  INTRODUC TION

The loss of biodiversity during the past 50 years is unprecedented 
in human history. Pollution, as part of the major drivers of biodi-
versity loss (namely habitat and climate change, pollution, overex-
ploitation of natural resources, and invasive species), has severely 
altered many ecosystems (Brondizio et al., 2019). Among the large 
diversity of pollutants, radioactive contamination caused by human 
activities, and the associated risks for ecosystems and humans, are 
the subject of broad societal and scientific concern (Beresford & 
Copplestone, 2011). This is particularly true in the case of major nu-
clear accident such as the one occurred at the Chernobyl nuclear 
power plant (NPP) on April 1986 (Imanaka et al., 2015; Steinhauser 
et al., 2014). Although the short-term adverse effects of high ion-
izing radiation doses on wildlife following this accident are not 
questioned (Alexakhin et al., 2006; Geras’kin et al., 2008; Møller 
& Mousseau, 2006), there are still many unknowns and controver-
sies on the long-term ecological consequences of these radioactive 
releases (Beresford, Horemans et al., 2020; Bréchignac & Paquet, 
2013; Morgan & Bair, 2013; Mothersill & Seymour, 2013).

One of the biggest challenges for an accurate estimation of the 
impact of chronic pollution on ecosystems is to understand, quan-
tify, and predict its effects not only at individual, but also at the pop-
ulation level of biological organization (Bickham, 2011; Medina et al., 
2007; Theodorakis, 2001). Understanding the impact of pollutants 
on populations allows to investigate evolutionary processes that may 
affect population status and their capacity to persist in the future. 
Several studies in the Chernobyl area have estimated the abundance 
and interspecific diversity of wildlife after the accident (Bezrukov 
et al., 2015; Chapon et al., 2012; Deryabina et al., 2015; Lecomte-
Pradines et al., 2014; Gashchak et al., 2017; Gashchak et al., 2016; 
Møller & Mousseau, 2009, 2013, 2018; Møller et al., 2013; Morelli 
et al., 2018; Murphy et al., 2011; Schlichting et al., 2019; Shkvyria 
& Vishnevskiy, 2012; Zaitsev et al., 2014). However, these studies 
have provided inconclusive, and often divergent results, dependent 
on the sampling design (e.g., for mammals; Deryabina et al., 2015; 
Møller & Mousseau, 2013; Webster et al., 2016). In addition, studies 
investigating the evolution of wildlife in Chernobyl area are scarce 
and have not provided solid conclusions (Arnaise et al., 2020; Møller 
& Mousseau, 2016). In order to increase our understanding on the 
impact of ionizing radiation on wildlife in the Chernobyl area, we 
must examine intraspecific genetic variations. Examining genetic 
variations within and between populations may allow scientists 
to estimate differences in the intensity of possible evolutionary 

processes occurring in wildlife populations (Bickham et al., 2000; 
Giska et al., 2015; Straalen & Timmermans, 2002; Ungherese et al., 
2010). Evolutionary processes (mutation, migration, genetic drift, 
selection) must be understood as the mechanisms that modify ge-
netic variations within populations. Genetic diversity indices, in 
particular, can be highly informative from an ecological perspective 
since changes in genetic diversity can affect the capacity of pop-
ulations to cope with environmental change (Fasola et al., 2015; 
Hughes et al., 2008; Luquet et al., 2011; Millette et al., 2019; Ribeiro 
& Lopes, 2013).

Populations exposed to pollutants often experience genetic ero-
sion (Straalen & Timmermans, 2002). Two processes can be at the ori-
gin of this decreased diversity: a directional selective pressure which 
can be driven by the modification of the environment (De Wolf et al., 
2004; Ungherese et al., 2010), and/or a demographic bottleneck in-
volving the fixation of polymorphic alleles with neutral drift (Hughes 
et al., 2008; Murdoch & Hebert, 1994; Ribeiro et al., 2012; Wang 
et al., 2019). Numerous population genetic studies carried out in 
the Chernobyl area have been conducted on the bank vole, Myodes 
glareolus, and showed increased genetic diversity in highly radio-
contaminated areas (Baker et al., 2001, 2017; Matson et al., 2000; 
Meeks et al., 2007, 2009; Wickliffe et al., 2006). There are two ex-
planations for this observation that are not mutually exclusive. First, 
exposure to radioactive pollution can lead to an increased mutation 
rate (Baker et al., 2017; Dubrova, 2003; Ellegren et al., 1997; Møller 
& Mousseau, 2015), which can partially offset the genetic diversity 
loss caused by population bottlenecks. Alternatively, the Chernobyl 
exclusion zone (CEZ)—which is an area established soon after the 
Chernobyl nuclear disaster where human population was evacuated 
(Bondarkov et al., 2011)—could act as an ecological sink (Dias, 1996; 
Matson et al., 2006; Møller et al., 2006; Pulliam, 1988; Theodorakis 
et al., 2001): a demographic deficit caused by the polluted habitat 
(mortality > natality) could lead to immigration to these habitats, 
and in fine to an increase in genetic diversity (Kesäniemi et al., 2018; 
Meeks et al., 2007).

Here, we examine the relationship between radionuclide con-
tamination in the CEZ and the genetic pattern of populations in a 
lissamphibian species, the Eastern tree frog (Hyla orientalis) (Stöck 
et al., 2012) Bedriaga 1890 (Anura, Hylidae). The phylogeography 
of this species is well understood, which allows the examination 
of Chernobyl populations in the context of the general evolution-
ary history of the species (Dufresnes et al., 2016). In addition, the 
Eastern tree frog may be significantly exposed to ionizing radiation 
in both aquatic and terrestrial environments at susceptible stages of 

clutch size, but also question the long-term impact of ionizing radiation on the status 
of other species living in the Chernobyl exclusion zone.
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its development, especially during the metamorphosis and during its 
hibernation in the contaminated soil (Giraudeau et al., 2018; Stark 
et al., 2015).

We studied population genetics from 19 populations of H. orien-
talis sampled about thirty years after the Chernobyl NPP accident at 
sites located across a wide range of radioactive contamination inside 
and outside the CEZ (Figure 1b). We used the cytochrome b cod-
ing gene as a mitochondrial marker and 21 nuclear microsatellites 

as nuclear markers. These markers differ in their mode of transmis-
sion, rate of evolution, and dynamics against environmental distur-
bances (Brown et al., 1979; Harrison, 1989; Selkoe & Toonen, 2006). 
Genetic diversity of populations from the CEZ was compared to that 
of populations up to 40 km distant from the CEZ (Slavutych), as well 
as to five other European populations belonging to the same clade 
(Dufresnes et al., 2016) (Figure 1a). Finally, we studied the mitochon-
drial haplotype network and simulated their networks over 10 and 

F I G U R E  1  (a) Location of European populations of Eastern tree frogs outside the Chernobyl region sampled by Dufresnes et al. (2016) 
(blue diamonds) and the 19 populations sampled at the Chernobyl region (red circles). (b) Map of the Chernobyl region and location of the 
19 populations sampled in 2016, 2017, 2018 in the CEZ and at Slavutych. The map was created with ArcGis v. 10.5. Source and service layer 
credits for satellite imagery: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS 
User Community
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15 generations to estimate the population parameters of frogs living 
in the CEZ since the accident.

2  |  MATERIAL S AND METHODS

2.1  |  Fieldwork, capture, and preparation of the 
samples

In May and June 2016, 2017, and 2018 during the breeding season, 
we collected a total of 216 H. orientalis individuals in 17 populations 
in wetlands located inside the CEZ and 2 outside the CEZ, that is, in 
the Slavutych region (Figure 1b). For simplicity, we use here “popu-
lation” in the meaning of “population sample.” These sites cover a 
gradient of ambient dose rates that was measured using a hand-held 
radiometer (MKS-AT6130, ATOMTEX). The mean (±SD) ambient ra-
diation dose rate varied from 0.044 to 32.4 µSv/h. After capture, 
individuals were kept in individual boxes with a perforated cover and 
2 cm of water until the next morning when they were euthanized 
and dissected to sample tibia muscle. Collected tissue was quickly 
frozen at −196°C, transported to IRSN labs in Cadarache (France), 
and stored at −80°C until DNA extraction. All animals were collected 
under the permit of Ministry of Ecology and Natural Resources of 
Ukraine (No. 517, 21.04.2016). The geographic distances separating 
each pairwise combination of frog populations were estimated with 
ArcGIS and a UTM projection.

2.2  |  Population-averaged dose rate calculation

The approach for population-averaged dose rate reconstruction was 
based on Giraudeau et al. (2018) (See Appendix S1: Note 2 for details). 
The two main differences compared with the protocol carried out by 
Giraudeau et al. (2018) are the radionuclides and the scenarios under 
consideration (Figure S4) because of the characteristics of the CEZ 
compared to the Fukushima situation. To summarize, soil activities (in 
Bq/kg) were extracted following Gashchak et al. (2010) from a spatial 
database using a geometric mean over a 400 m radius area centered 
on each population location and using a time correction, and water 
activities were calculated using soil activities and distribution coef-
ficients estimated for the Glubokoye lake (Matsunaga et al., 1998). In 
addition, radioactivity concentrations (in Bq/kg) were estimated for 
each individual in femur bones for 90Sr, and in leg muscle for 137Cs in 
the IRL-SSRI Laboratory (Slavutych, Ukraine), and then reconstructed 
for the total frog knowing the total frog mass and the relative mass 
of bones (10%) and muscles (69%) (Barnett et al., 2009). A Canberra-
Packard gamma-spectrometer with a high purity germanium (HPGe) 
detector (GC 3019) was used for measuring 137Cs activity concentra-
tions and a Beta-spectrometer EXPRESS-01 was used for measur-
ing 90Sr activity concentrations. For a more detailed description of 
radioactivity measurement methods, see Beresford, Barnett et al. 
(2020). Then, dose coefficients (DCs) were calculated based on frog 
morphometry for internal exposure and four scenarios of external 

exposure using EDEN software (Beaugelin-Seiller et al., 2006). DCs 
convert environmental radionuclide activity (Bq/kg soil, Bq/L water) 
into dose rate (µGy/h) for the frog, and are specific for each radionu-
clide/scenario/organism combination. The total dose rate (in µGy/h) 
was calculated for each frog combining related dose coefficients and 
activities. Average total dose rates (ATDRs) were obtained by averag-
ing total dose rate of sampled individuals for each population (Figures 
S5 and S6). Only the radioactivity concentrations of 90Sr and 137Cs 
in frogs was measured, but the contribution to the total dose rate of 
other less abundant radionuclides (241Am, 238Pu, 239Pu) was estimated 
to contribute, on average, less than a quarter of the total dose rate 
(see Tables S9–S11 and Figure S7). Thus, the total dose rate we as-
sessed could be underestimated by ~20 to 25% as radionuclides other 
than 137Cs and 90Sr were not included in the dose reconstruction. 
Nevertheless, in the CEZ soil radioactivity concentrations of 90Sr and 
137Cs are correlated to the radioactivity of other less abundant radio-
nuclides (Bonzom et al., 2016), as well as in the body of organisms such 
as small mammals (Beresford et al., 2008), thus our ATDR descriptor 
based on 90Sr and 137Cs is reliable for statistical tests.

2.3  |  DNA extraction, sequencing, and genotyping

DNA was extracted from tibia muscle using DNeasy Blood and 
Tissue Kit (Qiagen, Valencia, CA) following the manufacturer's pro-
tocol. After the estimation of nucleotide concentration with a spec-
trophotometric measurement and an electrophoresis quality check, 
a 957  bp fragment of mitochondrial DNA, cytochrome b, and 21 
nuclear microsatellites were studied (see Appendix S1: Note 1 for 
details). Mitochondrial and nuclear markers were used simultane-
ously in order to compare their different properties. To sequence 
the cytochrome b, a PCR amplification was performed using Hyla-L0 
and Hyla-H1046 primers (Dufresnes et al., 2016; Stöck et al., 2008). 
For each amplification session, a negative control was made using 3 
µL of water instead of extracted DNA, and an electrophoresis was 
done to control the proper functioning of the amplification. PCR 
products were sequenced in both directions using Sanger sequenc-
ing (Eurofins, sequencing platform Cochin, France). The quality was 
checked using ab1 files. Sequences were aligned with MUSCLE 
program and corrected with MEGA (Kumar et al., 2016). In some 
cases, for the same position, an individual showed two different nu-
cleotides. The mtDNA being haploid, it can be interpreted as a het-
eroplasmy (Hauswirth & Laipis, 1982; i.e., the presence of multiple 
mtDNA haplotypes in an individual). For each of these individuals, 
the two haplotypes were considered. Four multiplex amplifications 
were then performed for the 21 microsatellite markers (Dufresnes 
et al., 2014; Table S8). Formamide and a Size Standard were added 
to the PCR products and the whole was then genotyped with an 
ABI 3130 automated DNA sequencer (Applied Biosystems). Alleles 
were scored and genotyping was performed with GENE MAPPER 
3.7 software (Chatterji & Pachter, 2006). A second amplification and 
genotyping were carried out on 4 individuals in order to check the 
replicability of the method.
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2.4  |  Genetic analyses, mtDNA and nDNA

A quantitative analysis of population genetics was performed for 
the two types of markers. In order to avoid sample size artifacts, 
only populations with sample sizes greater than 6 individuals were 
used to describe the genetic diversity. Because sample sizes were 
still nonhomogeneous between populations, a rarefaction technique 
was performed for cytochrome b to calculate haplotypic richness 
(nrH) and private estimated haplotype number (npH) using hp-rare 
(Kalinowski, 2005). The haplotype diversity (h) (Nei, 1987), nucleo-
tide diversity (π) (Tajima, 1983) and three estimators of θ index (θs, 
θk, θπ) (Ewens, 1972; Tajima, 1983; Watterson, 1975) were calculated 
for the cytochrome b using ARLEQUIN (Excoffier et al., 2005). To 
describe how the mitochondrial genetic variation is structured tem-
porally and geographically, Analysis of Molecular Variance (AMOVA) 
(Excoffier, 2004) and calculation of a differentiation index—pairwise 
Fst—were performed using ARLEQUIN. Two AMOVA were per-
formed using three year groups (2016, 2017, 2018), and three geo-
graphical areas corresponding to three groups of populations in the 
Chernobyl region: one in the North close to the NPP, one South of 
the exclusion zone, and one including the Slavutych populations 
(Figure 4c). For microsatellites markers, we estimated the observed 
heterozygosity (Ho), the estimated heterozygosity under Hardy–
Weinberg assumptions (He), the genetic diversity (Hs), the allelic 
richness (AR), and the private allelic richness (PA) using GENETIX 
(Belkhir et al., 2004), ADZE (Szpiech et al., 2008), and Fstat (Goudet, 
1995). Pairwise Fst for microsatellites were calculated using Fstat. The 
absolute value of the lowest Fst for the mitochondrial and nuclear 
markers was added to every pairwise Fst in order to get only posi-
tive pairwise Fst. We calculated the ratio Fst/(1–Fst) in order to esti-
mate genetic distance between populations, and represented these 
distances using Neighbor-Joining trees with genetic distances esti-
mated with MEGA (Kumar et al., 2016).

Following the first quantitative analysis, we then focused on 
the cytochrome b mitochondrial marker as it allowed us to study 
qualitatively haplotypes of all populations (i.e., CEZ, Slavutych, and 
populations outside Chernobyl region sampled by Dufresnes et al. 
(2016); see Figure 1a), and examined their genealogical links within 
a network of haplotypes. This approach is a good way to situate 
populations within an evolutionary context and explore more sub-
tle evolutionary processes than with diversity indices only (Matson 
et al., 2006). The haplotypes were determined using DNAsp (Rozas 
et al., 2017), the haplotype network was calculated with the Median-
Joining method (Bandelt et al., 1999) and drawn using POPART 
(Leigh & Bryant, 2015).

2.5  |  Simulation of haplotype networks

Simulations of mitochondrial haplotype networks were conducted 
with a method close to the Approximate Bayesian Computation 
(Beaumont et al., 2002) (for details on protocol see Appendix 
S1: Note 3). Simulations of the haplotype evolution for 10 and 

15  generations (assuming one generation every three versus two 
years; Altunisik & Özdemir, 2013; Özdemir et al., 2012) in a unique 
population were conducted in R and Pegas library (Paradis, 2010) 
using different parameters: (i) the founder population size (N0) cor-
responding to specimens able to reproduce after the accident, (ii) the 
frequencies of haplotypes in the founder population based on the 
current diversity observed for the Slavutych populations (H18 and 
G18), (iii) the population size for each year during the 10 or 15 gen-
erations (N1−n), (iv) the nucleotide substitution rate (µ) and (v) the 
number of generations. A haplotype network was generated for the 
last generation for each data set obtained with a set of value for 
prior parameters.

A first simulation was run with classical wild frog population 
prior parameters (i.e., notably a fluctuating population size since the 
accident in the range of uniform distribution U(1000–5000) and a 
classical rate of nucleotide substitution in mitochondrial DNA for 
amphibians of 20.37 × 10−9 per nucleotide per generation; Lynch 
& Walsh, 2007), representing 1000  simulations for each modality 
combination, a total of 6000 simulations. Then, a second simulation 
was performed with different prior parameters calibrated from the 
first simulation results (i.e., notably smaller population sizes with 
three modalities of uniform distribution: U(50,100), U(100,200), and 
U(200,300) and high nucleotide substitution rates with six modali-
ties: 0.005, 0.01, 0.02, 0.04, 0.06, 0.08 per haplotype per generation 
in an infinite site model), corresponding to 100 simulations for each 
modality combination, a total of 21,600 simulations (see Tables S12 
and S13 for prior parameters details).

Each haplotype network was described by five statistics: the nu-
cleotide diversity (π), the Tajima's D, the haplotype richness (nrH), the 
haplotype diversity (h), and the number of steps separating the an-
cestral haplotype to the most distant haplotype plus one. A Principal 
Component Analysis (PCA) was performed to compare simulated 
and observed descriptive statistics. The two first principal compo-
nent axes were used to visualize both sets of descriptive statistics. 
A Ward hierarchical cluster analysis on Euclidean distance was used 
to select the 5th percentile of the simulated descriptive statistics 
closest to the observed descriptive statistics. The mean and median 
of the 5th percentile simulated descriptive statistics were calculated 
to estimate the posterior parameters N0, the appropriate haplotype 
frequencies for the founder population, N1−n, and µ. Visualization 
of the haplotype network for prior, 10th, and 15th generation was 
done using TempNet (Prost & Anderson, 2011).

2.6  |  Statistical analysis

Nonparametric Wilcoxon signed rank tests were performed to 
compare genetic diversity indices, between CEZ populations and 
outside CEZ populations, because of their non-normal distribution 
tested using Shapiro–Wilk test. Nonparametric Spearman rank tests 
were used to test the correlation between genetic diversity indices 
and the population-averaged dose rate (ATDR). The correlation be-
tween two matrices, the genetic distance matrix obtained with the 
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Fst linearization and the matrix of logarithm of geographical distance 
(in m) (“isolation by distance” hypothesis), was performed using a 
Mantel test (Mantel, 1967) with the vegan package (Oksanen et al., 
2009). Because of a possible link between geography and radionu-
clide contamination (Kashparov et al., 2018), the part of pairwise 
population-averaged dose rate differences between populations 
on the distance correlation was tested using a partial Mantel test. 
The significance of Mantel tests was estimated with 9999 permuta-
tions. All these tests were carried out on R version 3.6.1. (R Core 
Development Team, 2009).

To test the demographical expansion hypothesis with haplotype 
networks, three statistical tests were performed on DNAsp. The 
neutral assumption of the absence of deviation from the mutation-
drift equilibrium was tested using the Tajima's D (Tajima, 1989) and 
Fu's D* (Fu & Li, 1993). The distribution of pairwise differences be-
tween sequences was studied too, using the R2  statistic (Ramos-
Onsins & Rozas, 2002).

3  |  RESULTS

3.1  |  Mitochondrial DNA heteroplasmies

In the Chernobyl region, we observed 20  substitutions composed 
of 19 transitions (12 C/T and 7 A/G) and 1 transversion (A/T) 
(Tables S1 and S2). We determined that haplotypes found were 
part of the clade D4 described for other areas of Europe (Dufresnes 
et al., 2016; Stöck et al., 2012) and characteristic of areas from the 
northern Black Sea shores to the Baltic Sea. In addition, 7 indi-
viduals were interpreted as case of heteroplasmy in the CEZ, while 

none were detected in the other European populations (Figure S1 
and Table S3).

3.2  |  High mitochondrial genetic diversity for CEZ 
populations

Mitochondrial haplotype and nucleotide diversities of all popula-
tions from CEZ (h = 0.7308, π = 0.0024) were significantly higher 
(W = 91, p < 0.005) than those of other European populations (h = 
0.6071, π = 0.0008) (Figure 2a and Table S4). In particular, for these 
other European populations, the lowest mitochondrial haplotype 
diversity was measured for the populations nearest to Chernobyl 
region, in Kharkiv, Ukraine (h = 0.2500) and Luninets, Belarus (h = 
0) (Figures 1a and 2b). The two Slavutych populations present an 
intermediate mitochondrial haplotype diversity, as the H18 popula-
tion had low genetic diversity (h = 0.2857), while the G18 popula-
tion had a genetic diversity fairly close to the genetic diversity of 
the CEZ populations (h = 0.6444) (Figure 2b). Unlike mtDNA, all the 
indices of estimated nuclear genetic diversity, such as the genetic 
diversity within populations (Hs) (Figure 2c), showed no significant 
differences between the CEZ populations and the other European 
populations (Table S5).

Only mitochondrial nucleotide diversity was significantly 
positively correlated to ATDRs (S = 294, rho = 0.640, p = 0.007) 
(Figure 3a and Table S6). In contrast, the correlation between mito-
chondrial haplotype diversity and ATDR was not significant (S = 658, 
rho = 0.193, p = 0.455; Figure 3b). Genetic diversity in nuclear mi-
crosatellites was not significantly correlated with ATDRs, although 
these parameters showed a nonsignificant negative correlation (S = 

F I G U R E  2  Comparison between genetic diversity estimates at the European level. (a) Boxplot of mitochondrial nucleotide diversity (i.e., 
the probability that two randomly chosen nucleotides of the cytochrome b at a homolog position are different; Nei, 1987; Tajima, 1983) for 
CEZ (red) and other European populations (black). Genetic diversity is higher at the CEZ than at other European populations (Mann–Whitney, 
w = 99, p = 0.0004). (b) Mitochondrial haplotype diversity estimates (i.e., the probability that two randomly chosen haplotypes of the 
cytochrome b are different (Nei, 1987)) ± standard error for CEZ (red), populations from Slavutych (green) and sampled by Dufresnes et al. 
(2016) (blue). Genetic diversity is higher at the CEZ than at other European populations (Mann–Whitney, w = 91, p = 0.005). (c) Boxplot of 
nuclear genetic diversity estimated on the 21 microsatellites markers (Nei, 1987) for CEZ (red) and other European populations (blue). There 
are no significant differences between the genetic diversity of CEZ and other European populations (Mann–Whitney, w = 13, p = 0.240)
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194, rho = −0.617, p = 0.086; Figure 3c, Figure S3). Only private 
allelic richness and ATDRs were significantly negatively correlated (S 
= 221.13, rho = −0.843, p = 0.004) (Table S7).

3.3  |  Local geographical structure of 
genetic variation

Unlike the low differentiation estimated with nuclear microsatellites 
(−0.031 < Fst < 0.093), differentiation estimated from cytochrome 
b sequences was relatively high (−0.173 < Fst < 0.426). For the mi-
tochondrial marker, the two populations with the highest genetic 
differentiation from other populations of the Chernobyl region 
were the South West A17 and the North D18 (0.072 < Fst < 0.426, 
Figure 4a). Slavutych populations were also highly genetically differ-
entiated from CEZ populations (0.095 < Fst < 0.395). Genetic pair-
wise differentiations estimated on nuclear markers were similar to 
those estimated on mitochondrial markers, the most differentiated 
population being A17 (0.021 < Fst < 0.093, Figure 4b). Despite the 
absence of a complete similarity between geographical and genetic 
structures (Figures 1b and 4a,b), the genetically closest popula-
tions were, as expected, usually the geographically closest popula-
tions. This similarity was obvious when separating populations in 
Neighbor-Joining (NJ) trees built for each sampling year (Figure S2).

In both AMOVA, the highest variance was observed within pop-
ulations (83.75% and 79.85%). However, the inter-group variance 
based on years was not significant (2.00%, p > 0.05), in opposition 
to the variance based on geographical regions (12.27%, p < 0.001).

Isolation by distance was significant for both nuclear (r = 0.4453, 
p = 0.005), and mitochondrial markers (r = 0.3461, p = 0.009). The 
correspondence between nuclear and mitochondrial genetic dis-
tances described from NJ trees was also significant (r = 0.6627, p = 
0.003). The correlation between genetic distances and geographic 
distances could not be explained by the differences in ATDRs 
(mtDNA: r = 0.3474, sign = 0.007; nDNA: r = 0.4452, sign = 0.006).

3.4  |  Haplotype networks and CEZ-independent 
evolutionary processes

We identified a single haplotype common to all populations (CEZ, 
Slavutych area, and outside the Chernobyl region), the central hap-
lotype (Figure 5). Because of the star-like distribution of the haplo-
type network of populations outside the Chernobyl region (in blue, 
Figure 5) with respect to this central haplotype, we considered it as 
the ancestral haplotype.

We detected a discrepancy between the structure of the CEZ 
haplotype network and those of all other populations, since the 
population sampled in Slavutych segregated similarly to populations 
from other European areas analyzed by Dufresnes et al. (2016): the 
largest haplotype was the central haplotype, surrounded by many 
one substitution step rare haplotypes (Figure 5; green and blue). 
These populations outside the CEZ are in demographic expansion, 

as confirmed by the rejection of the equilibrium mutation/drift hy-
pothesis (Tajima's D = −2.2180, p < 0.01; Fu and Li D* = −4.4028, p 
= 0.002; R2 = 0.0289, p = 0.001). In contrast, the CEZ populations 
present a different pattern represented by haplotypes at one and 
two steps from the central haplotype, shared by many individuals 
(Figure 5, in red), and these populations are not in demographic ex-
pansion (Tajima's D = −0.5641, p = 0.332; Fu and Li D* = −1.4653, p 
= 0.089; R2 = 0.0663, p = 0.357).

3.5  |  Small populations and elevated mutation rate 
in the CEZ

During the first simulation with classical wild frog population prior 
parameters, simulated haplotype networks did not match the ob-
served one, the closest Euclidean distance being 11.13. The diver-
sity of CEZ populations cannot thus be obtained with this first set of 
parameters (Figure 6a, c and Figure S8).

In contrast to the first simulation, PCA obtained from the sec-
ond simulation displayed a match between the haplotype network 
statistics of the simulated and observed data. Indeed, the observed 
data was in the space of simulated data based on the two first princi-
pal components supporting around 90% of variance (Figure 6b). The 
closest distance was 0.52 and the median of descriptive statistics for 
the 5 percentile closest simulated values presented important sim-
ilarity with observed values (Figure S9). Considering the posterior 
parameters estimated, the diversity of CEZ populations and the par-
ticular haplotype network (Figure 6d) for the studied mitochondrial 
marker can thus be obtained in 15 generations with a small popula-
tion (Nmax =100) and a high nucleotide substitution rate of 0.04 per 
haplotype per generation (Figure S10).

4  |  DISCUSSION

Several studies have shown that in the CEZ, where all human resi-
dents have been evacuated, large mammals in particular are reap-
pearing, doubtless due to a decrease in human disturbance to wildlife 
(Deryabina et al., 2015; Gashchak et al., 2016, 2017; Shkvyria & 
Vishnevskiy, 2012). Conversely, other studies have shown a de-
crease in the abundance of some species in the CEZ (birds, Møller 
& Mousseau, 2007; insects, Møller & Mousseau, 2009; mammals, 
Møller & Mousseau, 2013). There is still no consensus about the 
long-term consequences of the Chernobyl NPP accident, and the ef-
fects of exposure to ionizing radiation on population status remain 
controversial. To date, very few studies have focused on the evolu-
tionary processes occurring in natural populations that underwent 
chronic exposure since the 1986 Chernobyl NPP accident. To the 
best of our knowledge, our study is the first in the Chernobyl re-
gion (i) investigating the evolutionary processes of CEZ populations, 
in comparison to the global European evolution of the closest line-
age to which they belong, (ii) using both qualitative and quantitative 
mitochondrial genetic information and quantitative nuclear genetic 



210  |    CAR et al.

information to estimate the best evolutionary scenario responsible 
of the observed pattern.

4.1  |  A higher mtDNA diversity in the CEZ driven 
by mutation process

In contrast to the expected genetic erosion induced by wildlife ex-
posure to a pollutant (Straalen & Timmermans, 2002), our results 
did not show a genetic bottleneck of H. orientalis populations in 
the CEZ compared to the other European populations studied by 
Dufresnes et al. (2016). We found a higher mitochondrial genetic 
diversity for the populations in the CEZ, while similar nuclear ge-
netic diversity was observed between CEZ populations and other 
European populations. These results on mitochondrial diversity 
agree with the increased mitochondrial genetic diversity observed 
in bank voles, Myodes glareolus, from the most contaminated areas 
of the CEZ (Baker et al., 2017). A higher diversity can be explained 
by two evolutionary processes: migrations from multiple distinct and 
distant populations, or a local higher mutation rate. Because of the 
discrepancy between nuclear and mitochondrial markers, the muta-
tion process seems to be the best explanation for this higher diver-
sity (Canestrelli et al., 2006; Toews & Brelsford, 2012).

Indeed, repair mechanisms in mtDNA are usually considered less 
effective than in nDNA (Kazak et al., 2012; Larsen et al., 2005) nota-
bly because of variations in replication mechanism (i.e., low fidelity 
of the DNA polymerase γ) and a higher number of genome repli-
cations per generation, especially during oocyte maturation (Allio 
et al., 2017). Thus, the emergence of a mutagenic factor in the envi-
ronment can induce mutations on mtDNA without increasing nDNA 

mutations at the same rate. The same kind of difference between 
these two types of DNA has already been observed in subterranean 
waterlice (Saclier et al., 2020). When these species were exposed 
to natural radioactivity, the mutation rate across genome increased 
by 60% for mtDNA but by 30% for nDNA. A high migration rate 
of animals toward the CEZ would increase both mitochondrial and 
nuclear diversity, a pattern that does not correspond with our ob-
servations. Hence, an increased mutation rate in the CEZ is the most 
likely explanation for the local genetic novelty and increased genetic 
diversity for mtDNA and not for nDNA.

4.2  |  A genetic structure consistent with a higher 
mutation rate in the CEZ

Mitochondrial and nuclear markers differ also in their range of dif-
ferentiations between populations, but not in the relative structure 
of these populations. Indeed, based on pairwise Fst values, the most 
differentiated populations using mtDNA markers are highly differ-
entiated (>0.4), but not when using nDNA (<0.1). The general struc-
ture of these populations is quite similar within the CEZ between 
mitochondrial and nuclear markers (Figure 4a, b), and for the two 
types of markers, isolation by distance is not rejected. In amphibians, 
dispersion is usually male-biased (reviewed by Helfer et al. (2012), 
but see Honeycutt et al. (2019)). Since mtDNA is transmitted by fe-
males, in case of a strong migration process, there would have been 
a discrepancy between the relative nuclear and mitochondrial popu-
lation genetic structure. These results, thus, confirm the absence of 
a strong tree frog migration process coming from outside the CEZ, 
and reaffirm the role of mutation processes occurring on mtDNA. 

F I G U R E  3  Correlation plots representing genetic diversity estimates on population-averaged dose rate (ATDR) in µGy/h. Only 
populations of the Chernobyl region (i.e., CEZ (red dots) and Slavutych (green diamonds), Figure 1b) with sample size >7 individuals were 
compared. (a) Mitochondrial nucleotide diversity estimates (i.e., the probability that two randomly chosen nucleotides of the cytochrome b 
at a homolog position are different (Nei, 1987; Tajima, 1983)) on ATDR of the corresponding population. Nucleotide diversity is positively 
correlated to ATDR (S = 294, rho = 0.6397, p = 0.007). (b) Mitochondrial haplotype diversity estimates (i.e., the probability that two 
randomly chosen haplotypes of the cytochrome b are different (Nei, 1987)) on ATDR of the corresponding population. Haplotype diversity is 
not correlated to ATDR (S = 658, rho = 0.1936, p = 0.455). (c) Nuclear genetic diversity (Hs) was estimated on the 21 microsatellites markers 
(Nei, 1987) on ATDR. Genetic diversity is not correlated to ATDR (S = 194, rho = −0.6167, p = 0.086)

ATDRs (µGy.h-1) ATDRs (µGy.h-1) ATDRs (µGy.h-1)

S = 294, rho = 0.6397, p = 0.007 S = 658, rho = 0.1936, p = 0.455 S = 194, rho = -0.6167, p = 0.086
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The presence of mitochondrial haplotypes exclusive to the CEZ—in 
contrast to previous studies on bank voles (Wickliffe et al., 2002)—
and the absence in the Chernobyl region of haplotypes shared with 
populations outside the Chernobyl region (except ancestral haplo-
type), support also the hypothesis of absence of numerous long mi-
gration between CEZ and other areas. In this way, the mutation/drift 
balance explains the higher differentiation found in mtDNA popula-
tion structure.

4.3  |  Substitution rate and population size 
at the origin of a “refugia-like” population

The mitochondrial haplotype network of the CEZ tree frog popu-
lations showed a striking structure that differs from what can be 

expected from the global demographic expansion of the clade D4 
(Dufresnes et al., 2016; Stöck et al., 2012). This structure is similar 
to an ancient diversified population, demographically stable even 
during the last glacial maximum (Batalha-Filho et al., 2012; Pulido-
Santacruz et al., 2016). However, it is unlikely that the Chernobyl 
region would have acted as a refuge zone regarding the global evo-
lutionary history of the Hyla orientalis species (Dufresnes et al., 
2016) and the possible recent impact just after the 1986 Chernobyl 
nuclear accident on amphibians (Geras’kin et al., 2008; Vojtovich, 
2001). The results of our simulation suggest that a strong mutation 
rate coupled with populations of small sizes might be responsible 
for the establishment of the CEZ haplotype network structure. 
Our haplotype network simulation obtained the observed CEZ 
haplotype network pattern in 30  years from control local popu-
lations identifying two important parameters, a strong nucleotide 

F I G U R E  4  Genetic structure of the 19 populations of Eastern tree frogs from CEZ and Slavutych. Neighbor-joining trees were 
constructed from genetic distances calculated as Fstposi∕

(

1 − Fstposi

)

 with Fstposi equal to the addition of Fst and the absolute value of the lowest 
Fst in order to avoid negative values and respect proportionality of pairwise Fst. (a) Neighbor-Joining tree of CEZ (purple and pink) and 
Slavutych (green) populations from cytochrome b (mtDNA). (b) Neighbor-Joining tree of CEZ populations (red) from microsatellites (nDNA). 
(c) AMOVA analysis conducted on Year and Geographical groups on mtDNA. Stars represent significance calculated from Arlequin with 
1023 permutations (Excoffier et al., 2005) (***: sign <0.001). Year groups are 2016, 2017, 2018 (2016: yellow, 2017: orange, 2018: red) and 
geographical groups are north close to the Chernobyl Nuclear Power Plant (radiation warning symbol), south distant from the north and 
Slavutych (north: purple, south: pink, Slavutych: green)

2016

North

South

Slavutych

2018
2017

Source of variation

Among groups

Among populations within groups

Within populations

Total

Variation (%)

2.00 (N.S.)

14.26 (***)

83.73 (***)

d.f.

2

16

204

222

Sum of squares

10.111

48.707

209.577

268.395

Variance components

0.02459

0.17502

1.02734

1.22695

Variation (%)

12.27 (***)

7.88 (***)

79.85 (***)

d.f.

2

16

204

222

Sum of squares

23.288

35.530

209.577

268.395

Variance components

0.15786

0.10145

1.02734

1.28665

Years Geography

(a) (b)

(c)

0.1 0.01

Belarus

Ukraine

Belarus

Ukraine



212  |    CAR et al.

substitution per haplotype per generation of 0.04 and populations 
of small effective size inferior to 100 individuals (Figure 6). We 
noticed a better match between the observed network and the 
simulated network after 15  generations instead of 10. However, 
the age of H.orientalis has been studied in Turkish populations and 
the majority of breeding females were 3  years old (Altunisik & 
Özdemir, 2013; Özdemir et al., 2012). Unfortunately, in the case 
of the CEZ, we have no information about the age of breeding fe-
males, but breeding at 3 years would correspond to 10 generations 
from the accident. We can thus wonder if the CEZ female tree frogs 
start to breed at 2 years in order to speed up life-history strategy. 
A shorter generation time may be an adaptive response to cope 
with the accumulation of damage in stressful environments (Brans 
& Meester, 2018; Dutilleul et al., 2017), as those with radioactive 
contamination.

4.4  |  Can ionizing radiation be at the origin of the 
increase in substitution rate in the CEZ?

The mitochondrial evolutionary pattern of the CEZ populations, 
which seems to be the result of a dynamic comparable to an acceler-
ated evolution, is not observed outside the CEZ.

Slavutych's tree frog populations that are geographically close 
to the CEZ populations do not show the same haplotype structure 

and did not present any case of heteroplasmy, contrary to the CEZ 
populations. Knowing the mutagenic ability of ionizing radiation 
(Breimer, 1988), it seems highly likely that the increase in mito-
chondrial substitution rate by several hundreds of times compared 
to the mitochondrial substitution rate normally observed in am-
phibians has been caused by ionizing radiation. Nevertheless, this 
study does not allow specifying exactly the relationship between 
the artificial radionuclide exposure and the evolutionary processes 
estimated from genetic variations. The positive correlation be-
tween mitochondrial nucleotide diversity and ATDRs (currently 
ranging in the frog samples at the CEZ from 0.007 to 22.4 µGy/h) is 
in agreement with an effect of ionizing radiation on genetic diver-
sity, but there is no significant correlation between mitochondrial 
haplotype genetic diversity and ATDRs contrary to the results of 
Baker et al. on bank voles between haplotype genetic diversity and 
ambient dose rate (Baker et al., 2017). The ATDR seems to be the 
most relevant dose rate estimator for a population over a time pe-
riod, but it does not account for exposure of previous generations 
that occurred since the accident, even though possible transgener-
ational effects (Hancock, Vo, Byun et al., 2019; Hancock, Vo, Omar-
Nazir et al., 2019; Sakauchi et al., 2020) and evolutionary processes 
should be dependent of these historical doses. Because our meth-
odology permitted us to observe only germinal substitutions (the 
PCR is blind to low-frequency polymorphism in the DNA sample), or 
rare cases of somatic substitutions early in the development, these 

F I G U R E  5  Haplotype network constructed for Eastern tree frog cytochrome b sequences from CEZ (red), Slavutych (green) populations, 
and European populations sampled by Dufresnes et al. (2016) (blue) using the Median-Joining method (Bandelt et al., 1999) and POPART 
software (Leigh & Bryant, 2015). Circles representing haplotypes, their diameter is proportional to the number of individuals and the number 
of horizontal bars between haplotypes representing the number of nucleotides differing between haplotypes. The network structure can 
inform on the demographic status of populations: when the central haplotype is large compared to the surrounding haplotypes and lot 
of one step rare haplotypes surround this central haplotype (e.g., Slavutych and European populations), it is an indication of demographic 
expansion; if the central haplotype is not mainly represented and if there are a lot of two or three steps large haplotypes, it is an indication of 
a population at the equilibrium mutation/drift and this population is often formerly diversified (CEZ populations)

10 samples

1 sample

Outside
CEZ
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substitutions are not only caused by current exposure to artificial 
radionuclides, but are also the result of mutations accumulated by 
individuals exposed to ionizing radiation in previous generations. 
There is no information on local tree frog population genetics be-
fore the accident and, thus, we cannot exclude uncertainties on the 
determination of the magnitude of the genetic modifications even 
if the use of Slavutych populations as a proxy of ancestral popu-
lations appears consistent. To fully understand the implication of 
ionizing radiation on the modification of the intensity of evolution-
ary processes, it should be valuable to compare these results with 
similar studies conducted in other radio-contaminated places like 
the Fukushima prefecture in Japan.

4.5  |  The key role of mitochondrial DNA in 
evolutionary ecotoxicology

Our results show that the visible higher genetic diversity may not 
correspond to a classical evolutionary scenario (i.e., an ancestral 
population) and that mitochondrial markers are useful to assess the 
mutagenic effect of ionizing radiation (Kam & Banati, 2013). Previous 
studies (e.g., Fuller et al., 2019) did not find any significant positive 
correlation between absorbed radiation (ATDRs ranging from 0.064 
to 26.4 µGy/h) and nuclear genetic diversity in the freshwater crus-
tacean Asellus aquaticus from the Chernobyl region. This study con-
cluded that the exposure to ionizing radiation has not significantly 

F I G U R E  6  Mitochondrial haplotype network simulation. (a) Representation of observed (black circle) and simulated (colored open circles) 
data with a classical amphibian mitochondrial nucleotide substitution rate (20.37 × 10−9 per nucleotide per generation), a population size 
sampled in a uniform distribution U(1000–5000), and starting from the H18 (orange) or G18 (green) population haplotype frequencies on 
the two first axis of a PCA made on a set of haplotype network statistics. The observed data are not in the space of the simulated data. 
(b) Representation of observed (black circle) and simulated (colored circles) data with a high mitochondrial nucleotide substitution rate 
(0.005, 0.01, 0.02, 0.04, 0.06, 0.08) and small population size (sampled in a uniform distribution U(50,100), U(100,200), or U(200,300)) 
for 10 (red) and 15 (blue) generations on the two first axis of a PCA made on a set of haplotype network statistics. The observed data is 
in the space of the simulated data. (c) One example of haplotype network evolutionary scenario of a simulated population starting from 
G18 population haplotype frequencies as prior with a classical amphibian substitution rate and populations sizes in the range of uniform 
distribution U(1000–5000) (d) One example of haplotype network evolutionary scenario of a simulated population starting from G18 
population haplotype frequencies as prior with a high substitution rate (0.04) and a maximal effective size of 100 (for prior (red) and 10 
(green) and 15 (blue) generations after the Chernobyl nuclear power plant accident)
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influenced genetic diversity in A. aquaticus in the Chernobyl area. 
The analyses of mitochondrial markers might have provided other 
complementary information pointing toward a mutation process 
as shown in our study on H. orientalis. Mitochondrial markers are 
thus an important tool for estimating the modification intensity of 
evolutionary processes, but also the probable consequences of mi-
tochondrial mutations on individuals and populations. In humans, 
mtDNA mutations are responsible for several mitochondrial dis-
eases like optic neuropathy (Johns & Neufeld, 1991), MELAS (Hirano 
& Pavlakis, 1994), and MERRF syndromes (Shoffner et al., 1990). 
Because of the possible presence of different mtDNA in a single cell, 
disease symptoms associated with mtDNA mutation could be gener-
ated by quantitative changes in the proportion of mtDNA mutants 
(Picard et al., 2014). Moreover, at the population level, the maternal 
transmission of mtDNA can prevent selection against mutations, 
which are deleterious only when expressed in males (Innocenti et al., 
2011) and can lead to a decrease in population viability (Gemmell & 
Allendorf, 2001).

4.6  |  The necessity of a large space and time scales

Genetic diversity can be sensitive to many environmental param-
eters (Meeks et al., 2009) and considering a global phylogeographic 
context could help to overcome this issue. Examining only CEZ and 
Slavutych tree frog populations would have been insufficient to 
draw reliable conclusions about evolutionary processes. However, 
by putting local estimations of genetic diversity of tree frogs (i.e., in 
the Chernobyl region) in a global phylogeographic context for the 
species, we were able to get a more accurate picture of the putative 
effects of radio-contamination on genetic variations and thus poten-
tial evolutionary processes of tree frog populations in the CEZ. Our 
simulation data show the need for a certain duration of exposure 
to radiation, as well as the role of other factors like population size, 
generation time, and the mutation rate, to obtain a network pattern 
similar to that observed in the CEZ (Figure 6d). It is possible that, 
depending on the life history of the organisms, genetic effects are 
different and/or not fully visible. Such difference might explain other 
recent findings showing an absence of visible radiation-induced mi-
tochondrial microevolution (Newbold et al., 2019).

5  |  CONCLUSIONS

Our study on the genetics of the Eastern tree frog populations in 
the CEZ suggests the existence of a strong mutation process on 
mitochondrial DNA, resulting in an unexpected genetic structure 
of the CEZ populations comparing to other European populations. 
One challenge now is to understand the possible consequences of 
this genotypic effect on population status. Due to the crucial role 
of mitochondria (Roubicek & Souza-Pinto, 2017), it seems unlikely 
that these levels of mutation rate do not result in deleterious ef-
fects. The small population size predicted by our simulation may be 

a consequence of the elimination of nonviable individuals at birth, 
or due to other deleterious effects of ionizing radiation such as a re-
duction in breeding success (see e.g., Mappes et al., 2019) or pheno-
typic disadvantage of mutations (Ballard & Pichaud, 2014; Dowling, 
2014). If the effects of these mutations do not fully compromise the 
maintenance of tree frog populations, it is not necessarily true for 
other organisms with different life history. With their large clutch 
sizes (up to 600 eggs per female per year; Broquet et al., 2009), tree 
frogs seem to be effective at supporting the deleterious effects of 
mutations, but it might not be the case for organisms with smaller 
litters for example. More detailed studies on species with differ-
ent life-history parameters are clearly needed to have a full picture 
of the eco-evolutionary effects of wildlife exposure to radioactive 
contamination.
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