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RTS,S/AS01 (GSK) is the world’s first malaria vaccine. However, despite initial efficacy of
almost 70% over the first 6 months of follow-up, efficacy waned over time. A deeper
understanding of the immune features that contribute to RTS,S/AS01-mediated protection
could be beneficial for further vaccine development. In two recent controlled human
malaria infection (CHMI) trials of the RTS,S/AS01 vaccine in malaria-naïve adults, MAL068
andMAL071, vaccine efficacy against patent parasitemia ranged from 44% to 87% across
studies and arms (each study included a standard RTS,S/AS01 arm with three vaccine
doses delivered in four-week-intervals, as well as an alternative armwith a modified version
of this regimen). In each trial, RTS,S/AS01 immunogenicity was interrogated using a broad
range of immunological assays, assessing cellular and humoral immune parameters as
well as gene expression. Here, we used a predictive modeling framework to identify
immune biomarkers measured at day-of-challenge that could predict sterile protection
against malaria infection. Using cross-validation on MAL068 data (either the standard
RTS,S/AS01 arm alone, or across both the standard RTS,S/AS01 arm and the alternative
arm), top-performing univariate models identified variables related to Fc effector functions
and titer of antibodies that bind to the central repeat region (NANP6) of CSP as the most
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predictive variables; all NANP6-related variables consistently associated with protection. In
cross-study prediction analyses of MAL071 outcomes (the standard RTS,S/AS01 arm),
top-performing univariate models again identified variables related to Fc effector functions
of NANP6-targeting antibodies as highly predictive. We found little benefit–with this
dataset–in terms of improved prediction accuracy in bivariate models vs. univariate
models. These findings await validation in children living in malaria-endemic regions,
and in vaccinees administered a fourth RTS,S/AS01 dose. Our findings support a
“quality as well as quantity” hypothesis for RTS,S/AS01-elicited antibodies against
NANP6, implying that malaria vaccine clinical trials should assess both titer and Fc
effector functions of anti-NANP6 antibodies.

Keywords: correlates of protection, immune response, malaria, vaccine, machine learning

INTRODUCTION

Malaria remains a leading cause of global morbidity and
mortality, and disproportionately affects children <5 years old
in the World Health Organization (WHO) African Region
(World Health Organization, 2020). The causative agents of
malaria, Plasmodium parasites (especially P. falciparum and P.
vivax), are transmitted to humans through the bite of infected
female Anopheles mosquitoes (World Health Organization,
2020). Although some effective prevention tools (e.g., long-
lasting insecticidal nets) have been developed, a durably

efficacious preventive vaccine will be required to meet the
challenge of eradicating malaria (Wilson et al., 2019).

The RTS,S/AS01 vaccine (GSK) is the most clinically advanced
vaccine to date (Laurens, 2020) and targets the pre-erythrocytic
stage of P. falciparum by eliciting antibody and T-cell responses
to circumsporozoite protein (CSP), the major surface protein of
sporozoites (Hoffman et al., 2015). In a phase 3 trial in African
infants and children, estimated vaccine efficacy (VE) of RTS,S/
AS01E against clinical malaria over a follow-up time of
12 months post-final dose was 56% in young children
(5–17 months old) and 31% in infants (6–12 weeks old) (RTS,

FIGURE 1 | Schemas, efficacy results, and sampling schedules for the MAL068 andMAL071 studies. MAL071 study days past 217 (challenge day) are not shown,
but follow-up continued until Day 376.
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S Clinical Trials Partnership, 2011; RTS, S Clinical Trials
Partnership, 2012; RTS, S Clinical Trials Partnership, 2014;
RTS, S Clinical Trials Partnership, 2015). RTS,S/AS01 obtained
a positive scientific opinion from the EuropeanMedicines Agency
in 2015 (Hawkes, 2015) and was recommended by theWHO for a
pilot implementation program in Ghana, Malawi, and Kenya that
initiated in 2019 (World Health Organization, 2019).

Controlled human malaria infection (CHMI) studies are a
valuable tool for identifying correlates of protection, including
in the context of vaccine development (Stanisic et al., 2018).
MAL068 [NCT01366534 (Ockenhouse et al., 2015)] and
MAL071 [NCT01857869 (Regules et al., 2016)] were
randomized phase 2a studies (MAL068 observer blind, MAL071
open-label) designed to evaluate the safety, reactogenicity,
immunogenicity, and efficacy of RTS,S/AS01 against sporozoite
challenge of healthy, malaria-naïve adults. A schema of each study
and a summary of the results are shown in Figure 1.

Each trial included a standard arm with three RTS,S/AS01
doses administered at one-month intervals (RRR arm), as well as
an alternative arm with a modified version of this regimen
(Figure 1). In MAL068, the alternative arm consisted of one
dose of replication-incompetent, recombinant adenovirus 35
expressing circumsporozoite protein (Ad35.CS.01), followed by
two doses of RTS,S/AS01 (ARR arm). In MAL071, the alternative
arm was a delayed fractional-third-dose arm consisting of two
doses of RTS,S/AS01 one month apart, and a one-fifth fractional
dose 6 months later (RRr arm). At three weeks post-last
vaccination, all participants were challenged with infected P.
falciparum mosquitoes and monitored for parasitemia through
Day 28 post-challenge. In the RRR arms, VE against malaria
infection was 52% (95% CI 25–70%) in MAL068 and 63%
(29–80%) in MAL071. In the alternative arms, VE against
malaria infection was 44% (21–60%) in the ARR arm of
MAL068 and 87% (67–95%) in the RRr arm of MAL071.

A large body of work (Ockenhouse et al., 2015; Chaudhury et al.,
2016; Kazmin et al., 2017; Dennison et al., 2020; Du et al., 2020;
Pallikkuth et al., 2020; Suscovich et al., 2020; Seaton et al. under
revision)1 has been conducted using immune response data from
MAL068 and/or MAL071 to identify correlates of RTS,S/AS01-
mediated protection in malaria-naïve adults, yielding many
insights and generating hypotheses about the mechanism of
protection in this population. The immunodominant amino
acid repeat region (NANP) of CSP is the main target of the
B-cell response to CSP (White et al., 2015), and day-of-
challenge anti-NANP repeat region IgG antibody titers have
been shown to associate with protection (Ockenhouse et al.,
2015). However, there does not appear to be a quantitative cut-
off associated with protection (Ockenhouse et al., 2015; Suscovich
et al., 2020), indicating that other immune responses also play a
role as discussed further below.

Du et al. reported that the MX2/GPR183 expression ratio in
peripheral bloodmononuclear cells (PBMCs) at 1 day post-third dose

discriminated protected from non-protected RTS,S/AS01 recipients
in five independent CHMI trials, including MAL068 and MAL071
(Du et al., 2020). Specifically, participants with higher fold-change
from baseline to 1 day after the third immunization were more likely
to be protected. GPR183 (also known as EBI2), along with its ligand
7α,25-dihydroxycholesterol, plays an important role in T-cell
dependent antibody responses by positioning different immune
cell types at the appropriate compartments in secondary lymphoid
organs such as the spleen (Barington et al., 2018). Upregulation of
GPR183 helps localize activated CD4+ T cells, B cells, and dendritic
cells to the T zone—B-cell follicle interface (Gatto and Brink, 2013; Li
et al., 2016; Lu et al., 2017). In CD4+ T cells, GPR183 upregulation
also augments T peripheral follicular helper cell (Tfh) cell
development at early time points and is crucial for the generation
of extrafollicular plasma cell responses (Gatto and Brink, 2013; Li
et al., 2016). Relatedly, Pallikuth et al. showed that early (day 6 post-
first dose) CSP-specific pTfh responses, along with durable CSP-
specific memory B cell responses emerging post-dose two, were
associated with protection in MAL071 (Pallikkuth et al., 2020).
These findings are consistent with a model wherein localization of
GPR183-expressing CD4+ T cells, B cells, and/or dendritic cells to the
T zone—B-cell follicle interface (leading to a higher MX2/GPR183
ratio, as GPR183-expressing cells leave the peripheral compartment)
is crucial for development of the protective CSP-specific pTfh and
memory B cell responses seen by Pallikkuth et al. (2020).

Kazmin et al. reported an inverse correlation with protection
of natural killer (NK) cell-related blood transcriptional module
expression in PBMCs, in both arms of MAL068 (Kazmin et al.,
2017), generating the hypothesis that vaccination stimulates
migration of circulating NK cells to lymphoid tissues/organs
such as the liver (i.e., leading to a reduction of NK cells in the
peripheral blood) where the NK cells might contribute to the
killing of infected cells through mechanisms such as antibody-
dependent cellular cytotoxicity (ADCC).

Phagocytosis via opsonophagocytic pathways such as
antibody-dependent cellular phagocytosis (ADCP) of parasites
can have widely divergent outcomes [reviewed in Leitner et al.
(2020)]. On the one hand, phagocytic cell uptake of opsonized
parasites can result in parasite clearance by antibody-dependent
cellular phagocytosis as well as immune-cell activation and
secretion of inflammatory molecules. This outcome was
mechanistically demonstrated in a recent “systems serology”
analysis of >100 antibody features (Fc receptor binding,
effector functions, etc.) of anti-CSP (full length), anti-NANP6,
and anti-CSP C-terminal region antibodies in MAL068 vaccinees
(Suscovich et al., 2020), which implicated both NANP6-specific
ADCP and FcGRIIIA [expressed by natural killer (NK) cells
(Vivier et al., 2008)] binding of NANP6-specific antibodies in
protection (Suscovich et al., 2020). Similarly, opsonization by
CSP-specific antibodies was proposed to contribute to RTS,S/
AS01-induced protection (Schwenk et al., 2003).

On the other hand, parasites can also both evade and actively
manipulate the host immune response via “phagosomal escape”,
where phagocytosed parasites reside in the phagocytic immune
cell and may also influence its function to undermine the host
defense (Leitner et al., 2020). Chaudhury et al. reported that the
“opsonization index” (corresponding to phagocytic activity

1Seaton, K. E., Spreng, R. L., Abraha, M., Reichartz, M., Rojas, M., Feely, F., et al.
(2021). Subclass and Avidity of Circumsporozoite Protein Specific Antibodies
Associate with Protection Status Against Malaria Infection. under revision
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normalized to anti-CSP antibody titer) was an inverse correlate of
protection in MAL068 and that opsonophagocytic activity was
likely mediated by C-terminal-specific antibodies (Chaudhury
et al., 2016). A subsequent study by Chaudhury et al. presented
evidence that, in MAL071, anti-CSP IgG4 antibodies inhibited
opsonophagocytic activity of other anti-CSP IgG antibody
subclasses. Subsequent analyses have shown that most
opsonophagocytic antibodies are C-terminal-specific (rather
than NANP6-specific) and that lower opsonophagocytic
activity was associated with protection across all RTS,S/AS01
trials analyzed. The apparently conflicting findings regarding
opsonophagocytic activity in RTS,S/AS01 vaccinees could be
due to the different approaches taken: dividing CSP-targeted
phagocytosis by CSP antigen titer (Chaudhury et al., 2016) vs.
directly assessing CSP antigen-targeted phagocytosis (Suscovich
et al., 2020).

Most recently, Seaton et al. examined a large number of CSP-
specific antibody features (magnitude, subclass, and avidity) as
humoral correlates of protection in the MAL068 and MAL071
trials, reporting that magnitude of NANP6-specific IgG1
antibody was the most predictive variable of protection in
univariate models (Seaton et al., under revision)1.

This substantial body of MAL068/MAL071 correlates work
has included antibody, cellular, and transcriptomic assays
performed by many groups across different research
organizations. Papers have focused on limited subsets of data
and have not integrated all available immune response data across
the two studies, nor have they used the same approach or
mathematical tools for assessing a given immune response
measurement as a correlate of protection (CoP).

Given that CHMI trials are resource-intensive to conduct, it is
worthwhile to mine the few valuable datasets that are currently
available, using a variety of approaches and techniques. For the first
time, here we considered the entire repertoire of available MAL068
and MAL071 assay data in a correlates analysis, including all
immune response variables in a unified data analysis procedure.
We focused on day-of-challenge data because of the broad
availability of data at this time-point, in order to highlight the
integration aspect across assays. We evaluated the performance of
different predictive computational models, including univariate
and bivariate, in predicting individual-level outcomes in the
MAL068 and the MAL071 trials. In this analysis, we identify
NANP6-targeted antibody dependent cellular phagocytosis
(ADCP) and anti-NANP6 IgG1 antibody titer as consistently
predictive immune response measurements, with higher levels
of each biomarker on day of challenge associated with
individual-level protection after controlled malaria challenge.
Our findings suggest that univariate models perform as well or
better (in terms of predictive probability) than bi- or trivariate
models, at least in this dataset, and provide the first head-to-head
comparison (where the same pre-processing and statistical
methodology has been used) between the previously published

CoPs corresponding to day-of-challenge immune response
measurements.

MATERIALS AND METHODS

Available Assay Data
In MAL068 and MAL071, longitudinal PBMC and serum
sampling was performed from enrollment through challenge,
enabling assessment of a broad array of antibody, cellular, and
transcriptomic immune responses that were included among the
biomarkers analyzed in this study. Figure 1 denotes the studies
assessed using either PBMC or serum samples and the
corresponding sample timepoints in days from first
vaccination. Table 1 provides additional information on the
assay laboratories and references for prior publications
describing the methods for sample processing, immunoassays,
and data processing, if applicable. While the sampling schedules
differed for the various immunoassays, day of challenge was the
most common sampling day across assays (Figure 1) and hence
only day-of-challenge data were considered in this integrative
analysis.

Lab Methods: Antigens, Monoclonal
Antibodies, BAMA, and BLI Avidity Assay
Antigens and Monoclonal Antibodies
A recombinant CSP (CSP-FL) containing theN-terminal region, three
NVDP and 19 NANP repeats followed by the C-terminal region was
produced and purified as described previously (Schwenk et al., 2014).
Synthetic peptides NANP6 and C-term corresponding to the central
repeat and carboxy terminal regions of CSP respectively were made
with an amino terminal biotin-Aminohexanoic acid (biotin-Ahx) tag.
NANP6 (biotin-Ahx-NANPNANPNANPNANPNANPNANP) and
the negative control peptide antigen C1 (Biotin-KKMQEDVISL
WDQSLKPCVK LTPLCV) were obtained from CPC Scientific
(Sunnyvale, CA). The C-term PF16 antigen (biotin-Ahx-
EPSDKHIKEY LNKIQNSLST EWSPCSVTCG NGIQVRIKPG
SANKPKDELD YANDIEKKIC KMEKCS with an amidated
carboxy terminal) was procured from Biomatik (Cambridge, ON,
Canada). NPNA3 (biotin-Ahx-NPNANPNANPNA with an
amidated carboxy terminal) and N-interface (biotin-Ahx-
KQPADGNPDPNANPN with an amidated carboxy terminal)
were custom made by CPC Scientific. Vaccine-matched Hepatitis
B (HepB) antigen was obtained from GSK. The negative control used
in BLI assays, Ovalbumin-biotin, was purchased from Galab
Laboratories (Hamburg, Germany). Previously described (Dennison
et al., 2018) recombinant monoclonal antibodies (mAbs) AB334 and
AB236 that are specific for the central repeat andC-terminal regions of
CSP, respectively, were used as standards for quality control tracking
of binding antibody multiplex assay (BAMA) and biolayer
interferometry (BLI) avidity assays performed over several days.

BAMA
CSP- andHepB-specific binding antibody responses inMAL068 or
MAL071 participant serum or plasma were assessed as described
previously (Tomaras et al., 2008; Yates et al., 2011; Yates et al.,

1Seaton, K. E., Spreng, R. L., Abraha, M., Reichartz, M., Rojas, M., Feely, F., et al.
(2021). Subclass and Avidity of Circumsporozoite Protein Specific Antibodies
Associate with Protection Status Against Malaria Infection. under revision
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2013). We evaluated antibody binding to full-length CSP, NANP6,
NPNA3, C-term, and HepB. Briefly, vaccinee sera were diluted in
BAMA assay diluent (1% milk-blotto, 5% normal goat serum,
0.05% Tween-20) and incubated with antigen-coupled
microspheres. Samples were incubated with either anti-human
IgG1 (BD Pharmingen, clone 12G8G11, anti-human IgG2
(Southern Biotech, clone HP6002), anti-human IgG3
(Invitrogen, clone HP6047), or anti-human IgG4 (BD
Pharmingen, clone JDC-14), and detected on a Bioplex 200

(Bio-Rad). Controls for assays included a titrated purified
human subclass specific standard curves or antigen-specific
monoclonals and purified subclass-specific coupled beads.
Negative controls in each assay included normal human reference
serum (Sigma-Aldrich) and blank (no-antigen) beads. Each experiment
was performed using Good Clinical Laboratory Practice–compliant
conditions, including tracking of positive controls by Levey-Jennings
charts. Mean fluorescence intensity (MFI) values were multiplied by
dilution factor to adjust for different dilutions being used to get MFI
values within the linear range of the assay. Positive responders were
defined as samples with MFI >100, MFI*Dilution Factor >95th
percentile of all baselines within study, and MFI*Dilution Factor >
3x baseline. Antibody avidity: Assessment of antibody avidity index
(AI) was determined by BAMAwith the followingmodifications: After

TABLE 1 | Available laboratory assay data from each trial. Bolded data are data used in this integration.

MAL068 MAL071

Data type Source lab Reference Data type Source lab Reference

Gene expression

Microarray Emory Kazmin et al. (2017)
RNA-seq CIDR Du et al. (2020) RNA-seq CIDR, Emory Du et al. (2020)

Cellular

ICS GSK Ockenhouse et al. (2015);
Kazmin et al. (2017)

ICSe GSK, U Miami Regules et al. (2016);
Pallikkuth et al. (2020)

T-cell ELISpot Crucell/
Janssen

Ockenhouse et al. (2015) Peripheral follicular helper
cell (pTfh) frequency and
function

U Miami Pallikkuth et al. (2020)

Antibody

Seroneutralization assay Crucell/
Janssen

Ockenhouse et al. (2015);
Kazmin et al. (2017)

B-cell ELISpot U Miami Pallikkuth et al. (2020)

Ab-mediated opsonization WRAIR Chaudhury et al. (2016) Ab-mediated opsonization WRAIR Chaudhury et al. (2017)
Ab functionalityb MGH Suscovich et al. (2020) Ab functionality MGH Unpublished
ELISAc CEVAC,

GSK,
WRAIR

Ockenhouse et al. (2015);
Chaudhury et al. (2016);
Radin et al. (2016)

ELISA–Titerd CEVAC, GSK,
WRAIR, U
Miami

Radin et al. (2016);
Regules et al. (2016);
Chaudhury et al. (2017)

ELISA–Aviditye

BAMA IgG Subclass (IgG1-
4)f & BLI Ab Avidityg

Duke Seaton et al. (under
revision)1

BLI Ab Avidityh Duke Seaton et al. (under revision)1

BAMA andBLI IgG Subclass
(IgG 1–4)i

Luminexj WRAIR, U
Miami

Chaudhury et al. (2017);
Pallikkuth et al. (2020);
Pallikkuth et al. (2020)B cell phenotyping U Miami

Other

Microscopy Ockenhouse
et al. (2015)

Microscopy Regules et al. (2016)

PCR Ockenhouse
t al. (2015)

PCR Regules et al. (2016)

aIncludes: T cells, peripheral T follicular helper (pTfh) cells, B cells.
bIncludes: antibody-dependent cellular cytoxicity (ADCC), antibody-dependent complement deposition (ADCD), antibody-dependent cellular phagocytosis (ADCP), antibody dependent
dendritic cell phagocytosis (ADDCP), antibody-dependent natural killer cell activation (ADNKA), antibody-dependent neutrophil phagocytosis (ADNP), Fc array, and Ig subclass.
cIncludes: anti-circumsporozoite (CS), anti-Hepatitis B surface antigen (HBsAg), anti-full length CS and anti-NANP6 IgG titers; anti-CS IgG avidity.
dIncludes: anti-CS, anti-full length CSP, anti-C-term, anti-NANP, and anti-HBsAg IgG titers.
eIncludes: anti-full length CSP, anti-C-term, anti-NANP, anti-CS repeat region IgG avidity may be transferred at a later date.
fIncludes: binding antibody multiplex assay (BAMA) full length circumsporozoite protein (CSP), NANP6, NPNA3, C-term, and Hepatitis B subclass (IgG1-4).
gIncludes: biolayer interferometry (BLI) full length CSP, C-term, NANP6, NPNA3, and N-interface.
hIncludes: full length CSP, NANP6, NPNA3, N-interface, C-term BLI Ab Avidity data.
iIncludes: BAMA full length CSP IgG1-4, NANP6 IgG1-4, C-term IgG3, and Hepatitis B IgG3 and BLI full-length CSP subclass avidity.
jIncludes: full-length CSP, C-term, NANP6 IgG1-4 subclass titer

1Seaton, K. E., Spreng, R. L., Abraha, M., Reichartz, M., Rojas, M., Feely, F., et al.
(2021). Subclass and Avidity of Circumsporozoite Protein Specific Antibodies
Associate with Protection Status Against Malaria Infection. under revision
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formation of antigen/antibody immune complexes, a 15min
dissociation step (Na-Citrate, pH 4.0, Teknova; CIT) (Duong et al.,
2012) at room temperature (20–23°C) was included prior to addition of
secondary detection antibody. Retained binding magnitude was
expressed as avidity index [AI; AI � MFI (CIT)/MFI (PBS)*100]
and used as a measurement of antibody avidity in the statistical
models. AI was calculated only in cases where binding response was
positive according to pre-set criteria above. Formultivariate analyses, AI
was set to 0 for negative responses. Avidity index was reported for
samples in the linear range where AI confirmed within 10% across
assays and/or sample dilution factors. Samples that did not meet the
pre-set criteria were reported as indeterminant for AI measurements.

BLI Avidity Assay
The BLI assay for monitoring the avidity of malaria vaccine-induced
antibodies described previously (Dennison et al., 2018) was used to
measure the RTS,S/AS01-induced serum antibody binding responses in
MAL068 or MAL071 participants and the off rates of interaction with
CSP-FL, NANP6, NPNA3, C-term, and N-interface. Antigens NANP6,
PF16 and negative control peptide C1 were loaded onto streptavidin
biosensors (threshold level set to not exceed Δλ � 1 nm) where as CSP-
FL and negative control ovalbumin were coupled to the amine reactive
(AR2G) biosensors (threshold level set to not exceedΔλ � 0.7 nm). The
1:50 diluted vaccinee sera binding to the parallel reference sensors
immobilized with negative control antigens were subtracted to obtain
antigen specific binding time courses. Binding responses (Δλ averaged at
the last 5 s of association phase) and the off rates of vaccinee sera binding
were determined. Antigen specific positivity limits (mean plus three
times standard deviation of reference human serum binding response)
and lower limits of quantitation (LLOQ; empirically determined antigen
specific binding response above which off rate can be measured reliably
for standard antibody) were applied in quality controlling of data. This
involved ensuring that the percent coefficient of variation (%CV) in
binding responses that are positive for a given antigen was <20 and the
variation in off rates were ≤2 fold for sera with responses greater than
LLOQ. For subclass assay, antigen specific antibodies were purified from
vaccinees serum andwere selectively captured onto IgG subclass specific
antibody immobilized biosensors. Antigen binding was monitored by
dipping the IgG subclass loaded sensors into wells containing CSP
followed by dissociation in buffer. For univariate analyses, positive
responders with binding responses below LLOQ were assigned an off
rate of 1 × 10−2 s−1. For multivariate analyses, all vaccinees with binding
responses below LLOQwere assigned an off rate of 1× 10−2 s−1. Avidity
Score, which encompasses both magnitude and avidity of response, is
calculated as Score � response/off rate using the mean response and off
rate values across triplicate measurements.

Immune Response Biomarker
Down-Selection
Low-Dimensional Assays
We use “low-dimensional” to refer to all immunoassays besides RNA-
seq. For such assays, immune response biomarker down-selection
consisted of three steps: 1) Initial data processing to collect all data for
analysis; 2) Quantification of immunogenicity by running the model
lmer[log10(magnitude) ∼ visit + arm + age + sex + (1 │ participant)]

using R package lme4, pooled across arms and 3) Selection ofmeasures
with evidence of vaccine-induced response (FDR-adj p value < 0.1).

RNA-Seq
To use RNA-seq data [previously published in Du et al. (2020)] in
the correlates analysis, the BTM framework (Chaussabel et al.,
2008) was used with the BTMs published in Li et al. (2014). Assay-
specific pre-processing consisting of standard normalization was
performed. Gene-set enrichment analysis (GSEA) was performed
for 345 BTMs, where each BTM consisted of the gene-set, to
identify BTMs significantly associated with vaccination. The GSEA
was performed using Bioconductor’s limma (camera). BTMs were
collapsed into a single value for each participant from constituent
genes using a weighted average, where the weights are log-
transformed immunogenicity p values. All BTM expression
values were calculated relative to Day 0 (baseline), for each
participant. The following immunogenicity model was used:
∼Arm + Day + Sex + Age. P values and FDR-corrected P
values were calculated with the limma package. For down-
selection of the 345 BTMs, we selected BTMs with significant
immunogenicity on day of challenge (FDR p value < 0.10).

Numbers of Clinical and Genomic Features Included in
the Analysis
After following the procedures above, the following numbers of
features were included in the analysis: MAL068 low-dimensional:
208 features filtered down to 120 for analysis; MAL068 RNAseq:
15131 genes mapped to 259 BTMs, filtered down to 155 for
analysis; MAL071 low-dimensional: 587 features filtered down to
129 for analysis; MAL071 RNAseq: 15684 genes mapped to 259
BTMs, filtered down to 129 for analysis; MAL068 and MAL071
combined, low-dimensional: 140 features filtered down to 87 for
analysis; MAL068 and MAL071 combined, RNAseq: 15084 genes
mapped to 259 BTMs, filtered down to 133 for analysis.

Predictive Modeling
Single-Variable Analysis
After biomarkers were down-selected, they were collected
together for each study separately and each measure was
standardized to have mean 0 and standard deviation one for
accurate comparison of effects. Each biomarker was then used
individually in a logistic model to evaluate association with
protection, controlling for arm. The following model was
used: infection ∼ biomarker + arm. From the model the odds-
ratio associated with a unit change in the biomarker was
collected along with a 95% confidence interval and p-value.
P-values were adjusted across each study using the
Benjamini-Hochberg procedure to control the false
discovery rate and variables were considered significant if
the adjusted p value was < 0.2.

Cross-validated area under the receiver operating
characteristic curve (CV-AUC) values for each biomarker were
calculated by splitting the target into a 5-fold cross-validation set,
training the above logistic model on 80% of the data and
predicting the held-out 20% for each fold. The resulting
predictions were then used to calculate an AUC value. This
was repeated 200 times with random partitions of the data to

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 6724606

Young et al. Comprehensive RTS,S/AS01 Correlates Analysis

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


obtain a range of AUC values, and the cvAUC package was used
to calculate the overall cross-validated AUC value.

Principal components analysis was done for each study using
all down-selected variables. Missing data was imputed using the
impute package in R prior to principal component analysis.

Principal Component Analysis
All biomarkers that passed immunogenicity down-selection were
included in the principal component analysis. Imputation was
done using impute.knn in R to fill any missing data, and each
marker was centered and scaled. PCA was performed using
prcomp in R.

LASSO
For LASSO (Friedman et al., 2010), cv.glmnet from the glmnet
package was used. LASSO was run using s � “lambda.min”.

Double- and Triple-Variable Analyses
Analysis with multiple variables was done in the same manner
as the single-variable analysis but examined additive models
of all combinations of two and three variables, leading to a
combinatorial explosion in the number of models considered.
Both the logistic model and cross-validated AUC were
evaluated for each model.

Cross-Study Analysis
To evaluate the cross-study consistency of measured biomarkers,
models were trained on MAL068 (either only the RRR arm, or all
data: RRR + ARR arms) and validated on the MAL071 RRR arm

using markers measured in both studies. Because the studies
share only one vaccine regimen, arm was not controlled for in the
logistic model. Outcomes in MAL071 RRR were predicted using
models fit on MAL068 (RRR or full), and an AUC was calculated
for each model. All 1, 2, and 3-variable models were evaluated in
this manner.

RESULTS

Predicting Individual-Level Challenge
Outcomes Using Day-of-Challenge Immune
Response Data
Overall Analysis Strategy
Figure 2 shows the overall analysis strategy for how we
assessed the ability of immune response variables to
predict challenge outcomes. Given the very large number
of candidate immune response variables that could be
assessed within each data set for contribution to prediction
of RTS,S/AS01-mediated protection, immune response
down-selection based on favorable statistical properties
(e.g., high reproducibility, large dynamic range of vaccine-
induced responses) was crucial for first narrowing down these
responses and improving statistical power. As the trial
outcomes are known, we could not conduct a traditional
down-selection. Instead, using unblinded assay data from
each data set, we down-selected immune response variables
based on immunogenicity (i.e. vaccine-induced response on

FIGURE 2 |Overall analysis strategy, consisting of (A) down selection, (B) univariate modeling followed by (C) validation and (D)multivariate modeling followed by
(E) validation. (A) Boxplot showing IgG1 anti-NANP6 binding antibody responses at baseline and at challenge in MAL068. Purple dots � ARR arm; blue dots � RRR arm
(B) Boxplot showing day of challenge IgG1 anti-NANP6 binding antibody responses separately by post-challenge outcome status (not protected vs protected) in
MAL068. (C) Univariate model trained on all MAL068 data predicting challenge outcomes in the MAL071 RRR arm as a function of day of challenge IgG1 anti-
NANP6 binding antibody responses (D) Scatter plot of day-of-challenge BAMA IgG1 CSP Avidity Index and Fc Array FcGRIIIAF NANP6 binding in MAL068, with points
colored by protection status (orange � not protected, blue � protected). (E)Best-performing two-variable additive model trained on all MAL068 data predicting challenge
outcomes in the MAL071 RRR arm as a function of day of challenge Fc Array FcGRIIIAF NANP6 binding and BAMA IgG1 CSP Avidity Index. In panels (C) and (E), the
black line is the median ROC curve from cross-validation on all MAL068 data, the gray shaded area is the 95% empirical interval for the ROC curve from cross-validation
on all MAL068 data, and the orange line is the ROC curve for predicting MAL071 RRR arm data. BAMA � binding antibody multiplex assay.
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day of challenge; statistical details are given in Methods).
Figure 2A shows an example immunogenicity plot for
IgG1 anti-NANP6 binding antibodies in MAL068, where a
clear vaccine-induced response can be seen in each study arm.
A full list of down-selected immune response variables for the
MAL068 data set and for the MAL071 data set can be found in
Supplementary Table S1.

We explored univariate (Figures 2B,C), bivariate (Figures
2D,E), and trivariate (not shown) modeling approaches. For
the univariate approach (Figure 2B), we ran a model
predicting the challenge outcome as a function of each
variable that passed immunogenicity down-selection,
separately for MAL068 and for MAL071, controlling for
study arm. As a complementary approach (Figure 2D), we
explored all possible 2-variable and 3-variable models to see if
prediction would be improved by including multiple immune
response biomarkers. To look at the cross-study replicability of
the findings of each approach, we validated the trained models
by evaluating each model on a test data set including data from
the other study.

Top Variables in Predicting MAL068
Challenge Outcomes Include
NANP6-Specific Binding Antibodies, Fc
Array Variables Related to FcgR Specificity
of NANP6-Specific Antibodies, and
NANP6-Targeted ADCP
For the univariate models (Figure 3), the results are
expressed as odds ratios (ORs) for post-challenge
protection against patent parasitemia per unit-increase in a
given immune response variable on challenge day (i.e.
correlation of that immune response variable with
protection) and CV-AUC (i.e. predictive capacity of that
immune response variable, also a more robust measure
since it uses a training set and predicts on the held-out
data). A CV-AUC of 1.00 indicates perfect prediction,
while a CV-AUC of 0.50 indicates prediction equivalent to
random chance.

The results differed substantially between MAL068 and
MAL071. For MAL068 (RRR and ARR groups pooled),

FIGURE 3 | Univariate models with MAL068 (ARR + RRR) and with MAL071 (RRR + RRr) data. (A, C)Odds ratios for protection against patent parasitemia per unit
increase in the designated immune response variable on the day of challenge, for the 20 most predictive immune response variables in each data set (A, MAL068; C,
MAL071). Whiskers extend through the 95% CI. The vertical dashed red line indicates an odds ratio of 1, i.e., that protection is equally likely whether the designated
immune response is higher or lower on challenge day. The asterisk in panel A designates the nine variables that were significantly associated with protection, having
p-values < 0.2 after adjustment for false discovery rate. No variables were significantly associated with protection in panel (C). (B, D) Forest plot of cross-validated AUC
scores for the different univariate models for each data set (B, MAL068; D, MAL071). Dots show the cross-validated AUC calculated using the cvAUC package in R;
whiskers extend through 95% empirical intervals of the 200 individual 5-fold cross-validation runs.
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immune responses related to antibody Fcγ receptor specificity
and to the NANP6 repeat region were highly represented in
the top 20 most predictive variables (Supplementary Table
S2). Nine immune response variables (eight of which were
related to NANP6) were significantly associated with
protection (FDR-adjusted p-value ≤ 0.2 and p-value ≤ 0.05)
and showed fair performance in predicting challenge outcome
across the two groups pooled (controlling for group/arm)
(CV-AUC ≥ 0.7). In contrast, no blood transcriptional
modules (BTMs) ranked among the top 20 most predictive
variables. This finding is consistent with Kazmin et al.
observation that the robust transcriptional responses
observed after the three vaccine doses in MAL068 had
almost completely waned by day of challenge in both arms
(Kazmin et al., 2017), suggesting loss of signal for detecting
transcriptional correlates in peripheral blood on day of
challenge.

In MAL071 (RRR and RRr groups pooled), the majority
(n � 14) of the top 20 most predictive variables in MAL071
were BTMs; however, no immune response variable was
significantly associated with protection, perhaps
underscoring the difficulty in identifying transcriptional
correlates on day of challenge or reflecting that the two
arms may have different mechanisms of protection. The
only variable that ranked in the top 20 most predictive
variables of both trials was Fc Array FcGRIIB NANP6
[CV-AUCs: MAL068 � 0.660 (0.590–0.720), MAL071 �
0.680 (0.600–0.730)]. Moreover, in MAL068, the top 20
variables all associated with protection (OR > 1), whereas
in MAL071, less than half (n � 8) of the top 20 variables
associated with protection and the remaining (n � 12)
associated with non-protection, albeit none significantly
after false discovery rate (FDR) adjustment.

To examine groupings between different immune response
variables, particularly across assay types, and thus potentially
gain insight relationships between the different components of
the immune response, we computed pairwise correlations
across all variables in the MAL068 analysis (RRR and ARR
arms; Supplementary Figure S1; top-20 ranked,
Supplementary Figure S2). The results showed that many
of the top-ranked variables were highly correlated (e.g., R > 0.9
for nearly all the NANP6 Fc array variables). The strong
correlations of many of the top-performing variables raised
the possibility that they may be reflecting a coordinated
component of the immune response, e.g. in the same way
that significant correlations across diverse Fc effector assay
responses have supported a coordinated antibody response in
recruiting innate immune cells in elite controllers of HIV-
infection (Ackerman et al., 2016). The strong correlations also
likely reflect the particular NANP6 antibody subclass
(i.e., IgG1) that is needed to engage with each of the Fc
receptors for a functional anti-parasitic response — and
also ties in with BAMA IgG1 NANP6 Magnitude scoring
highly as a predictor in MAL068. For the MAL071 analysis
(correlations for all variables, Supplementary Figure S3;
correlations for top-20 ranked variables, Supplementary
Figure S4), the top 20 variables seemed to be somewhat less

highly correlated with each other, and high inverse
correlations were also observed (R < −0.8).

A Fully Unsupervized Approach did not
Show Discrimination Between the
Protected and Non-Protected Groups of
Either Trial
We next performed a principal component analysis (PCA) on the
data from each study to assess whether a fully unsupervized
approach would show discrimination between the protected and
non-protected groups of each trial and, if so, which variables
contribute to such discrimination. The top 20 variables of each
PC for MAL068 (RRR and ARR arms) and MAL071 (RRR and
RRr arms) are listed in Supplementary Table S3.

The PCA of MAL068 showed no discrimination between the
protected and non-protected groups on principal component
(PC) one or PC2 (Figure 4A). PC1 accounted for 25% of the
total variation. Its top variables were all BTMs, five of which
related to monocytes. PC2 accounted for 13% of the total
variation. Its top variables included CSP-specific, C-term-
specific, and some NANP6-specific antibody features spread
across a range of functional assays.

Like the MAL068 results, the PCA of MAL071 did not show
any discrimination between the protected and non-protected
groups. PC1 accounted for 26% of the total variation; most of
its top variables were CSP-specific or C-term-specific Fc array
variables (Supplementary Table S3). PC2 accounted for 10% of
the total variation and its top variables were nearly all BTMs.

NANP6-Specific Antibody Titer, Fc Array
Variables Related to FcγR Specificity of
NANP6-Specific Antibodies, and
NANP6-Specific ADCP Contribute to
Cross-Study Prediction and are Associated
With Protection
Before examining the cross-study replicability of our findings, we
considered the substantial difference between the MAL068 and
MAL071 results thus far. A possible reason for this difference is
that the two trials compared different regimens, the protective
mechanisms of which may have differed [as suggested by the
findings of (Chaudhury et al., 2017; Kazmin et al., 2017;
Pallikkuth et al., 2020; Suscovich et al., 2020)]. These findings,
coupled with the higher efficacy of the RRr arm in preventing
patent parasitemia (VE of the RRr arm � 87% in MAL071 vs VE
of the RRR arm � 52% in MAL068, 63% in MAL071), prompted
us to restrict our cross-study validation to predicting RRR
outcomes in MAL071.

For the cross-study validation, all possible univariate and
bivariate models were trained on MAL068 (either the RRR
data set, or the entire data set) and validated on the MAL071
RRR data set. Figure 5 shows the CV-AUC values for the top-10
performing univariate and top-10 performing bivariate models
for the MAL068 RRR data set (panel A) and for the entire
MAL068 data set (panel C). It also shows the validation AUC
for each model when validated on the MAL071 RRR data set
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FIGURE 4 | Scatterplots of participant factor scores on the first (PC1) and second (PC2) principal components of a principal components analysis on (A)MAL068
data (ARR and RRR arms); (B)MAL071 data (RRR and RRr arms). Arrows show the factor loadings for the top three variables by CV-AUC for each dataset. A total of 220
features were used in the PCA analysis, 133 of which are RNA-seq BTMs.

FIGURE 5 | Cross-study validation of univariate and 2-variate models. (A, C) Forest plots of cross-validated AUC scores for the top-performing univariate and 2-
variate models trained on (A) theMAL068 RRR data set or (C) the entire MAL068 data set. All data were day-of-challenge. Dots show the cross-validated AUC calculated
using the cvAUC package in R; whiskers extend through 95% empirical intervals of the 200 individual 5-fold cross-validation runs. (B, D) Validation AUCs of the same
models as evaluated in predicting post-challenge outcomes in the RRR arm of MAL071. Purple, single-variable model; orange, two-variable model. The slightly
enlarged bubbles in (B, D) identify the top-performing models as assessed by CV-AUC (A, C).
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(panels B and D). The CV-AUC and validation AUC values are
provided in Supplementary Table S4, along with the direction of
association of each variable (protection vs non-protection).

Regardless of whether the models were trained on MAL068
RRR or on the full MAL068 dataset, the bivariate models in the
training set almost always had higher CV-AUC values than the
univariate models, whereas little or no improvement in validation
AUCs was observed in the validation dataset for the bivariate
models compared to the univariate models. For example, the top-
performing (CV-AUC � 0.996) bivariate model trained on
MAL068 RRR (ADCP NANP6 + BAMA IgG2 CSP Avidity
Index) includes variables that were each identified in the top
10-performing univariate models (first-best and seventh-best,
respectively). As assessed by validation AUC, the ADCP
NANP6 + BAMA IgG2 CSP Avidity Index model (0.822)
showed no appreciable improvement over the univariate
ADCP NANP6 model (0.817) (Figure 5, Supplementary
Table S4). This trend held true across the other bivariate
models, none of which showed any appreciable improvement
over the corresponding univariate models in cross-study
prediction, with the exception of BAMA IgG1 NANP6
Magnitude + lysosome M209, whose validation AUC (0.907)
exceeded those of all the univariate models (highest validation
AUC � 0.833; Figure 5B, Supplementary Table S4). Similar
results were obtained for models trained on the entire MAL068
data set, where no improvement in cross-study prediction was
achieved with the top-performing bivariate model (Fc Array
FcGRIIIAF NANP6 + BAMA IgG1 CSP Avidity Index,
validation AUC � 0.800) compared to the univariate Fc Array
FcGRIIIAF NANP6 model (validation AUC: � 0.833). We
conclude that, using these datasets, cross-study outcomes can
be reasonably well predicted within the RRR arm, but that there is
little or no benefit in including more than one immune response
variable in the predictive model. It is possible that future studies
with more participants (and a relatively even case:control split)
might allow for more complex models.

Looking across the variables that tended to be identified in
top-performing models, we find that many variables were related
to NANP6 and were associated with protection (Supplementary
Table S4). For models trained on MAL068 RRR, Fc array
variables related to the specificity of FcγR binding of NANP6-
specific antibodies were consistently associated with protection,
along with BAMA IgG1 NANP6Magnitude, ADCP NANP6, and
BAMA IgG2 CSP Avidity Index. The few variables associated
with non-protection were mostly all BTMs. For models trained
on the full MAL068 dataset, Fc array variables related to the
specificity of FcγR binding of NANP6-specific antibodies were
also consistently associated with protection, again along with
BAMA IgG1 NANP6 Magnitude and ADCP NANP6. The
variable most often associated with non-protection was BAMA
IgG1 CSP Avidity Index, which associated with non-protection in
five of the bivariate models. These results are consistent with
those shown in Figure 3 and again suggest that NANP-specific
ADCP, NANP-specific IgG1 binding antibodies, and Fc array
variables related to the specificity of FcγR binding of NANP6-
specific antibodies are associated with protection. The cross-study
prediction also highlights BAMA IgG2 CSP Avidity Index as

consistently associated with protection across models, and
BAMA IgG1 CSP Avidity Index as consistently associated with
non-protection across models.

Performing the same analysis but predicting MAL071
outcomes in the RRr arm showed poorer predictive
performance (i.e., lower validation AUCs) of the top-
performing models (Supplementary Figure S5). The reduced
predictive performance could be due to differences in mechanism
of protection, or the higher VE in the RRr arm, leading to a
relative imbalance of protected over nonprotected participants.
Consistent with the MAL071 RRR cross-study prediction results,
the MAL071 RRr cross-study prediction also showed little to no
benefit of bivariate vs. univariate models.

When we trained models on MAL071 (RRR or both arms
combined) and validated on MAL068 (RRR or both arms
combined), the results were essentially the same, except that
MAL071 showed a large number of RNAseq variables that ranked
highly in terms of CV-AUC on MAL071, and the RNAseq variables
were not consistent when applied to MAL068 (data not shown).

Complementary Approaches Yield
Consistent Results to Those Obtained by
our Approach
We next explored some complementary approaches to see
whether they would yield consistent results to those obtained
by the workflow outlined in Figure 2. First, we took a leave-one-
out cross-validation strategy on the MAL068 RRR cohort for
comparison with our framework. The results were very similar,
with a correlation between the resulting AUC values of 0.96,
supporting our approach. Next, we used LASSO to build a model
using the MAL068 RRR cohort, and then used this model to
predict MAL071 RRR outcomes. The model chosen by LASSO
included two variables: BAMA IgG1 NANP6 Magnitude and Fc
Array FcGRIIIAV NANP6. These are the variables ranked two
and four by our method (see Supplementary Table S4A). The
validation AUC on MAL071 RRR for the LASSO model was
0.678. For comparison, for models trained on MAL068 RRR in
our approach, the bivariate model with the top validation AUC
(predict on MAL071 RRR) was BAMA IgG1 NANP6 Magnitude
+ lysosome M209 (validation AUC 0.907) and the univariate
model with the top validation AUC (predict on MAL071 RRR)
was Fc Array FcGRIIIAF NANP6 (validation AUC 0.833)
(Supplementary Table S4A), thus validating our approach.

No Improvement in Cross-Study Prediction
in Bi- or Tri-Variate Models Compared to
Univariate Models, for the Dataset Used in
This Analysis
To further explore whether including additional immune
response variables could improve cross-study model
prediction, we plotted CV-AUC for the top 200 univariate,
bivariate, and trivariate models trained on MAL068 (all data
or RRR) vs. the validation AUC on MAL071 data (all, RRR, or
RRr) (Supplementary Figure S6). While the trained CV-AUCs
generally increased from uni- to bi- and again from bi- to
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trivariate models, no improvement was seen in validation AUC
for bi- or trivariate models compared to the univariate models,
across all training sets and across all validation sets. These data
reinforce the conclusion that including more variables in the
predictive models does not improve cross-study prediction, at
least for the data pre-processing method used in our approach.
The figure also shows overfitting of the trivariate models, with all
trivariate models in each training/validation set combination
tightly clustered in a narrow band just next to the perfect CV-
AUC value of 1.

DISCUSSION

Building upon the wealth of previous RTS,S/AS01 immune
correlates analyses, here we took a predictive modeling approach
that included immune response data across many different assays
and assessed the contribution of each immune biomarker to
prediction of individual-level outcomes of RTS,S/AS01 vaccinees
in two different controlled human malaria infection studies. We
identified univariate and bivariate models with good predictive
accuracy across studies [validation area under the receiver operating
characteristic curve (AUC) > 0.8], and our first major conclusion is
that there was little to no improvement in the bivariate models
compared to the univariate models, when combining all the day-of-
challenge biomarker data into a comprehensive dataset. We
hypothesize that the relatively small sample sizes, which in turn
limited the size of the training/testing/validation sets, hindered the
identification of well-performing complex models. Applying the
same approach to future studies with larger sample size may enable
such models to be identified. Another potential explanation for the
lack of significant improvement in bivariate vs univariate models
(when combining all day-of-challenge biomarker data into a
comprehensive dataset) is the high correlation between variables,
as highly correlated variables will generally not improve in logistic
regression over single variable models.

We identified central NANP repeat region (NANP6)-targeted
antibody dependent cellular phagocytosis (ADCP), binding of
NANP6-targeting antibodies to the FcGRIIIa receptor, and anti-
NANP6 IgG1 antibody titer as consistently predictive immune
response measurements, with higher levels of each biomarker on
day of challenge associated with individual-level protection after
controlled malaria challenge. Our second major conclusion is
thus that our data support a “quality as well as quantity”
hypothesis for how RTS,S/AS01-induced antibodies may
protect, in line with the previous findings of Suscovich et al.
(2020) (discussed further below). Regarding full-length CSP-
specific antibodies, we found contrasting associations of
avidity with protection, depending on antibody subclass (IgG1
with non-protection; IgG2 with protection).

We next relate our results to the published correlates analyses of
MAL068 andMAL071 that were introduced earlier. In the systems
serology analysis by Suscovich et al. (2020), LASSO was used to
downselect from a broad array of qualitative and quantitative
antibody variables measured on the day of challenge in
MAL068 vaccinees, build multivariate models, and assess how
well each model could discriminate protected from non-protected

vaccinees. Similar to our findings, Suscovich et al. reported that
parsimonious models were able to accurately discriminate
protected from non-protected vaccinees across studies, with a
bivariate model (trained on MAL068 RRR) containing NANP6-
specific ADCP and FCGRIIIA binding of NANP6-specific
antibodies well-predicting protection in both the RRR arm of
MAL071 and in the RRR arm of MAL027, another controlled
human malaria infection study (Kester et al., 2009). While none of
the top-performing bivariate models in our analogous cross-study
validation (built onMAL068 RRR and validated onMAL071 RRR)
contained the exact same combination of variables as the model in
Suscovich et al. (ADCP NANP6 and FCGRIIIA NANP6),
FcGRIIIAV NANP6, FcGRIIIAF NANP6, and ADCP NANP6
all ranked highly in our top-performing univariate and bivariate
models. Therefore, our results are broadly consistent with the
conclusion of Suscovich et al. that NANP6-specific antibody
engagement of multiple effector cell types may be important for
protection. However, our findings differed from Suscovich et al. in
that we identified NANP6-specific antibody engagement of
FcGRIIA, FcGRIIB, and FcGRIIIB as associated with protection
in our top-performing models in the cross-study validation,
whereas the FCGRII-related variables (NANP6 FcGRIIA,
NANP6 FcGRIIB) were not among the five-feature LASSO-
selected model, nor the two-feature model, reported by
Suscovich et al. to discriminate protected from nonprotected
participants, nor were NANP6 FcGRIIA, NANP6 FcGRIIB, or
NANP6 FcGRIIIB found to be significantly different in univariate
profiling of protected vs nonprotected participants by Suscovich
et al. FcGRIIA is expressed by neutrophils and mediates antibody-
dependent cellular cytotoxicity (ADCC) (Derer et al., 2014; Treffers
et al., 2018) and is also expressed by monocytes, dendritic cells and
macrophages andmediates ADCP (Anania et al., 2019); FcGRIIB is
an inhibitory FcγR expressed by B cells (Amigorena et al., 1989),
dendritic cells, macrophages, activated neutrophils, mast calls and
basophils (Nimmerjahn and Ravetch, 2008) and FcGRIIIB is
expressed by neutrophils and mediates endocytosis of immune
complexes (Chen et al., 2012). The shared expression of FcGRIIA
and FcGRIIIB by neutrophils suggests a potential role in NANP6-
targeted ADNP in protection, which is consistent with the network
linkage of NANP6 ADCP with ADNP in Suscovich et al.

Moreover, consistent with the findings of Seaton et al. (under
revision)1, NANP6-specific IgG1 scored highly in the top-
performing models. IgG1 antibodies are known to bind to
FcGRs, including FcGRII and FcGRIII and subsequently
mediate downstream effector functions such as ADCC and
ADCP. Taken together, these data indicate a role for NANP6-
specific antibody activation of multiple FcγR-expressing immune
cell effector functions. While we did not identify ADCC NANP6
in any of our top-performing models, the identification of
NANP6-specific FCGRIII-related Fc array variables in our top-
performing models suggests that effector functions beyond
phagocytosis may be important.

1Seaton, K. E., Spreng, R. L., Abraha, M., Reichartz, M., Rojas, M., Feely, F., et al.
(2021). Subclass and Avidity of Circumsporozoite Protein Specific Antibodies
Associate with Protection Status Against Malaria Infection. under revision
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Dennison et al. recently analyzed antibody avidity data from
MAL071 and reported that, while no association with protection
was seen with the avidity of antibody responses to CSP, NANP6,
C-term, or NPNA3 in the RRR arm, higher-avidity antibodies to
CSP and C-term tended to associate with protection in the RRr
arm, suggesting a potential difference in the mechanisms of
protection in the two arms. Our findings are consistent with
those of Dennison et al. in that BLI variables related to avidity of
anti-CSP or anti-C-term antibodies did not appear in top-
performing (as assessed by cross-validated AUC) models
trained on MAL068 RRR.

We next discuss our findings in the context of the previous
transcriptional correlates studies (Kazmin et al., 2017; Du et al.,
2020). A major difference between our study and the previous
studies is that ours is the first to have included day-of-challenge
PBMC transcriptional data in a correlates analysis. Kazmin et al.
identified relatively early (within one week) transcriptional
signatures of protection in the ARR and RRR arms of
MAL068 and reported day-of-challenge functional enrichment
(compared to baseline) for many BTMs in both study arms, but
did not perform the correlates analysis on day-of-challenge levels.
Likewise, Du et al. focused on the 1 day post-third dose time
point, which falls within the innate response window (Du et al.,
2020), and complements our focus on the day of challenge, at
which point the innate adjuvant-driven response has waned
(Kazmin et al., 2017). While we identified only a few BTMs in
our top-performing models, two of the top three two-variable
models (in terms of validation AUC on MAL071 RRR) each
included a lysosome-related BTM (“lysosome M209” in the top-
performing model and “lysosomal endosomal proteins M139” in
the third-best performing two-variable model). Interestingly,
day-of-challenge PBMC expression of each of these BTMs was
associated with non-protection. The M209 BTM was recently
proposed to represent the peroxisome (Courtland et al., 2021)
based on high-resolution spatial proteomic data (Geladaki et al.,
2019). There is now abundant evidence that peroxisomes regulate
and influence both immune function and inflammation (Di Cara
et al., 2019), and while peroxisomes have been shown to play an
important role in antiviral signaling (Dixit et al., 2010), to our
knowledge, an association between peroxisomes and malaria
susceptibility has not previously been described. Further
studies would be needed to confirm such an association.

Du et al. found that the discriminatory ability of the MX2/
GPR183 signature varied over time, with little to no difference
between log2 fold-change (vs baseline) MX2/GPR183 ratio in
protected vs. nonprotected vaccinees on day of challenge. It is
thus not surprising that we did not identify any BTMs related to
MX2 (a prototypical interferon-induced gene) or GPR183 (an
oxysterol receptor) among our top-predicting variables in our
day-of-challenge analyses. However, similar to Du et al., we did
find that our top-predicting variables were not correlated with the
known correlate anti-CSP titer (Dobaño et al., 2019), suggesting
that our study also identified a separate aspect of the RTS,S/AS01-
induced immune response implicated in protection.

Pallikkuth et al. usedmachine learning to identify combinations
of immune response biomarkers, focusing on B-cell and peripheral
T follicular helper (pTfh) cell responses, that were predictive of

individual-level protection in the MAL071 trial (Pallikkuth et al.,
2020). While we only analyzed day-of-challenge biomarkers,
Pallikkuth et al. also analyzed immune responses throughout
the 3-dose vaccination schedule up to the day of challenge:
many of their most predictive variables were from relatively
early time points, e.g., Day 6 post-dose one and Day 28 post-
dose 2 (these time points were designed to obtain samples at critical
periods of follicular helper T cell development). In their best-
performing model, which contained 18 parameters, 85% of all
individual-level outcomes were predicted correctly. Their analysis
thus complements ours and reinforces the conclusion that
molecular signatures of protection can vary greatly depending
on the specific time point(s) post vaccination that are examined.

Our focus on day-of-challenge immune response
measurements meant that our models did not incorporate all
previously identified correlates of protection, e.g., the many
transcriptional modules whose early post-vaccination (pre-
challenge) expression was found to associate with protection
(or non-protection) reported by Kazmin et al. (2017), or the
early CSP-specific pTfh responses reported by Pallikkuth et al. to
associate with protection (Pallikkuth et al., 2020). We did not
investigate here the extent to which these earlier responses linked
to protection (or non-protection) correlate with our top-
performing variables, and thus it is possible that some
individuals may have mounted an earlier protective response
whose transcriptional “stamp” did not persist until day-of-
challenge. We conjectured that post-challenge outcomes of
such individuals would be harder to predict, since they would
be determined by immune responses not included in the analysis
set used here. In a leave-one-out prediction analysis, we did find
evidence that cross-study post-challenge outcomes are easier to
predict (using a day-of-challenge dataset) for some participants
than others (Supplementary Figure S7). In particular, in the
validation set, individuals who became infected after challenge
tended to be correctly predicted by higher proportions of models
compared to individuals who did not become infected after
challenge. The presence of a cluster of four individuals whose
MAL071 RRR challenge outcomes were particularly poorly-
predicted (< 25% of all models) by models built on MAL068
RRR is consistent with the hypothesis that immune response
kinetics and/or qualities may have varied across participants, and
that this subset may have mounted quicker protective responses
that were not reflected in the day-of-challenge dataset used here.

Additional limitations of our work include that our study is in
the context of a highly controlled challenge environment, and
there are important differences between the CHMI studies
[malaria-naïve adults, CHMI done using a three-dose schedule
with a one-month interval (with the exception of the RRr arm)]
and the current target population for which RTS,S/AS01 is
licensed (young children in malaria-endemic areas, RTS,S/
AS01 is recommended to be used as a four-dose regimen,
including a booster dose). Thus, it remains to be seen whether
the biomarkers highlighted by our study are similarly relevant
biomarkers of protection in malaria-endemic field settings.
However, in the light of our finding that anti-NANP6 IgG1
titer was consistently associated with protection, Dobaño et al.
(2019) reported that the magnitude of anti-NANP6 IgG
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antibodies was significantly associated with vaccine efficacy
against clinical malaria, and Ubillos et al. (2018) reported that
the RTS,S/AS01-induced increase (baseline to Month 3) in anti-
NANP6 IgG1 antibodies was associated with protection from
clinical malaria, in subsets of participants drawn from the phase 3
efficacy study of RTS,S/AS01 in infants and young children in
malaria-endemic regions in Africa (RTS, S Clinical Trials
Partnership, 2011; RTS, S Clinical Trials Partnership, 2012;
RTS, S Clinical Trials Partnership, 2014; RTS, S Clinical Trials
Partnership, 2015). These findings provide some evidence that
our findings may apply in diverse populations that differ in
important respects, e.g., baseline malaria immune status,
although correlates were not assessed in post-booster samples
in either Dobaño et al. or Ubillos et al.

Second, the high efficacy of the RRr regimen inMAL071 hindered
the development of models that could discriminate protected from
non-protected individuals; thus, we had to restrict our cross-study
analysis to the RRR arm of MAL071. Thirdly, by focusing on day of
challenge, we likely missed the opportunity to pick up earlier immune
response biomarkers–especially transcriptional modules–that may
have waned by day of challenge. Additional limitations include the
necessity of restricting our analysis to variables that were common
across the two trials, the fact that we did not assess predictive ability of
individual genes in addition to the BTM analysis, and the lack of
inclusion of alternative gene sets [such as Gene Ontology (GO) gene
sets related to e.g., immunological signatures (Godec et al., 2016) or to
canonical pathways/processes (Liberzon et al., 2015)] in the gene set
enrichment analysis. Despite these limitations, our study further
highlights Fc effector-related attributes of NANP6- and subclass-
specific antibodies, over all other immune features investigated, that
merit further confirmation in field trials. Our study is thus valuable in
potentially helping prioritize resource-intensive laboratory
measurements for assessment in future studies.
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SUPPLEMENTARY FIGURE 1 | Pairwise correlations of day of challenge
measurements among the 275 down selected immune response variables for
the MAL068 full analysis (RRR and ARR) (i.e. the variables listed in Table S1).
Cell color indicates the correlation between variables (scale bar at upper right of plot).
The two columns on the left indicate the odds ratio for post-challenge protection
against patent parasitemia per unit-increase in a given immune response variable on
challenge day (“Odds Ratio”) and assay type (“Assay”). ADCC, antibody-dependent
cellular cytotoxicity; ADCD, antibody-dependent complement deposition; ADCP,
antibody-dependent cellular phagocytosis; ADDCP, antibody dependent dendritic
cell phagocytosis; ADNKA, antibody-dependent natural killer cell activation; ADNP,
antibody-dependent neutrophil phagocytosis; BAMA, binding antibody multiplex
assay; BLI, biolayer interferometry; ELISA, enzyme-linked immunosorbent assay;
ELISpot, enzyme-linked immunospot; ICS, intracellular cytokine staining; RNAseq,
RNA sequencing.

SUPPLEMENTARY FIGURE 2 | Pairwise correlations of day of challenge
measurements among the 20 top-ranked immune response variables for the
MAL068 full analysis (RRR and ARR) (i.e. the variables shown in Figure 3A). Cell
color indicates the correlation between variables (scale bar at upper right of plot). The
two columns on the left indicate the odds ratio for post-challenge protection against
patent parasitemia per unit-increase in a given immune response variable on
challenge day (“Odds Ratio”) and assay type (“Assay”). ADCP, antibody-
dependent cellular phagocytosis; ADNKA, antibody-dependent natural killer cell
activation; BAMA, binding antibody multiplex assay; BLI, biolayer interferometry;
ELISA, enzyme-linked immunosorbent assay.

SUPPLEMENTARY FIGURE 3 | Pairwise correlations of day of challenge
measurements among the 338 down selected immune response variables for the
MAL071 full analysis (RRR and RRr) (i.e. the variables listed in Table S1). Cell color
indicates the correlation between variables (scale bar at upper right of plot). The two
columns on the left indicate the odds ratio for post-challenge protection against patent
parasitemia per unit-increase in a given immune response variable on challenge day
(“Odds Ratio”) and assay type (“Assay”). ADCC, antibody-dependent cellular cytotoxicity;
ADCD, antibody-dependent complement deposition; ADCP, antibody-dependent
cellular phagocytosis; ADDCP, antibody dependent dendritic cell phagocytosis;
ADNKA, antibody-dependent natural killer cell activation; ADNP, antibody-dependent
neutrophil phagocytosis; BAMA, binding antibody multiplex assay; BLI, biolayer
interferometry; ELISA, enzyme-linked immunosorbent assay; ELISpot, enzym.

SUPPLEMENTARY FIGURE 4 | Pairwise correlations of day of challenge
measurements among the 20 top-ranked immune response variables for the
MAL071 full analysis (RRR and RRr) (i.e. the variables shown in Figure 3C). Cell
color indicates the correlation between variables (scale bar at upper right of plot). The
two columns on the left indicate the odds ratio for post-challenge protection against
patent parasitemia per unit-increase in a given immune response variable on
challenge day (“Odds Ratio”) and assay type (“Assay”). ICS, intracellular cytokine
staining; RNAseq, RNA sequencing.

SUPPLEMENTARY FIGURE 5 | Cross-study validation (MAL071 RRr) of univariate
and bivariate models. A, C) Forest plots of cross-validated AUC scores for the top-
performing univariate and bivariate models trained on (A) the MAL068 RRR data set
or (C) the entire MAL068 data set (RRR + ARR). All data were day-of-challenge. Dots
show the cross-validated AUC calculated using the cvAUC package in R; whiskers
extend through 95% empirical intervals of the 200 individual 5-fold cross-validation
runs. B, D) Validation AUCs of the same models as evaluated in predicting post-
challenge outcomes in the RRr arm of MAL071. Purple, single-variable model;
orange, two-variable model. The slightly enlarged bubbles in (B) and (D) identify the
top-performing models as assessed by CV-AUC (A, C).

SUPPLEMENTARY FIGURE 6 | Trained CV-AUC on MAL068 (all data or RRR)
versus validation AUC onMAL071 (all, RRr, and RRR) for the top 200 uni, bi-, and tri-
variate models.

SUPPLEMENTARY FIGURE 7 | Heterogeneity across participants in ability of
models to correctly predict challenge outcome. Using the top 20 best-performing
univariate models (as assessed by CV-AUC) in predicting challenge outcome in the
MAL068 RRR arm, leave-one-out prediction was done for MAL068 RRR (bottom
box) and prediction was done for MAL071 RRR (top box) (models trained on
MAL068 RRR). In the boxplots below, each dot corresponds to a trial participant and
the color of the dot (pink: infected; blue: protected) displays that individual’s actual
challenge outcome. The dots are plotted according to the proportion of models that
correctly predict challenge outcome for each individual and stratified by trial.

SUPPLEMENTARY TABLE 1 | Lists of variables that passed immunogenicity
down-selection for the day-of-challenge MAL068 data set (RRR and ARR) and for
the day-of-challenge MAL071 data set (RRR and RRr).

SUPPLEMENTARY TABLE 2 | Top 20 most predictive variables in univariate
models predicting challenge outcomes in MAL068 (RRR and ARR combined) or in
MAL071 (RRR and RRr combined).

SUPPLEMENTARY TABLE 3 | Top 20 variables of each PC for MAL068 (RRR and
ARR combined) and MAL071 (RRR and RRr combined).

SUPPLEMENTARY TABLE 4 | Variables, CV-AUCs, validation AUCs, and direction of
associationwith protection (protection or non-protection) for the top 10 univariate and top
10 bivariate models assessed in cross-study validation. Models were trained on either
MAL068 RRR or all MAL068 data (RRR + ARR) and validated on MAL071 RRR data.
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