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Abstract

Background: Population-based state cancer registries are an authoritative source for cancer statistics in the United States. They 
routinely collect a variety of data, including patient demographics, primary tumor site, stage at diagnosis, first course of treatment, 
and survival, on every cancer case that is reported across all U.S. states and territories. The goal of our project is to enrich NCI’s 
Surveillance, Epidemiology, and End Results (SEER) registry data with high-quality population-based biospecimen data in the form 
of digital pathology, machine-learning-based classifications, and quantitative histopathology imaging feature sets (referred to here as 
Pathomics features). Materials and Methods: As part of the project, the underlying informatics infrastructure was designed, tested, 
and implemented through close collaboration with several participating SEER registries to ensure consistency with registry processes, 
computational scalability, and ability to support creation of population cohorts that span multiple sites. Utilizing computational 
imaging algorithms and methods to both generate indices and search for matches makes it possible to reduce inter- and intra-observer 
inconsistencies and to improve the objectivity with which large image repositories are interrogated. Results: Our team has created and 
continues to expand a well-curated repository of high-quality digitized pathology images corresponding to subjects whose data are 
routinely collected by the collaborating registries. Our team has systematically deployed and tested key, visual analytic methods to 
facilitate automated creation of population cohorts for epidemiological studies and tools to support visualization of feature clusters 
and evaluation of whole-slide images. As part of these efforts, we are developing and optimizing advanced search and matching 
algorithms to facilitate automated, content-based retrieval of digitized specimens based on their underlying image features and staining 
characteristics. Conclusion: To meet the challenges of this project, we established the analytic pipelines, methods, and workflows to 
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support the expansion and management of a growing repository of high-quality digitized pathology and information-rich, population 
cohorts containing objective imaging and clinical attributes to facilitate studies that seek to discriminate among different subtypes of 
disease, stratify patient populations, and perform comparisons of tumor characteristics within and across patient cohorts. We have 
also successfully developed a suite of tools based on a deep-learning method to perform quantitative characterizations of tumor 
regions, assess infiltrating lymphocyte distributions, and generate objective nuclear feature measurements. As part of these efforts, our 
team has implemented reliable methods that enable investigators to systematically search through large repositories to automatically 
retrieve digitized pathology specimens and correlated clinical data based on their computational signatures.

Keywords: Cancer registries, computational imaging, deep-learning, digital pathology

IntroductIon
The NCI’s Surveillance, Epidemiology, and End Results 
(SEER) program is a coordinated system of 19 cancer 
registries that is charged with providing timely and accurate 
data regarding cancer incidence, mortality, treatment, 
and survival. Pathology datasets currently available in 
the SEER registries are qualitative in nature, consisting 
of scoring and staging data captured in normal registry 
abstracts and pathology reports. Such datasets are generally 
subject to inter-observer variability, which can result in 
biases in population-wide studies of cancer incidence, 
mortality, survival, and prevalence. The main goal of our 
project is to enrich SEER registry data with high-quality 
population-based digital biospecimen data in the form of 
pathology tissue images and detailed computational tissue 
characterizations and features (also referred to as Pathomics 
features) derived from the images. Examples of Pathomics 
data include detailed characterizations of cancer and 
stromal nuclei and quantification and mapping of tumor-
infiltrating lymphocytes (TILs) along a supplementary 
histology classification generated through deep-learning 
algorithms. These data will augment existing registry data 
with quantitative features obtained directly from clinically 
acquired whole slide tissue images and provide detailed and 
nuanced information on tumor histology.

The scientific premise motivating this work is that the 
incorporation of quantitative digital pathology into the 
cancer registries will result in a valuable population-wide 
dataset that can provide additional insight into the underlying 
characteristics of cancer. Next Generation Sequencing 
(NGS) technologies have captured much attention of the 
clinical community for their capacity to provide insight as 
to personalized choice in treatment and therapy. A  major 
limitation of NGS technologies is that they obliterate the 
spatial information associated within and throughout the 
tumor environment. Histopathology and immunostaining 
localization techniques preserve this information which is 
invaluable in making accurate determinations. In fact, it is 
through the process of histopathology examination that 
tumor margins/volumes are determined by pathologists prior 
to the NGS analysis. These parameters are subsequently used 
to help guide decisions regarding appropriate cut-offs for allele 
frequencies and drive other components of the overall analysis. 
Pathomics features extracted from high-resolution pathology 
images are a quantitative surrogate of what is described in 

a pathology report. The important distinction is that these 
features are reproducible, unlike human observations, which 
are highly qualitative and subject to a high degree of inter- 
and intra-observer variability. The importance of increasing 
reproducibility and reducing inter-observer variability in 
pathology studies has been previously reported.[1-26] Moreover, 
many studies have demonstrated that quantitative image 
characterizations (e.g., nuclear features, patterns of TILs) are 
promising biomarkers which can be used to predict outcome 
and treatment response, if available in a large population.[27-39] 
These biomarkers integrated with clinical and genomics data 
can provide new opportunities to enhance our understanding 
of cancer incidence, mortality, survival, along with statistical 
characterizations of lifetime risk, and to improve prediction 
and assessment of therapeutic effectiveness.

Our project began as collaboration among investigators 
within the state cancer registries of New Jersey, Georgia, 
and Kentucky. The consortium of partnering sites has 
recently expanded to include the newly established New 
York Cancer Registry. In this collaborative effort, we are 
implementing a framework of data curation and analysis 
workflows, computational imaging tools, and informatics 
infrastructure to support the creation and management of a 
well-curated, integrated repository of high-quality digitized 
pathology images and Pathomics features, for subjects whose 
data are being collected by the registries. The framework is 
being developed in close collaboration with SEER registries 
to ensure that it is scalable and in-line with existing registry 
processes and can support queries and the creation of 
population cohorts that span multiple registries.

In our framework, whole slide tissue images in the repository 
are systematically processed to compute Pathomics data 
and to establish linkages with registry data. The current set 
of Pathomics data includes (1) quantification of TILs, (2) 
segmentation and computational description of cancerous 
and stromal nuclei, (3) segmentation of tumor regions, (4) 
characterization of regional Gleason grade for prostate 
cancer, and (5) identification of non-small cell lung cancer 
(NSCLC) adenocarcinoma subtypes. This initial set is 
primarily motivated by an increasing number of scientific 
studies that investigate TILs and the relationships among 
TILs, tumors, and nuclear structure of tissue.[40-45] Such 
investigations can provide important information to 
advance our understanding of immune response in many 
cancer types. In the future, additional Pathomics features, 
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such as the spectral and spatial signatures of staining 
characteristics exhibited by the digitized specimens, will 
be incorporated into our framework.

The informatics infrastructure for this project is being built 
on open-source software and leverages modern software 
technologies, such as containerization and web-based 
applications, for a scalable, extensible implementation.[46,47] 
The infrastructure facilitates visualization of high-
resolution whole slide tissue images along with associated 
Pathomics datasets. User authentication and access 
controls are implemented to thwart unauthorized access 
to data. The informatics infrastructure is being expanded 
to include tools to support content-based image retrieval.

Presently, the repository manages diagnostic whole slide 
tissue images and analysis results obtained from 772 
prostate cases, 1410 NSCLC cases, 70 breast cancer cases, 
and 48 lymphoma cases from the New Jersey State Cancer 
Registry and from 198 breast cancer cases from the 
Georgia State Cancer Registry. The scientific validation 
of the proposed environment will be undertaken through 
performance studies led by investigators throughout the 
four collaborating sites with an overarching focus on 
breast cancer, colorectal cancer, lymphoma, melanoma, 
NSCLC, and prostate cancer. We are confident that this 
repository will enable effective integration of pathology 
imaging and feature data as an invaluable resource in 
SEER registries.

In the rest of the paper, we describe the design and 
implementation of the key components of the framework: 
the data curation and analysis processes, the initial set of 
image analysis methods, and the underlying informatics 
infrastructure for data management and visualization.

MaterIals and Methods

Aggregation, quality control, and linkage of image data
The first component of our framework is the curation of 
pathology imaging data and linkage with other data from 
the cancer registries. Image quality control is an essential 
step, because specimen preparation protocols and tissue 
scanning procedures may result in imaging artifacts and 
variations in image quality. We devised and refined a 
workflow to facilitate the collection and quality control 
of digitized tissue specimens and linkage of images with 
correlated data extracted from the cancer registries. Here 
we describe the workflow deployed at Rutgers and the 
New Jersey SEER registry; the other sites—Georgia, 
Kentucky, and New York—are incrementally adopting 
analogous workflows as approved by their SEER registries 
and Institutional Review Boards (IRBs).

Figure 1 depicts an instance of the workflow. Specimen 
retrieval and imaging are coordinated at the Biomedical 
Informatics Shared Resource (BISR) of Rutgers Cancer 

Institute of New Jersey (RCINJ). Breast, colorectal, lung, 
melanoma, and prostate cancer cases suitable for the project 
exhibiting well-defined tumor type and diagnoses are 
selected by a pathologist at the RCINJ and Rutgers Robert 
Wood Johnson Medical School. Cases within approximately 
a 2-year window are retrieved from onsite storage, whereas 
others are requested from offsite storage with the help 
of BioSpecimens Repository Service of RCINJ. After a 
certified pathologist selects suitable slides according to 
requirement of each cancer type—e.g., prostate cancer 
specimens are selected according to the Gleason grade—the 
specimens are imaged with an Olympus VS120 whole slide 
scanner with no protected health information appearing in 
image filename, image metadata, or the images themselves.

Team members from the BISR and NJCR perform cross-
specialty review of the data for quality control. A secure, 
IRB-approved, Oracle-based (Redwood Shores, CA, USA) 
Clinical Research Data Warehouse is used at Rutgers 
to facilitate review of imaging and correlated clinical 
information on an individual patient basis or as part of 
large cohorts. The data warehouse has been commissioned 
to house multimodal data (genomics, digital pathology, 
radiology images). It orchestrates aggregation of information 
originating from multiple data sources including Electronic 
Medical Records, Clinical Trial Management Systems, 
Tumor Registries, Biospecimen Repositories, Radiology 
and Pathology archives, and Next Generation Sequencing 
services [Figure 2]. Innovative solutions were implemented 
in the warehouse to detect and extract unstructured clinical 
information that was embedded in paper/text documents, 
including synoptic pathology reports. The Warehouse 
receives objective oversight by a standing Data Governance 
Council.[48] An Informatica-based (Redwood City, CA, 
USA) extraction transformation and load interface (ETL) 
has been developed to automatically populate the Data 
Warehouse with data elements originating from the multi-
modal data sources. This past year our team worked closely 
with the Google Healthcare team to successfully create 
and test an instance of the Data Warehouse on the Google 
Cloud Platform (GCP). In May 2020, we demonstrated the 
scalability of the cloud-based ETL, Warehouse, and Data 
Mart. As part of the project, our team will expand the use 
of the Warehouse by configuring it to integrate digitized 
pathology specimens with data originating from all of the 
collaborating cancer registries.

The images and cases are linked through deidentified ID 
sequences. The New Jersey State Cancer Registry receives 
the deidentified ID as well as case information including 
specific surgery number and date, so that after data retrieval 
and decoding encrypted fields, the deidentified ID is linked 
with clinical data associated with the case and, more 
specifically, with the diagnostic surgery. This ensures that 
the cancer specimen images are associated with the correct 
staging of the disease at the time of diagnosis so that it 
can be used in downstream research. The total corpus of 
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data comprising the linked data sets encompasses more 
than 150 data elements, including the de-coded NAACCR 
data, as shown in Table 1. The de-identified images are 
analyzed through a set of deep-learning analysis pipelines 
as described in the subsequent sections.

Extraction of Pathomics features
Development of tissue image analysis methods is a highly 
active area of research and implementation. A  variety 

of analysis methods for segmentation and classification 
of objects, regions, and structures (such as nuclei, 
tumors, glands) in tissue images have been developed. 
Excellent overviews of existing techniques can be found 
in several review papers.[49-55] Deep-learning-based analysis 
approaches have become popular, because deep-learning 
methods have been shown to outperform traditional image 
analysis methods in many application domains, including 
digital pathology. Our current tissue image analysis 

Figure 2: Clinical Research Data Warehouse workflow. The research data warehouse aggregates information from multiple data sources such as 
electronic health records, tumor registries, and radiology and pathology archives. It facilitates review of imaging data and linked clinical data on a 
single patient or cohort basis

Figure 1: Workflow for assembling linked image/data cohorts
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library consists of deep-learning methods developed by 
our group to classify patterns of TILs,[56,57] segment tumor 
regions, classify tumor subtypes,[58,59] and segment nuclei 
in whole slide images (WSIs) of hematoxylin and eosin-
stained tissue samples.[60,61]

We should note that the analysis functionality is not 
limited to methods implemented by our group only. We 
have started with these methods because (1) they are 
based on state-of-the-art convolutional neural network 
architectures, such as VGG16,[62] Inception V4,[63] ResNet,[64] 
and U-Net,[65] (2) they have achieved high accuracy scores, 
and (3) they have been previously used, refined, and 
validated in generating large, curated Pathomics datasets. 
For example, the TIL models were developed in close 
collaboration with pathologists, who generated a large 
set of training data, evaluated analysis results, and helped 
refine the models. The final models were employed to 
produce and publish a TIL dataset from 5202 WSIs from 
13 cancer types.[56,57] The nucleus segmentation model was 
developed in a similar approach with one difference. In 
addition to manually annotated segmentations, a synthetic 
data generation method, based on generative adversarial 
networks,[66] was used to significantly increase the diversity 
and size of training data.[60] The model trained with the 
combined manual and synthetic training data was used 
to generate a quality-controlled dataset of 5 billion 
segmented nuclei in 5060 WSIs from 10 cancer types[61] in 
the Cancer Genome Atlas (TCGA) repository. We plan 
to expand the suite of analysis methods and incorporate 
state-of-the-art methods developed by other groups over 
time. Indeed, at the time of writing this manuscript, we are 
in the process of integrating and validating Hover-Net[67] 
in the framework for segmentation and classification of 
nuclei.

The current suite of TIL analysis models can resolve TIL 
distributions in a WSI at the level of 50 × 50 µm2 patches. 
The characteristics of tumor regions and the relationship 
between tumor regions and lymphocyte cells can be 

used to determine cancer stage and evaluate response to 
treatment. Our current models can segment tumor regions 
in lung, prostate, pancreatic, and breast cancer types and 
can classify tumor and non-tumor regions at the level of 
88 × 88 µm2 patches. The model for prostate cancer can 
segment and label a tumor subregion with one of the three 
Gleason scores: Benign, Grade 3, and Grade 4+5. The lung 
tumor segmentation model is able to segment and label 
a tumor subregion with one of the six tumor subtypes: 
acinar, benign, lepidic, micropapillary, mucinous, and 
solid. Nucleus segmentation is one of the core digital 
pathology analysis steps. The shape and texture properties 
and spatial distributions of nuclei in tissue specimens 
are used in cancer diagnosis and staging. Our nucleus 
segmentation model can detect nuclei and delineate their 
boundaries in WSIs. After a WSI has been processed 
by the segmentation model, we compute a set of shape, 
intensity, and texture features. We use the PyRadiomics 
library[68] to compute the patch-level features.

Management, visualization, and review of Pathomics 
features
Our data analysis workflow implements an iterative train-
predict-review-refine process to curate robust Pathomics 
features. This process is based on our earlier works in 
curating large Pathomics datasets[57,59,61] and is carried out 
as part of the training and prediction phases of the deep-
learning analysis pipelines. We developed a set of tools to 
enable the iterative process and to provide support for the 
management, indexing, and interactive viewing of WSIs 
and analysis results. The tools are implemented as a set 
of web-based applications and services in the PRISM 
and QuIP software platforms.[46,47] Using these tools, 
pathologists can inspect the output of a tumor or TIL 
analysis pipeline as full-resolution heatmap overlays on 
WSIs. A heatmap is a spatial representation of prediction 
probabilities assigned to individual image patches by the 
deep-learning model; the probability value indicates if  a 

Table 1: Representative categories and linked data elements
Source Category Representative elements 
Cancer 
Registry

Demographics age_at_dx, sex, marital_status_at_dx, race, nhia, napiia, county_at_dx, etc

 Vital information vital_status, date_of_death, primary_cause 

 Tumor information Primary_site, laterality, grade, diagnosis_confirmation

 Tumor extension 
and metastasis

cs_extension, cs_tumor_size, cs_lymph_nodes, cs_mets_at_dx

 Pathology info and 
tumor staging

histology_icdo3, behavior_icdo3, clinical and pathology staging in AJCC 6, 7, 8 and SEER staging

 Site-specific data cs_site_specific factors

 Tumor treatments Surgical, radiation, hormone, BRM, and other cancer treatment information

Imaging Pathology images Digitized representative diagnostic slides in Olympus (.vsi) and Philips (.svs?) whole slide image formats, 
including image metadata such as imaging device, optical settings and configuration, specimen staining, 
etc.

 Computational 
imaging signatures 

Tumor-infiltrating lymphocytes; tumor pattern segmentation; tumor and stromal nuclei segmenta-
tion; spatial and spectral signatures
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patch is class-positive (e.g., TIL-positive, tumor-positive). 
Figure 3 shows example heatmaps generated from the TIL 
(upper figure) and tumor (lower figure) analysis pipelines.  
Nuclear segmentation results can be viewed as polygons, 
which represent the boundaries of segmented nuclei as 
overlays on the images in QuIP [Figure 4].

Figure 5 shows how the iterative process is executed with 
QuIP. For example, after a set of WSIs are processed by 
the TIL and tumor segmentation models, the source WSIs 
and the heatmaps are loaded to QuIP for management 
and visualization. The heatmaps and WSIs are also 
transformed into feature maps. Feature maps are lower 
resolution representations of the heatmaps and WSIs in a 
four-panel image. Figure 6 illustrates an example feature 
map which combines TIL results from a VGG16 model 
and tumor segmentation results from a ResNet model. The 
upper left corner of the image is the low-resolution tissue 
image, the upper right corner is the tumor segmentation 
map, the lower left corner represents the TIL map, and 
the lower right corner is the combined and thresholded 
TIL and tumor maps. Feature maps allow a pathologist 
to review results more efficiently than examining full-
resolution images and maps. If  the pathologist sees 
potential problems with the results during this review, 
they use the web applications in QuIP to visualize the 
WSIs and heatmaps at higher resolutions. If  the review 
necessitates refinements to the model, additional training 
data are generated and added to the training dataset. 
They can annotate regions in an image using web-based 
visualization and annotation tools. Patches extracted 
from these annotations are reviewed and labeled to 
create additional training data. The model is refined by 
re-training the method with the updated training dataset.

results
The current implementation of the framework—the 
curation and analysis workflows, analysis methods, 
and informatics infrastructure—has been successfully 
deployed. The workflows and analytic methods have 
received IRB approval at all collaborating institutions. 
The framework has been employed to create a repository 
of diagnostic images from 772 prostate cases, 1410 
NSCLC cases, 70 breast cancer cases, and 48 lymphoma 
cases from the New Jersey State Cancer Registry and 
from 198 breast cancer cases from the Georgia State 
Cancer Registry. The repository also contains results from 
TIL and tumor segmentation for each image and more 
than 2.5 billion segmented nuclei from all of the images. 
For each image, there are two TIL analysis results (one 
generated from the VGG16 network and the other from 
the Inception V4 network). The images and Pathomics 
data are managed by an instance of QuIP running at 
Stony Brook for interactive visualization of images and 
Pathomics features. All of the results and images are also 
stored in Box folders to facilitate bulk data downloads.

dIscussIon and conclusIons
Evaluation of cancer control interventions in prevention, 
screening, and treatment and their effects on population 
trends in incidence and mortality hinge on accurate, 
reproducible, and nuanced pathology characterizations. 
Diagnostic and treatment guidelines also specify detailed 
measurements of TILs, nuclear grade; i.e., evaluation 
of the size and shape of the nucleus in the tumor cells, 
mitoses, and IHC staining, which are currently not 
included in cancer registry data abstraction. Presently, the 
SEER Pathology workflow, depicted in Figure 7, begins 
with normal registry abstracts and electronic pathology 
(e-Path) reports securely transmitted to the SEER 
registries. Although scoring and staging data are captured 
and made available through the registries, there have 
been numerous studies that showed a high level of inter-
observer variability among the diagnostic classifications 
rendered by pathologists, which can potentially give rise to 
biases when conducting population-wide studies. As the 
diagnosis of cancer and its immune response to therapy is 
made through tissue studies, the integration of pathology 

Figure 3: TIL and tumor analysis results displayed as a heatmap on 
the whole slide tissue image. TIL analysis results on the left and the 
tumor segmentation results on the right. The red color indicates a higher 
probability of a patch being TIL-positive (or tumor-positive) and the blue 
color indicates a lower probability
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imaging in SEER registries is critical to precisely classify 
tumors and predict tumor response to therapies.
Whole slide tissue scanning technologies have advanced 
significantly over the past 20  years.[69] They are capable 
of imaging tissue specimens at high resolution in several 
minutes, and with advanced auto-focussing mechanisms 
and automated slide trays, they can process batches of 
tissue samples with little-to-no manual intervention. 
Several studies have evaluated the utility of imaged 
tissue data in pathology workflows.[70-75] The Food and 
Drug Administration has approved a number of digital 
pathology systems for diagnostic use.[76] We expect that 
digital pathology will be employed increasingly as part 

of routine pathology workflows at hospitals and medical 
research centers. As institutions adopt digital WSIs into 
their pathology workflows, we can envision that the images 
and molecular reports will also be securely transmitted 
to the SEER registries. Within the SEER registry, images 
will be automatically processed by the suite of feature 
extraction pipelines appropriate for the type of cancer. The 
SEER database will be enhanced with quantitative features 
and the accompanying pipeline distribution version. 
SEER*DMS will be used to link and integrate cancer 
abstracts, e-Path reports, WSIs, and Pathomics feature 
sets from all reporting facilities. De-identified images and 
annotations will then be extracted for data mining and 

Figure 4: Segmented nuclei overlaid as polygons shown in blue on the WSI. Each polygon represents the boundary of a segmented nucleus

Figure 5: The iterative workflow starts with a set of patches which are extracted from whole slide tissue images and labeled for initial model training. 
Predictions from the trained model are reviewed as feature maps and heatmaps. The heatmaps are annotated to generate additional labeled patches 
which are added to the training dataset. The deep learning network is retrained with the updated training dataset to refine the model
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research use. Our work on building a repository of curated 
WSIs and Pathomics features is an important step toward 
realizing this capability. Availability of tissue images and 
Pathomics datasets will also provide an invaluable resource 
for medical education and Pathology training as well as to 
facilitate multi-disciplinary approaches, improved quality 
control, and more efficient remote and collaborative access 
to tissue information.[77,78]

The first phase of  our project focussed on the collection 
of  cases and correlated pathology specimens from the 
archives of  New Jersey State Cancer Registries and 
Rutgers Cancer Institute of  New Jersey and on targeted 
prostate and NSCLC cases. To date, we have established 
a repository of  (1) high-quality digitized pathology 
images for subjects whose data are already being 
routinely collected by the collaborating registries and (2) 
Pathomics features consisting of  patterns of  TILs, tumor 
region segmentations and classifications, and segmented 
nuclei. We have completed the initial linkages with 
registry data, thus enabling the creation of  information-
rich, population cohorts containing objective imaging 
and clinical attributes that can be mined. As part of  the 
second phase of  the effort, we have increased the number 
of  contributing state registries to include Georgia, 
Kentucky, and New York and we have simultaneously 
expanded the scope of  cancers under study by including 
melanoma, breast, and colorectal cancers. We will 
also build upon our team’s previous research efforts to 

design, develop, and optimize algorithms and methods 
that can quickly and reliably search through a growing 
reference library of  cases to automatically identify and 
retrieve previously analyzed lesions which exhibit the 
most similar characteristics to a given query case for 
clinical decision support[20-22,25,79-86] and to conduct more 
granular comparisons of  tumors within and across 
patient populations. One of  the potential advantages of 
this approach over purely alphanumeric search strategies 
is that it will enable investigators to systematically 
interrogate the data while visualizing the most relevant 
digitized pathology specimens.[32,33]

As part of the next phase of our project, we plan to 
investigate the automated nature of the full range of 
algorithms and methods for their capacity to enable 
clinicians and investigators to quickly and reliably answer 
questions such as: (a) What level of morphological 
variations are detected among a given set of tumors or 
specimens? (b) What changes in computational biomarker 
signatures occur at onset and key stages of disease 
progression? (c) What is the likely prognosis for a given 
patient population?

Software availability
The QuIP software and analysis methods are available as 
open-source codes for use by other research groups. The 
QuIP software platform can be downloaded and built 
from https://github.com/SBU-BMI/quip_distro.

Figure 6: A feature map representation of TIL and tumor analysis results generated from a WSI in the Cancer Genome Atlas repository. The low-
resolution version of the input WSI is displayed in the upper left corner. The upper right corner is the tumor segmentation map. The TIL map is 
displayed in the lower left corner. The lower right corner is the combined and thresholded TIL and tumor maps
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The codes for the analysis methods can be accessed 
from links at  https://github.com/SBU-BMI/
histopathology_analysis.
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