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A B S T R A C T

Pathological evaluation of tumor tissue is pivotal for diagnosis in cancer patients and automated image
analysis approaches have great potential to increase precision of diagnosis and help reduce human error.
In this study, we utilize several computational methods based on convolutional neural networks (CNN) and
build a stand-alone pipeline to effectively classify different histopathology images across different types of
cancer.
In particular, we demonstrate the utility of our pipeline to discriminate between two subtypes of lung
cancer, four biomarkers of bladder cancer, and five biomarkers of breast cancer. In addition, we apply our
pipeline to discriminate among four immunohistochemistry (IHC) staining scores of bladder and breast
cancers.
Our classification pipeline includes a basic CNN architecture, Google’s Inceptions with three training
strategies, and an ensemble of two state-of-the-art algorithms, Inception and ResNet. Training strategies
include training the last layer of Google’s Inceptions, training the network from scratch, and fine-tunning
the parameters for our data using two pre-trained version of Google’s Inception architectures, Inception-V1
and Inception-V3.
We demonstrate the power of deep learning approaches for identifying cancer subtypes, and the robustness
of Google’s Inceptions even in presence of extensive tumor heterogeneity. On average, our pipeline achieved
accuracies of 100%, 92%, 95%, and 69% for discrimination of various cancer tissues, subtypes, biomarkers, and
scores, respectively. Our pipeline and related documentation is freely available at https://github.com/ih-_
lab/CNN_Smoothie.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Evaluation of microscopic histopathology slides by experienced
pathologists is currently the standard procedure for establish-
ing a diagnosis and identifying the subtypes of different cancers.
Visual-only assessment of well-established histopathology patterns
is typically slow, and is shown to be inaccurate and irrepro-
ducible in certain diagnosis cases of tumor subtypes and stages
(Mosquera-Lopez et al., 2015).

* Corresponding authors.
1 Both authors contributed equally to this work.

Several recent studies attempted to employ machine learning
approaches for determining subtypes of malignancies (Esteva et al.,
2017; Yu et al., 2016). These computational approaches can be
complementary with other clinical evaluation methods to improve
pathologists’ knowledge of the disease and improve treatments
(Felipe De Sousa et al., 2013; Beck et al., 2011). For example, previ-
ous studies have shown more accurate diagnosis results are derived
by integrating information extracted from computational pathol-
ogy with patients’ clinical data for various cancer types such as
prostate cancer (Bhargava et al., 2011; Doyle et al., 2012), lung can-
cer (Hamilton et al., 2015), breast cancer (Wang et al., 2013; Dong
et al., 2014), colorectal cancer (Korbar et al., 2017), and ovarian
cancer (Janowczyk et al., 2012). In particular, computerized image
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processing technology has been shown to improve performance,
correctness, and robustness in histopathology assessments (Lemaître
et al., 2015).

While new advanced approaches have improved image recog-
nition (e.g., normal versus cancerous), the image interpretation of
heterogeneous populations still suffers from lack of robust com-
puterization approaches (Razzak et al., 2017; Carneiro et al., 2017;
Gurcan, 2016; Jiang et al., 2016). Current available automatic meth-
ods focus on classification of just one type of cancer versus the
corresponding normal condition. Although these studies achieved
reasonable accuracy in detecting normal or cancerous conditions in
specific kind of cancers, leveraging methods such as training Con-
volutional Neural Networks (CNNs)(LeCun et al., 1998), they have
certain limitations which we address in this work:

1. Developing ensemble deep learning methods to employ state-
of-the-art algorithms for improving training approaches in
diagnosis and detection of various cancer subtypes (e.g., ade-
nocarcinoma versus cell squamous lung cancer).

2. Improving the speed of deep learning, and investigating the
trade-offs between performance (i.e., the size of the training
set) and efficiency (i.e., the training speed).

3. Making decisions on selecting proper neural networks for
different types of datasets.

One of the main challenges of computational pathology is that
tumor tissue images often vary in color and scale batch effects
across different research laboratories and medical facilities due
to differences in tissue preparation methods and imaging imple-
ments (Kothari et al., 2013). Furthermore, erroneous evaluation of
histopathology images and decision-making using tissue slides con-
taining millions of cells can be time-consuming and subjective (Yu
et al., 2016; Kothari et al., 2013). In this regard, utilization of the deep
learning approaches with sufficient number of images to untangle
color information can improve the computational approaches within
a reasonable amount of time.

In addition, cancer is known to be a heterogeneous disease. i.e.,
a high degree of genetic and phenotypic diversity exists “within
tumors” (intra-tumor) and “among tumors” (inter-tumor) (Polyak,
2011). Tumor heterogeneity leads to an important effect of disease
progression and resistant responses to targeted therapies (Hardiman
et al., 2016). We also aim to evaluate deep learning approaches for
discrimination of digital pathology images from intra- and inter-
tumor heterogeneous samples.

Deep learning approaches are emerging as leading machine-
learning tools in medical imaging where they have been proven
to produce precious results on various tasks such as segmentation,
classification, and prediction (Greenspan et al., 2016). In this
paper, we present an innovative deep learning based pipeline,
CNN_Smoothie, to discriminate various cancer tissues, subtypes, and
their relative staining markers and scores. We utilize the patho-
logical images which stained by immunohistochemical markers of
tumor differentiation to train CNNs for analyzing and identifying
specific clinical patterns in different staining markers and scores
of breast and bladder cancers. In addition, we applied deep learn-
ing methods on immunohistochemistry (IHC) and hematoxylin &
esoin (H&E) stained images of squamous cell carcinoma and lung
adenocarcinoma to investigate the performance of various classifiers.

This is a comprehensive study of applying a wide range of CNN
architectures (all integrated in a single pipeline) on histopathology
images from multiple different datasets. We evaluate performance of
different architectures to detect and diagnosis of tumor images. Our
results clearly demonstrate the power of deep learning approaches
for distinguishing different cancer tissues, subtypes, IHC markers
and their expression scores. Source codes and documentation of our

pipeline containing training, evaluation and prediction methods are
publicly available at https://github.com/ih-_lab/CNN_Smoothie.

2. Materials and Methods

2.1. Histopathology Images Resource

Our datasets come from a combination of open-access
histopathology images, The Stanford Tissue Microarray Database
(TMAD) and The Cancer Genome Atlas (TCGA). A total of 12,139
whole-slide stained histopathology images were obtained from
TMAD (Marinelli et al., 2007). TMA database enables researchers
have access to bright field and fluorescence images of tissue
microarrays. This archive provide thousand human tissues which
are probed by antibodies simultaneously for detection of protein
abundance (immunohistochemistry; IHC), or by labeled nucleic
acids (in situ hybridization; ISH) to detect transcript abundance. The
extracted data included samples from three cancer tissues: (1) lung,
(2) breast, comprising five biomarker types (EGFR, CK17, CK5/6, ER,
and HER2), and (3) bladder with four biomarker types (CK14, GATA3,
S0084, and S100P). Characteristics of all three cohorts and the com-
prised classes are summarized in Table 1. From the extracted TMA
datasets, one dataset is stained by H&E method (BladderBreastLung)
and one dataset is stained by both H&E and IHC methods (TMAD-
InterHeterogeneity). The remaining datasets (BladderBiomarkers,
BreastBiomarkers, BladderScores, and BreastScores) are stained by
IHC markers including different polyclonal antiserums such as CK14,
GATA3, S0084, S100P, EGFR, CK17, CK5/6, ER, and HER2 for their
related proteins which play critical roles in tumor progression.

The markers are widely used in clinical immunohistochemistry as
biomarkers for detection of various neoplasm types (Higgins et al.,
2007; Vandenberghe et al., 2017). Several studies have acquired
the expressions of biomarkers in biopsy samples of various cancer
types to improve the distinction of specific pathological subtyp-
ing and understanding of molecular pathways of different cancers.
For example, we can refer to the attempts made to discriminate
morphologic subtyping of non-small call lung carcinoma (NSCLC),
lung adenocarcinoma (LUAD) versus lung squamous cancer (LUSC)
(Scagliotti et al., 2008; Khayyata et al., 2009; Conde et al., 2010;
Fatima et al., 2011). Antiserums staining tissue are sub-classified
according to the staining grade. Each tissue sample in this cohort
was scored by a trained pathologist using a discrete scoring system
(0, 1, 2, 3). A score zero represents no significant protein expression
(negative) because there is no staining color, whereas a score three
indicates high expression. Positive results were scored based on both
the extent and the intensity of staining. For score three, intense stain-
ing was required in more than 50% of the cells. Other scores including
one and two staining comprise in fewer than 50% of the total cells
(Higgins et al., 2007).

We also obtained the TCGA (Network et al., 2012, 2014) images
by extracting them from the Cancer Digital Slide Archive (CDSA)
(Gutman et al., 2013) that is accessible to the public and, at the
time of writing this, hosts 31,999 whole-slide images from 32 cancer
tissues. For the purpose of this study, we analyze 1520 H&E stained
whole-slide histopathology images as well as 1629 H&E stained high
resolution image patches (40× magnification) of two TCGA lung
cancer subtypes (i.e., LUAD versus LUSC).

2.2. Classification and Diagnostic Framework

This study presents a framework (see Fig. 1) to discriminate dif-
ferent cancer types, subtypes, immunohistochemistry markers, and
marker staining scores of histopathology images (Table 1). For the
first step of our study, the stained whole-slide images with 1504 ×
1440 and 2092 × 975 pixels were obtained from TMA and TCGA
databases, respectively. Note that we did not use any pre-processing

https://github.com/ih-_lab/CNN_Smoothie
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methods such as color deconvolution to separate the images from
staining (van der Laak et al., 2000) or any watershed algorithms to
identify cells (Vincent and Soille, 1991) manually. The whole images
directly used as the input to the pipeline.

The images are then divided in different classes based on the clas-
sification aims and the CNN algorithms are applied on these classes.
For each class, images divided in three groups including training,
validation, and test groups. For this purpose, 70% of all images are
allocated to the training group and 30% of the remaining images
devoted to validation and test sets. Although the ratio is not always
stringent due to image limitation, we set the train:validation:test
ratio to 70:15:15 while the training, validation, and test sets are
not identical and contain different images. The allocation ration was
selected 70/30 since various references (Akram et al., 2015; Lam
et al., 2014) in tumor classification concept have separated their
datasets into training and testing set with the composition of 70/30
which yields the best results.

2.3. Convolutional Neural Networks (CNNs)

In this study, we use various architectures of CNN algorithms (i.e.,
deep neural network methods). The most well-known traditional
neural networks is called the multi-layered perceptrons (MLP) that
have many layers of transformations. A neural network which con-
tains multiple hidden layers, in between the input and output, is
considered a “deep neural network”. A survey on deep neural net-
work approaches and their application in medical image analysis is
described in (Litjens et al., 2017).

Convolutional neural networks have become the technique of
choice for using deep learning approaches in medical images analysis
since the first time in 1995 by (Lo et al., 1995). Before deep neu-
ral networks (DNN) gained popularity, they were considered hard
to train large networks efficiently for a long time. Their popularity
indebted to good performance of training DNNs layer by layer in
an unsupervised manner (pre-training), followed by supervised fine-
tuning of the stacked network. In this project, we are going to utilize
DNNs for histopathology image analysis. They are the most success-
ful type of models for image analysis because they comprise multiple
layers which transform their input with convolution filters (Bengio
et al., 2007; Hinton et al., 2006; Hinton and Salakhutdinov, 2006).

A convolutional neural network is a type of deep, feed-forward
artificial neural networks which obtain simple features as input and
then return them into more complex features as output (Simard
et al., 2003). The CNNs use the spatial structure of images to share
weights across units and benefit of some parameters to be learned
a rotation, translation, and scale invariance. So, each image patch
around each image can be extracted and directly used as input to
CNNs model. One of the very first successful application of deep
CNNs was shaped for hand-written digit recognition in LeNet (LeCun
et al., 1998). Then, various novel techniques were developed for
training deep networks through efficient ways. The contribution
of Krizhevsky and his colleagues (Krizhevsky et al., 2012) to the
ImageNet challenge made a watershed advance in core computing
systems. They proposed a new architecture of CNN, AlexNet, that
won the mentioned competition in December 2012. Currently, the
CNNs with deeper architecture and hierarchical feature represen-
tation learning have made dramatic changes in object recognition
related problems (Russakovsky et al., 2014; Krizhevsky et al., 2012;
Szegedy et al., 2015; Simonyan and Zisserman, 2014; Chen et al.,
2015).

Simonyan and Zisserman (2014) explored much deeper networks
containing 19-layer model which called OxfordNet and won the
ImageNet challenge of 2014. Then, Szegedy et al. (2015) introduced
a 22-layer network named GoogLeNet which later referred to as
Inception and made use of so-called inception blocks (Lin et al.,
2013). This Inceptions family architectures allow a similar function
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Fig. 1. This flowchart demonstrates the pipeline, which includes extracting data, training and evaluation of CNN algorithms, and prediction of various classes. a: tumor image
preparation of biopsy samples, b: extracting biopsy-derived tissue slides from TMA and TCGA databases, c: analysis of images using CNN_smoothie, and d: evaluation of the
algorithms performance and annotation of the output results.

to be represented with less parameters. Also, the ResNet architecture
(He et al., 2016) won the ImageNet challenge in 2015 and consisted of
so-called ResNet-blocks. However, the majority of recent landmark
studies in the field of medical imaging use a version of GoogLeNet
called Inception-V3 (Esteva et al., 2017; Gulshan et al., 2016; Liu
et al., 2017). Recently Esteva et al. (2017) utilized a deep CNN as a
pixel-wise classifier which is computationally demanding in cancer
research to detect melanoma malignant with high performance.

The advantage of Google’s Inception architectures is their good
performance even under strict constraints on memory and complex-
ity of computational problems. For example, GoogLeNet (Szegedy
et al., 2015) used 5 million parameters, which represented a signif-
icant reduction in parameters with respect to AlexNet (Krizhevsky
et al., 2012) and VGGNet (Simonyan and Zisserman, 2014). This is the
reason of using Inception networks in big data analysis where huge
amount of data needed to be processed at reasonable time and com-
putational cost (Movshovitz-Attias et al., 2015; Schroff et al., 2015).
Various version of Inceptions are the attempt of Google team to
scale up deep networks. For example, in 2014 (Szegedy et al., 2015)
proposed Inception-V1 and then in 2015 (Ioffe and Szegedy, 2015)
revealed batch normalization. Then, the authors proposed Inception-
V2; they presented a derivative form of Inception-v2 which refers to
the version in which the fully connected layer of the auxiliary classi-
fier is also-normalized. Then, they call the new model as Inception-v3
which comprising Inception-V2 plus batch-normalization (BN) aux-
iliary (Szegedy et al., 2016). The Google team also tried various
versions of the residual version of Inception such as Inception-
ResNet-V1 which is high computational cost version of Inception-v3.
Another version is Inception-ResNet-V2 that its computational cost
matches with the newly introduced Inception-V4 network (Szegedy
et al., 2017).

2.4. Transfer Learning

Image classification was one of the first areas in which deep learn-
ing made a principal contribution to medical image analysis. In med-
ical image classification multiple images are considered as inputs
with a single diagnostic result as output (e.g., cancerous or normal).
A dataset comprising diagnostic image samples have typically bigger
sizes with smaller numbers compared to those in computer vision.
The popularity of transfer learning for such applications is therefore
not surprising that essentially refers a method with two popular and
have been widely applied strategies on medical data. Transfer learn-
ing refers to pre-train a network architecture on a very large dataset
and use the trained model for new classification tasks for a dataset
with limited size.

The first strategy includes using a pre-trained network as a fea-
ture extractor. A major benefit of this method is not requiring a deep
network to be trained and the extracted features smoothly applied to
the existing image analysis pipelines (Litjens et al., 2017). The second
strategy is fine-tuning a pre-trained network (Litjens et al., 2017).
Empirical investigation about different strategies have revealed con-
flicting results. For example, Antony et al. (2016) showed that
fine-tuning clearly outperformed feature extraction, achieving 57.6%
accuracy in multi-class grade assessment of knee osteoarthritis ver-
sus 53.4%. While, Kim et al. (2016) showed that using pre-trained
network as a feature extractor slightly outperformed fine-tuning in
cytopathology image classification (70.5% versus 69.1%). Besides, two
recent published papers presented fine-tuned method by pre-trained
version of Google’s Inception-V3 architecture on medical data and
achieved a high performance close to human experts (Esteva et al.,
2017; Gulshan et al., 2016). In addition, CNNs developers also train
their own network architectures from scratch instead of using pre-
trained networks as the third strategy. For instance, Menegola et al.
(2016) compared few experiments using training from scratch to
fine-tuning of pre-trained networks, and indicated that fine-tuning
worked better for a small data set (i.e., 1000 images of skin lesions).

Given the prevalence of CNNs in medical image analysis, we
focused on the most common architectures and strategies with a
preference for far deeper models that have lower memory foot-
print during inference. In this study, we compare various strategies
and architectures for application of CNN algorithm to assess their
performance on classification of histopathology images. These are
included basic architecture of CNN, pre-trained network (training the
last layer) of Google’s Inceptions versions 1 and 3, fine-tunning the
parameters for all layers of our network derived from the data using
two pre-trained version of Google’s Inception architectures, and the
ensemble of two the state of the art algorithms (i.e., Inception and
ResNet).

2.5. Implementation Details

In order to deploy the central architecture, we used a Tensorflow
(version: 1.4.0) (Abadi et al., 2016) framework. This open source
software solution was originally created by the Google Brain team
for machine learning applications on textual data sets. The frame-
work supports running the training operation of the network on
graphics processing units (GPUs) or traditional computer micropro-
cessors (CPUs). This platform also supports several machine learning
algorithms with the same optimizer. The Python programming lan-
guage version 2.7 (including libraries such as numpy, cv2, matplotlib,
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and random) was used for all aspects of this project. Also, TF-Slim
which is a library for defining, training, and evaluating models in
TensorFlow was used in this study. This library enables defining
complex networks quickly and concisely while keeping a model’s
architecture transparent and its hyperparameters explicit.

A fixed image (with the JPG format) size of 20 × 20 pixels was
selected for CNN-basic architecture to ensure that all images have
the same size and large cells were entirely captured. CNN with the
basic architecture consist of a two layer CNN network with max-
pooling blocks; at the end we have two fully connected layers. The
image sizes for Inception-V1, Inception-V3, and Inception-ResNet
were automatically selected as 224 × 224 , 229 × 229, and 229 × 229
pixels by the algorithms, respectively.

All design and training of our method was performed on a desk-
top computer running the Mac operating system. This computer was
powered by an Intel i5 processor at 3.2 GHz, 16 GB 1867 MHz DDR3
of RAM, and a solid state hard drive which allowed ruling out bot-
tlenecks in these components. Although we were able to run all
experiments without a GPU (≈7 Gigabyte data), high levels of sys-
tem memory and a fast storage medium make this application faster
since it depends on loading a significant number of medical images
for training and validation.

The experimental section is split into two parts: While the aim of
the first part of experiment is to reach reliable classification accuracy
on the digital pathological images, the goal of the latter is to apply
various architectures of CNNs to better understand the choice for the
parameters.

2.6. Metrics for Performance Evaluation of Algorithms

To assess the performance of different algorithms and to select
the most appropriate architectures for a given task and classification
aim, we carried out several experiments on the reference datasets.
precision-recall curves (PRCs) are typically generated to evaluate the
performance of a machine learning algorithm on a given dataset.
In this study, precisions and recalls are presented by average for
multi-class datasets. Furthermore, to quantify and comparing the
performance of various architectures of CNN algorithm on a sam-
ple dataset, commonly used accuracy measures, receiver operating
characteristic (ROC), were estimated. The ROC curve depicts by plot-
ting the true positive rate (TPR) versus the false positive rate (FPR) at
various threshold settings. We defined a hard threshold range (e.g.,
from 0 to 1 across a dataset with two classes) for confidence of our
predictions. Then, we observe a trade-off between two operating
characteristics, TPR and FPR, by varying this threshold. Probability
scores can be used to trade-off precision with recall. In this way, each
input image is predicted by the algorithm using a probability score
which could be smaller, equal, or greater probability score across the
threshold range. Meanwhile, allocation of an image with less con-
fidence to a specific class decreases the precision and increase the
recall and vice versa.

Therefore, accuracy is measured by the area under the ROC curve
(AUC) (Hanley and McNeil, 1982; Zawistowski et al., 2017).

To evaluate the algorithms performance on all datasets, we
also used of two defined measures of accuracy retrieval curve
(ARC): true number (TNu) and false number (FNu) (Khosravi et al.,
2015). Therefore, to measure the algorithm performances for the-
ses datasets, the accuracy, defined as TNu/(TNu + FNu) which is the
fraction of correctly identified images among all images identified by
algorithms, while retrieval is the total number of images identified
by algorithms.

We also address other measures such as Cohen’s kappa (Cohen,
1960) which is a popular way of measuring the accuracy of presence
and absence predictions because of its simplicity and its tolerance to
zero values in the confusion matrix (Allouche et al., 2006). The kappa
statistic ranges from 1 to +1, where +1 indicates perfect agreement

and values of zero or less indicate a performance no better than
random (Cohen, 1960).

The other measure is the Jaccard coefficient measures similarity
as the intersection divided by the union of the objects. The Jaccard
coefficient ranges between 0 and 1; it is 1 when two objects are iden-
tical and 0 when the objects are completely different (Chen et al.,
2016).

The Log-loss or cross entropy which is defined as
−∑

jt( j|x)log2
p( j|x)
t( j|x) where p(j|x) is the probability estimated by the

method for example x and class j, and t(j|x) is the true probability of
class j for x (Bottou and GO, 1998; Drish, 2001). It is used to obtain
a solution for a wide variety of loss functions and mathematically
convenient because it can be computed for each example separately
(Prashanth et al., 2017; Fogel and Feder, 2017; Zadrozny and Elkan,
2001).

3. Results

For the purpose of evaluating our pipeline, we obtained 9649
IHC stained whole-slide images as well as 2490 H&E stained
histopathology images of lung, breast, and bladder cancers from
TMAD. We also obtained 1520 H&E stained whole-slide histopathol-
ogy images and 1629 H&E stained high resolution image patches
of squamous cell carcinoma and lung adenocarcinoma from TCGA
project. In summery, we used eighth different datasets comprising
26 classes (See Table 1). As demonstrated in Table 2, we utilized
six state-of-the-art CNN architectures. The first three datasets cover
the tasks that are primarily designed for setting up the pipeline
(CNN_Smoothie) across different conditions (i.e., discrimination
of different cancer tissues and markers). The other datasets are
designed to assess the pipeline application and refer to challeng-
ing problems in clinical context. In addition of investigating differ-
ent algorithms, we studied the effect of step number and training
strategies on the accuracy and compared the performance of vari-
ous architectures of CNN algorithm for classification and detection of
tumor images.

3.1. Evaluation of Various CNN Architectures in Pathological
Tumor Images

In this section, we present details of our evaluations on vari-
ous CNN architectures. There are two basic subjects in analysis of
digital histopathology images including classification and segmenta-
tion (Xu et al., 2017). We restricted the evaluations to image-based
classification. Also, the basic architecture of CNN was utilized as well
as Inception-V1 and Inception-V3 architectures (with fine-tuning the
parameters for the last layer as well as all the layers). In addition, we
evaluated the ensemble of Inception and ResNet (Inception-ResNet-
V2) on all datasets.

Our results show that CNN_Smoothie is able to detect different
cancer tissues, subtypes, and their related markers with highly reli-
able accuracy which depends on the dataset content, dataset size,
and the selected algorithm (Table 2). For example, the pipeline can
detect various cancer tissues by about 100% accuracy (Tumor tissue
discrimination dataset in Table 2). While, the results of cancer sub-
type detection are varied from 61% to 100% based on the selected
database, algorithm architecture, and the presence of heterogene-
ity in a tumor image (Tumor subtype discrimination datasets in
Table 2). In addition, separating various bladder immunohistochem-
ical markers results in 71.5% to 99% accuracy for CNN-basic and
Inception-V1 fine-tune, respectively (bladder biomarker discrimina-
tion dataset in Table 2). Application of the mentioned algorithms
on breast immunohistochemical markers lead to 79.2% and 90%
accuracy, respectively (breast biomarker discrimination dataset in
Table 2).
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Table 2
The results of six state-of-the-art architectures of deep learning algorithms on various datasets using ARC. The numbers are measured based on TNu and FNu and represent
accuracy percentages. The bold fonts indicate the best classification accuracies on datasets.

Algorithms Tumor tissue
discrimination

Bladder biomarker
discrimination

Breast biomarker
discrimination

Lung tumor subtype
discrimination (TMAD images)

CNN-basic 100% 71.5% 79.2% 73%
Inception V3-Last layer-4000 steps 99.3% 86% 75.6% 80%
Inception V3-Last layer-12000 steps 99.3% 87.5% 76.8% 78%
Inception V1-Fine tune 100% 99% 90% 92%
Inception-ResNet V2-Last layer 96.6% 85.5% 78.4% 75%
Inception V3-Fine tune 100% 98% 90.8% 90%

Algorithms Lung tumor subtype
discrimination (TCGA
intra-images)

Lung tumor subtype
discrimination (TCGA
inter-images)

Score discrimination
in bladder

Score discrimination in
breast

CNN-basic 68% 61% 47% 40.5%
Inception V3-Last layer-4000 steps 84% 70% 64.5% 61%
Inception V3-Last layer-12000 steps 80% 70% 64.5% 59.5%
Inception V1-Fine tune 100% 83% 77% 56%
Inception-ResNet V2-Last layer 84% 66% 58% 45.5%
Inception V3-Fine tune 100% 79% 76% 56%

Closer look at the Inception-V1 result of bladder cancer (99%)
shows S0084 and S100P were misclassified with GATA3 and S0084,
respectively, in two cases out of 200 cases. Moreover, the Inception-
V1 result (90%) for discrimination of breast biomarkers revealed that
all 10% contradictions have happened between CK17 and CK5/6 due
to high similarity between them. This result is in concordant to pre-
vious studies such as (Tang et al., 2008) that compared different IHC
markers in breast cancer and showed CK17 and CK5/6 have similar
expression patterns.

We configured three datasets (BladderBreastLung,
BladderBiomarkers, BreastBiomarkers) to set up the pipeline for
all the proposed experiments (pathologists typically know cancer
tissues or type of markers in advance). As expected, the algorithms
were successfully able to discriminate various tissues of cancer with
100% accuracy (Table 2). Furthermore, we designed the experiments
to investigate whether keeping the background color might have the
potential to introduce certain inherent biases in datasets and affect
the result for discrimination of various markers. The slides across
BladderBiomarkers and BreastBiomarkers datasets are stained
with different IHC staining colors. However, the results show that
Inception architectures (V1 and V3) provide accuracies more than
90% in case of the colored version of the dataset (Table 2). When
designing the experiments, we were concerned that the convolu-
tional neural networks might only learn with biases associated to
the colors, but the results showed the algorithm’s adaptability in the
presence of color information, and their ability to learn higher level
of structural patterns typical to particular markers and tumors. This
result is in concordance with a previous study that compared three
dataset types based on different configurations (i.e. segmented, gray
and colored) (Mohanty et al., 2016). Mohanty et al. (2016) showed
that the performance of the model using segmented images is con-
sistently superior than gray-scaled images, but slightly lower than
colored version of the images.

The low concordance of the classification results (by algorithms)
for BladderScores and BreastScores datasets (Table 2) to the labels
that were determined by pathologists, could be related to the high
heterogeneity within tumor cell populations of each slide. Moreover,
because we did not have enough images to separate each classes
individually, we blended all markers with the same score together
(e.g. class score 0 contains GATA3-score 0, CK14-score 0, S100P-
score 0, and S0084-score 0). Thus, discrimination of various images
in these classes became more challenging. The algorithms are then
trained for each score disregard to the markers.

Our findings are in agreement with previous studies which
showed significant variability between pathologists in score dis-
cretization (Vogel et al., 2011; Roche et al., 2002; Perez et al., 2006;
Gavrielides et al., 2011; Bueno-de Mesquita et al., 2009; Bloom and
Harrington, 2004; Kaufman et al., 2014) and confirmed that 4% of
negative and 18% of positive cases are misclassified even for one type
of marker. Consequently, S0084 marker had the minimum cases of
misclassification in bladder cancer. Furthermore, the minimum mis-
classification is related to the score 3 and EGFR marker which is a
well known basal marker for breast cancer therapy (Lakhani et al.,
2005). Results are comparable with those ones which classified by
expert pathologists despite the difficulty of the task (Vandenberghe
et al., 2017).

Although medical images are mostly interpreted by clinicians,
the accuracy of their interpretation is reduced due to subjectivity,
large variations across interpreters, and exhaustion (Greenspan et al.,
2016; Webster and Dunstan, 2014). We reviewed BreastScores and
BladderScores datasets and the content images that are labeled as
negative and positive scores. We perceived the low concordance in
our result also could be indeed due to significant human errors in
labeling, particularly among positive scores (i.e. scores 1, 2, or 3)
(Fig. 2).

In this regard, we categorized the image datasets into two neg-
ative an positive classes for the breast cancer and applied CNN-
basic and Inception-V3 (last layer training) on them. The result
showed significant increasing of the algorithms performance. The
CNN algorithm with basic architecture could discriminate the pos-
itive (scores 1, 2, and 3) and negative (score 0) images with 94%
accuracy. Besides, applying the Inception-V3 which its last layer was
trained indicated 96% accuracy for the same dataset.

3.2. Discrimination of Tumor Subtypes Across Heterogeneous Images

Tumor tissues are highly heterogeneous (Marino et al., 2015) that
lead in great limitation for the correct diagnosis. Tumor heterogene-
ity is the result of genetic disorders which potentially reflects on a
variability of morphological features (Nassar et al., 2010).

We randomly selected 1629 H&E stained high resolution image
patches (i.e. a few patches of each tumor slide) from TCGA (Network
et al., 2012, 2014) comprising lung adenocarcinoma and squa-
mous cell carcinoma. Then, we trained all CNN architectures for
the selected images to discriminate two subtypes. Consequently, we
assessed the performance of the trained algorithms for a separated
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Fig. 2. Low accuracy may be associated with human errors in labeling of IHC scores. For example, figures a, b, c, and d labeled to score 3 by pathologists, while the algorithm
(Inception-V1) has classified them to score 3, 3, 1, and 0, respectively. In particular, figures e and g are both labeled to score 0 by pathologists; however, the algorithm correctly
has classified them into score 0 and 1, respectively. Finally, figures f and h are labeled to score 2 by pathologists while the algorithm has classified them into score 2 and 3,
respectively. Closer manual inspection of images indicate the algorithm results are indeed more reliable. Highlighted probability scores in green and orange indicate concordance
and discordance between algorithm classification and pathologist labeling, respectively.

test set. The test set includes 50 different high resolution image
patches of the tumor slides (i.e. we considered it as the Intra-tumor
test set) (Fig. 3). The result showed that while CNN-basic cannot
dedicate various cell populations to each subtype, the complex archi-
tectures such as Inception-V1 and -V3 can successfully distinguish
adenocarcinoma and squamous cell carcinoma across heterogeneous
tissue of the tumor slides with no error (TCGA-IntraHeterogeneous
dataset in Table 2).

In addition, we assess the performance of algorithms on inter-
tumor heterogeneity of lung cancer. We selected 1520 whole H&E
stained histopathology images from TCGA as well as 860 H&E and
IHC stained images from TMA database for both lung cancer subtypes
(adenocarcinoma and squamous cell carcinoma). Then, we randomly
selected and extracted 100 images of each TCGA and TMA datasets
separately and trained all algorithms’ architectures for the remain-
ing images. Since the test set images were selected from different
patients (tumor slides) that the algorithm never trained for their
whole slides or patches, we considered it as Inter-tumor test set.
In this way, the algorithms should cope with wide range of cell
population variance (intra each individual image and inter different
images).

The result indicated 92% and 83% accuracy using networks which
their all layers are fine-tuned based on Inception-V1 parameters for

TMAD and TCGA test sets, respectively (Table 2). The low accuracy
of Inter-tumor test set in compare to the Intra-tumor test set can be
associated to the high heterogeneity that present across lung cancer
for various patients. The mentioned heterogeneity may link to var-
ious growth patterns (lepidic, acinar, papillary, and solid) (Marino
et al., 2015), grades, and stages in a mixed LUAD and LUSC (or can-
cer and normal) of the obtained images from various lung cancer
patients (Fig. 3).

Based on the overall results, it could be useful to use suit-
able architectures of CNN algorithms based on the goal of projects.
For example, we can use simpler and complex architectures of
CNN for discrimination of tumor subtypes through intra- and inter-
heterogeneity, respectively.

3.3. Selecting Optimal Step Number and Training Approach of
CNN Algorithm

In order to find the optimal step number for CNN architectures
over different datasets, we stop the training process when the valida-
tion accuracy converges to its maximum. We consider that stopping
point as the optimal step number for the tested architecture and
dataset (e.g. see Figs. 4 and 5). The final classification for images in
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Fig. 3. Intra- and inter-tumor heterogeneity. The figure shows the squamous cell lung cancer in the left (A) and adenocarcinoma cell lung cancer in the right (B). The top images
(A and B) represent whole-slide images and the down images represent the extracted high-resolution patches from TCGA datasets. The red cubes show the patches that algorithms
are trained for them and the blue cubes indicate the patches comprising test set.

the test set is performed by re-training the proposed architecture
over both training and validation sets with the optimal step number.

As Table 2 demonstrates, the inceptions-based architecture net-
works (V1 and V3) that are fine-tuned for all layers, are consistently
superior. We also compare various architectures of CNN algorithm
using ROC (Fig. 6) and PRC (Fig. 7) for a dataset using various thresh-
olds. In this experiment, we consider outputs of an algorithm if
prediction’s confidence of a sample pass the determined threshold.
We observe a trade-off between precision and recall (for PRC) and
TPR and FPR (for ROC) by varying this threshold. These figures reveal
that algorithms are able to classify more images through larger recall
and smaller threshold.

We also compare accuracy of different strategies for training
Inception-V1. In this regard, we train the model on the marker

Fig. 4. The graph shows the optimal number of steps for Inception-ResNet (last
layer training), Inception-V1 (fine-tuning all layers), and Inception-V3 (fine-tuning all
layers) to get the highest accuracy in BladderBiomarkers.

dataset of breast cancer across training the last layer, fine-tuning of
the parameters for all layers, and the training of our own network
from scratch (Fig. 5). As the figure shows, the best performance is
obtained using a pre-trained network and fine-tuning the param-
eters for all layers of the network, which is in concordance with
the results of previous studies (Esteva et al., 2017; Gulshan et al.,
2016).

3.4. Robustness and Limitations of CNN_Smoothie

To demonstrate the robustness of the CNN_Smoothie method,
we apply it to eight different datasets of histopathological images
with different spectrum of apparent colors to show the uniformity
of its performance. The image set spans multiple tumor types, along

Fig. 5. Inception-V1 via three different training strategies (last layer training,
fine-tuning the parameters for all layers, and training from the scratch) in
BreastBiomarkers dataset.
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Fig. 6. Receiver operating characteristic (ROC) curve for the TCGA-InterHeterogeneity
dataset.

with several different image colors. The results show that although
the colors space for different images have different distributions,
our CNN_Smoothie method can successfully identify and register
tumor variations and discriminate them consistently and robustly
(Fig. 8).

In addition, we evaluate the performance of algorithms using
various statistical measurements on TMAD-InterHeterogeneity and
TCGA-InterHeterogeneity datasets to assess the robustness of results
(Table 3). These measures include AUC, average of Precision and
Recall, Cohen’s kappa, Jaccard Coefficient, and Log-loss. The Youden
index (Youden, 1950) also referred to the ROC which is an indica-
tor for the performance of a classifier and measured as specificity +
sensitivity 1 (Table 3).

4. Discussion

The era of computational pathology is rapidly evolving and there
are enormous opportunities for computational approaches to pro-
vide additional prognostic and diagnostic information that cannot be
provided by pathologists alone (Bouzin et al., 2016; Louis et al., 2014;
Roth and Almeida, 2015; Sarnecki et al., 2016). The CNN_Smoothie
pipeline presented here provides a novel framework that can be eas-
ily implemented for a wide rang of applications, including immuno-
histochemistry grading and detecting tumor biomarkers. Recently
several papers have been published that utilize various methods such
as classical machine learning approaches including support vector
machine (SVM) and random forest (RF) (Yu et al., 2016), and deep
learning methods such as CNN-basic (Vandenberghe et al., 2017) or
Inception methods (Esteva et al., 2017). However, this is the first
report that utilize various architectures of CNN algorithms and com-
pare their performance on histopathological tumor images across
various configurations.

The aim of this project is to evaluate the utility of convo-
lutional neural networks to automatically identify cancer tissues,
subtypes, related markers, and their staining scores. We indicate
deep learning approaches can provide accurate status assessments
in clinical conditions. Our results show the accuracy of convolu-
tional neural networks primarily depends on the size, complexity,
algorithm architecture, and noise of the dataset utilized. We also
show that our study raise several important issues regarding tumor

Fig. 7. Precision versus recall for the TCGA-InterHeterogeneity dataset. The 4000-
step version is used for Inception-V3 (training the last layer).

heterogeneity since different response of deep learning could be
due to genetic heterogeneity. Further studies required in order to
clarify the efficiency of the deep learning application in detection of
heterogeneity through digital images.

In terms of computation cost, note that we optimized our pipeline
so that it can be run on CPUs. However, GPUs are indeed preferable to
scale up the method to Pan-Cancer Analysis and accelerate training
speed for future work.

The discordance of our findings and pathology results are due
to the low number of tumor images. In certain cases, we blended
some images to increase the number of images in each class. In
particular, the images associated with biomarkers were blended
for each score in BreastScores and BladderScores datasets. Then,
the algorithms were trained for different scores disregard of the
biomarkers associated with bladder and breast cancers. In addition,
the number of images in some classes are not balanced which lead
to compliance biases. Finally, we did not train all the algorithms
from scratch because GPU is necessary for some datasets and archi-
tectures due to their higher complexity. We leave this for future
work.

Our method yields cutting edge sensitivity on the challenging task
of detecting various tumor classes in histopathology slides, reduc-
ing the false rate. Note that, our CNN_Smoothie pipeline requires
no prior knowledge of an image color space or any parameteriza-
tions from the users. It provides pathologists or medical technicians
a straightforward platform to use without requiring sophisticated
computational knowledge.

Research in Context

Computational pathology approaches are complementary to
other clinical evaluation methods in order to improve pathologists’
knowledge of disease and to improve treatment strategies. In this
paper, we develop an open source pipeline to detect various cancer
tissues and subtypes with the aim of increasing accuracy of diag-
nosis with focus on applying deep learning algorithms. The pipeline
does not require any prior knowledge of the image color space or
any parameterization input from the user, which allows patholo-
gists or medical technicians to apply this approach without extensive
knowledge of optimization or mathematical tools.
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Fig. 8. CNN_Smoothie successfully identifies tumor subtypes (LUAD vs. LUSC) and discriminates them consistently and robustly across different spectrum of colors. Highlighted
probability scores in green indicate the output of classification using Inception-V1.

Table 3
The result on TMAD-InterHeterogeneity and TCGA-InterHeterogeneity datasets using various statistics measures. The number in parentheses correspond to the Youden Index.
The bold fonts indicate higher classification accuracies for the measures.

Algorithms AUC Precision Recall Cohen’s kappa Jaccard coefficient Log-loss

TMA TCGA TMA TCGA TMA TCGA TMA TCGA TMA TCGA TMA TCGA

CNN-basic 0.64 (0.27) 0.61 (0.22) 0.71 0.62 0.73 0.61 0.30 0.22 0.73 0.61 1.34 1.4
Inception-V3 Last-layer 4000-steps 0.79 (0.59) 0.70 (0.40) 0.81 0.71 0.80 0.70 0.56 0.4 0.80 0.70 0.45 0.57
Inception-V3 Last-layer 12000-steps 0.76 (0.52) 0.70 (0.40) 0.79 0.70 0.78 0.70 0.50 0.4 0.78 0.70 0.55 0.64
Inception-V1 Fine-tune 0.89 (0.80) 0.83 (0.66) 0.92 0.84 0.92 0.83 0.81 0.66 0.92 0.83 0.39 0.66
Inception-ResNet-V2 Last-layer 0.68 (0.35) 0.66 (0.32) 0.74 0.68 0.75 0.66 0.38 0.32 0.75 0.66 0.48 0.63
Inception-V3 Fine-tune 0.87 (0.75) 0.79 (0.58) 0.90 0.83 0.90 0.79 0.76 0.58 0.90 0.79 0.36 1.16
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