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Despite significant advances in medical therapy and interventional strategies, the prognosis of millions of patients with acute
myocardial infarction (AMI) and ischemic heart disease (IHD) remains poor. Currently, short of heart transplantation with all of its
inherit limitations, there are no available treatment strategies that replace the infarcted myocardium. It is now well established that
cardiomyocytes undergo continuous renewal, with contribution from bone marrow (BM)-derived stem/progenitor cells (SPCs).
This phenomenon is upregulated during AMI by initiating multiple innate reparatory mechanisms through which BMSPCs are
mobilized towards the ischemic myocardium and contribute to myocardial regeneration. While a role for the SDF-1/CXCR4 axis
in retention of BMSPCs in bone marrow is undisputed, its exclusive role in their mobilization and homing to a highly proteolytic
microenvironment, such as the ischemic/infarcted myocardium, is currently being challenged. Recent evidence suggests a pivotal
role for bioactive lipids in the mobilization of BMSPCs at the early stages following AMI and their homing towards ischemic
myocardium.This reviewhighlights the recent advances in our understanding of themechanisms of stem cellmobilization, provides
newer evidence implicating bioactive lipids in BMSPCmobilization and differentiation, and discusses their potential as therapeutic
agents in the treatment of IHD.

1. Introduction: Ischemic Heart Disease

Ischemic heart disease (IHD), which includes heart fail-
ure induced by myocardial infarction (MI), is the single
most prevalent cause of morbidity and mortality worldwide.
Currently, IHD caused 1 of every 6 deaths in the United
States, and despite the significant advancements in medical
and revascularization therapies, the prognosis of millions of
patients with ischemic heart disease remains poor [1]. IHD
results from the partial or complete interruption of oxy-
genated blood supply to the heart muscle primarily due to an
occlusion of a coronary artery. The resulting ischemia causes
myocardial cell death and, if left untreated, results in extensive
tissue damage. While heart transplantation is a viable ther-
apy to replace the infarcted myocardium it is still plagued

by limited availability of donors, peri- and postprocedural
complications, side effects of immunosuppressive therapies,
and overall less than optimal patient prognosis. Until recently,
the notion that MI-damaged myocardium could regenerate
was non-existent. This review will examine breakthroughs in
cardiac stem cell biology and recent advances in cell-based
therapies to treat ischemic myocardium.

2. The Role BM-Derived Cells in Continuous
Renewal of Cardiomyocytes

Until a decade ago, it was believed that the human heart
was a postmitotic organ that is not capable of self-renewal,
and therefore the MI-damaged myocardium could not be
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regenerated. However, this dogma has been refuted by mul-
tiple groups. The study by Quaini et al., investigating the
chimerism of sex-mismatched transplanted heart, presented
early evidence for myocardial regeneration by demonstrating
active renewal of all three major cell lines in human hearts.
The number of recipient-originated cardiomyocytes, vascular
smooth muscle cells, and endothelial cells increased signifi-
cantly in hearts from female donors that were transplanted
into male recipients. Furthermore, these primitive cells,
which originated in the bone marrow (BM), expressed stem
cell antigens including c-kit, MDR1, and Sca-1. Interestingly,
a fraction of these cells were Y-chromosome-positive, provid-
ing direct evidence that these cells translocated from the host
to the myocardium of the grafted heart. Moreover, migration
of these primitive cell populations to the grafted heart
resulted in their loss of stem-cellmarkers, active proliferation,
and acquisition of the mature phenotype followed by cell
colonization and de novo formation of myocytes, coronary
arterioles, and capillaries [2]. To address the question of
BM origin of chimeric myocytes, the follow-up investigation
analyzed hearts of patients who have undergone gender-
mismatched BM transplantation. The key findings suggested
that BM acts as a source of extracardiac progenitor cells
contributing to cardiomyocyte formation and accounts for
at least part of the cell chimerism observed in other studies.
Interestingly, the potential origin and phenotype of marrow
myocyte precursors included lineage-restricted mesenchy-
mal, hematopoietic, and multipotent adult progenitor cells
[3]. Together, these data established human bone marrow as
a source of bone marrow stem/progenitor cells (BMSPCs)
capable of de novo cardiomyocyte formation and possibly
repair. However, the mechanisms governing the mobilization
of BM cells from their niches to the myocardium are poorly
understood. The literature suggests that the magnitude of
this phenomenon is significant replacing at least half of
the adult cardiomyocytes during normal physiological aging
[4]. Anversa’s group demonstrated higher chimerism with
physiological aging and in heart failure [5]. In this study, the
human adult heart is capable of replacing its entire population
of cardiomyocytes, endothelial cells and fibroblasts 6–8 times
during normal life span and under physiological conditions.
The chimerism of cardiomyocytes is age dependent and is
also influenced with pathological conditions such as heart
failure [5] and ischemic injury [6].

Hematopoietic stem/progenitor cells (HSPCs) escape
their BM niche in response to chemotactic gradients and
can be detected in the PB under steady state conditions [7].
Numerous factors have been shown to be responsible for
HSPC mobilization including strenuous exercise [8], tissue,
or organ injury (including ischemic cardiac events) [9, 10]
and may significantly increase in circulation after adminis-
tration of pharmacological agents [11, 12]. BMSPCs havemul-
tifaceted roles in an adult organism most importantly being
involved in lymphohematopoiesis [7] and immune surveil-
lance [13]. Initially, multiple groups have demonstrated that
the gradient of chemotactic stromal derived factor-1 (SDF-
1) is the major determining factor of BMSPCs’ destination
[14, 15]. Since BMSPCs express the SDF-1 receptor-CXCR4
and SDF-1 is expressed by osteoblasts and fibroblasts in the

BM microenvironment, it is undisputed that the resulting
SDF-1-CXCR4 interaction results in BMSPCs’ retention in
the BM niches [15]. Furthermore, BMSPCs express very late
antigen-4 (VLA-4, also known as 𝛼

4
𝛽
1
-integrin) while the

cells in the BMmicroenvironment express its ligand, vascular
adhesion molecule-1 (also known as CD106), and further
contribute to BMSPCs BM retention [16–18].

Lately, however, the chemokine-exclusive paradigm was
challenged by numerous observations supporting SDF-1-
CXCR4-independent homing and mobilization of BMSPCs.
Specifically, it was shownbynumerous groups that the plasma
SDF-1 level does not always correlate with mobilization
of BMSPCs [19–22]. While some studies have observed
chemotaxis of BMSPCs to an increased SDF-1 gradient, the
SDF-1 was administered at supraphysiological concentrations
(100–300 ng/mL) [23, 24], which is about 100 times higher
than the SDF-1 concentrationsmeasured in human ormurine
biological fluids [25]. Also, SDF-1 upregulation was observed
in tissues injured by hypoxia, and similar upregulation takes
place in the BM microenvironment during conditioning for
transplantation by radiochemotherapy or after administra-
tion of pharmacological agents that promote mobilization of
BMSPCs (such as G-CSF or a CXCR4 antagonist AMD3100)
[18, 26–28]. Ironically, these conditions induce upregulation
of several proteolytic enzymes released by BM cells, such
as metalloproteinase 2 (MMP-2), MMP-9, cathepsin G, and
neutrophil elastase, thereby proteolytically inactivating SDF-
1 and CXCR4 and neutralizing chemotactic activity of SDF-1
towards BMSPCs [26, 29, 30]. It is important to note that this
proteolytic environment would promote HSPC mobilization
by decreasing SDF-1-CXCR4-mediated retention (as well
as attenuating VLA-4-CD106 interaction); however SDF-1
homing would be impaired due to enhanced proteolytic
degradation of SDF-1 [18, 26, 31]. Together, these observations
imply that other possibly protease-resistant chemoattrac-
tants are involved in HSPC mobilization in order to make
up for the deficiency of the SDF-1 gradient between the
BM and PB. The above findings directed the investigation
towards proteolysis-resistant sphingolipids, specifically sph-
ingophospholipids (sphingosine 1-phosphate and ceramide 1-
phosphate), whichwere shown to be potent chemoattractants
for BMSPCs.

3. Sphingolipids and Stem Cell Signaling

Sphingolipids are a class of lipids consisting of a backbone
composed of sphingoid bases and an amino alcohol sphingo-
sine [32]. Initially, they were believed to be sheathing nerves
and the interest in their research remained confined to a small
group of scientists. As the evidence for pathophysiological
importance of sphingolipids grew, so did their research field.
As of today sphingolipids are shown to be involved in a
wide variety of biological responses in a diversity of cell
types including stimulation of cell proliferation, inhibition of
apoptosis, and regulation of cell shape and cell motility [33–
36].
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Sphingolipids are important structural components of
cell membranes and are derived from ceramide, the prover-
bial “core” of sphingolipid metabolism. Ceramide can be
deacylated to sphingosine which is then phosphorylated by
sphingosine kinases (SPHK1 or SPHK2) to yield sphingosine
1-phosphate (S1P) (Figure 1). Both transcripts of SPHK1 and
SPHK2 are subject to alternative splicing resulting inmultiple
isoforms for each kinase [37]. Transgenic mouse studies have
demonstrated partial redundancy of SPHK1 and SPHK2 since
SPHK1−/− or SPHK2−/− mice were phenotypically normal
while elimination of both genes resulted in embryonic death
[38, 39] indicating that S1P is produced exclusively by
SPHKs in vivo. Ceramide 1-phosphate (C1P) can be generated
by phosphorylation of ceramide (N-acyl sphingosine) by
ceramide kinase [40]. Both S1P and C1P have limited half-
lives and their levels are kept in check by numerous enzymes.
S1P is irreversibly degraded by S1P lyase and is also regulated
by lipid phosphate phosphatases (LPP1–3) and S1P-specific
phosphatases (SPP1 and SPP2) [41–45], and C1P is regulated
by LPP1–3 [41, 45]. The major source of plasma S1P are
red blood cells, activated platelets, albumin, high-density
lipoproteins, and extracellular SPHK1 derived from vascular
endothelial cells [33, 46, 47], while the primary contribution
to C1P plasma levels comes from intracellular C1P which has
been released or “leaked” from damaged cells [48].

Upon their release, both S1P and C1P interact with a
variety of G protein-coupled seven-transmembrane recep-
tors. There are 5 S1P receptor subtypes (S1P

1–5) that are
widely expressed throughout mammalian tissues. S1P

4
and

S1P
5
are expressed and function in the immune and nervous

system, respectively, S1P
1–3 are most abundant throughout

the cardiovascular system and are expressed on BMSPCs.
S1P
1
is coupled exclusively via Gi to Ras-MAP kinase, phos-

phoinositide (PI) 3-kinase-Akt pathway and phospholipase C
pathway. S1P

2
and S1P

3
are coupled to multiple G proteins,

such asGq, G12/13 andGi to activate phospholipaseC pathway
andRho pathway [34–36, 49].The signaling cascade activated
by S1P binding to either S1P

1
or S1P

3
is responsible for HSPC

migration [13, 50, 51]. Activation of S1P
2
and, however, yields

an opposite effect, negatively regulating HSPC mobilization
[52]. While the receptor for C1P is yet to be identified, its
signaling is sensitive to pertussis toxin, thereby implicating
a Gi protein coupled receptor [53, 54].

4. Sphingosine 1-Phosphate Chemoattracts
BMSPCs

Once S1P receptors were discovered on BMSPCs, they
were immediately characterized as G protein-coupled seven-
transmembrane receptor thereby placing them in the same
class as chemokine receptors. This observation raised one
important question: can S1P act as a direct chemoattractant
for BMSPCs? Initially, Seitz et al. demonstrated a dose-
dependent chemotactic effect of S1P on human HSPCs in
a modified Boyden chamber assay [19]. It is possible that
polarizing doses of S1P promote signaling through the S1P

2

receptor, which in contrast to S1P
1
, inhibitsHSPC chemotaxis

[21]. Subsequent studies established that the gradient of S1P

between BM and PB is a major determining factor in HSPCs
egress. While SDF-1 still has a significant role in HSPCs
mobilization, it was demonstrated that plasma derived from
normal and mobilized PB strongly chemoattracts murine
BM HSPCs independent of plasma SDF-1 levels [21]. This
was especially evident when removal of lipids from plasma
by charcoal stripping abolished HSPCs chemotaxis but did
not affect responsiveness towards SDF-1 [21]. Ratajczak et al.
further showed that steady state S1P plasma levels create a
gradient favoring HSPCs egress from the BM. As previously
described, HSPCs are actively retained in BM via SDF-1-
CXCR4 and VLA4-V-CAM1 interactions. Ratajczak et al.
corroborated the significance of S1P in HSPCs chemotaxis
by demonstrating that disruption of these interactions via
CXCR4 antagonist AMD3100 or triggering a proteolytic
environment in the BM would release HSPCs form their
niches and therefore free them to follow the bioactive lipids’
gradient to PB.

Furthermore, Ratajczak et al. showed that a robust innate
immune response during G-CSF mobilization is responsible
for increased plasma S1P levels. G-CSF is currently the most
frequently used mobilizing agent that efficiently mobilizes
BMSPCs after a few consecutive daily injections [55]. It has
been established that G-CSF triggers complement complex
activation which stimulates granulocytes to release prote-
olytic enzymes, thereby perturbing SDF-1-CXCR4/VLA-4-
VCAM1 interactions in BM niches and facilitating HSPCs
release [27]. Remarkably, the lasting effect ofG-CSF promotes
CC activation and formation of the membrane attack com-
plex (MAC) that was shown to interact with erythrocytes
[56]. While erythrocytes serve as the major reservoir of
S1P in the PB [20, 57], they are highly protected from
MACbyCD59 anddecay-accelerating factor (DAF) receptors
[58]. However, Ratajczak et al. demonstrated that expression
of these receptors on erythrocytes does not give complete
protection from activated MAC since G-CSF-induced MAC
exposure resulted in plasma S1P levels sufficient for HSPCs
egress [21].

While it has been established that S1P is responsible for
HSPC trafficking, the mechanism to explain this regulation
is still under investigation. Recent evidence suggests that
SDF-1 and S1P work synergistically to facilitate migration of
primitive murine progenitor cells out of the BM [59]. Further
in vitro studies on immature human CD34+ cells demon-
strated that S1P

1
upregulation decreases their chemotactic

activity towards SDF-1 due to reduced cell surface expression
of CXCR4 suggesting a potential interaction between S1P and
SDF-1 [60].These observations were recently corroborated by
Golan et al. showing that short-term inhibition of S1P/S1P

1

axis during steady state conditions or during CXCR4 inhi-
bition (via AMD3100 administration) caused reduction of
SDF-1 in the plasma [61]. Interestingly, generation of reactive
oxygen species (ROS) via S1P

1
signaling were also implicated

in HSPCs mobilization through the release of SDF-1 [62].
Since previous studies showed that ROS inhibition reduces
SDF-1 secretion duringAMD3100-inducedmobilization [63],
it was hypothesized that ROS signaling might also contribute
to SDF-1 secretion. Indeed it was demonstrated that ROS



4 BioMed Research International

Sphingosine

Complex sphingolipidsCeramideSphingomyelin

S1P

SPHK 1 and 2 Sphingosine phosphatase

S1P1 S1P2 S1P3

Phosphoethanolamine

Palimitaldehyde

S1P lyase 

BMSPC mobilization from BM
BMSPC homing to ischemic

myocardium

Reduce ischemic injury
Inhibition of BMSPC 

mobilization

Reduce ischemic injury
BMSPC mobilization 

from BM

Alkaline and acid ceramidases

ASMase and NSMase

+

Gi/Gq/G12/13 Gi/Gq/G12/13Gi

Figure 1: Sphingosine 1-phosphate (S1P) metabolism and signaling in bone marrow stem and progenitor cells (BMSPCs). Interconversion of
membrane sphingolipids and final phosphorylation of sphingosine by SPHKs results in formation of S1P which signals through S1P1, S1P2
and S1P3 receptors in the BMSPCs. These three receptors activate a distinct set of pathways through Gi, Gq, or G12/13 proteins which results
in BMSPCmobilization from the bone marrow niches (S1P1 and S1P3); inhibition of BMSPCmobilization from the bone marrow (S1P2); and
BMSPC homing to ischemic myocardium (S1P1).

signaling induced SDF-1 secretion thereby facilitating HSPCs
egress [61].

S1P-SDF-1 interaction in HSPCs egress was further
demonstrated with the help of FTY720, a potent S1P

1

desensitizing agent which causes S1P receptor internalization
[64]. Interestingly, administration of FTY720 for 24 hours
resulted in increased plasma SDF-1 levels but had no effect
on HSPCs egress. FTY720 treatment did reduce BM ROS
signaling, due to S1P

1
downregulation, again pointing out the

requirement of S1P
1
signaling in HSPC egress. Furthermore,

mice that were treated with BM-specific S1P lyase inhibitor
4-deoxypyridoxine (DOP) [44] had increased BMROS levels
and decreasedHSPC egress [61]. Together, these observations
suggest that the increased concentrations of S1P and SDF-1 in
the BM negatively affect HSPC egress, further highlighting
the fact that both S1P and SDF-1 levels must be tightly
regulated for balanced HSPCs mobilization.

While bioactive lipids such as S1P and C1P are powerful
mobilizers of BMSPCs, their role in BMSPCs’ mobilization
and homing to ischemic myocardium is not well understood.
The role of other chemoattractants in BMSPCs homing to

a hostile environment such as the infarcted myocardium
is also unclear. We recently examined the role of bioactive
lipids, complement, and antimicrobial peptides in BMSPC
homing during MI. Our data shows elevated level of S1P and
C1P in the plasma of MI patients shortly after the onset of
MI [65]. Increased S1P and C1P levels were correlated with
elevated numbers of circulating BMSPCs suggesting a role of
bioactive lipids in BMSPCs mobilization post-MI [65]. Our
speculations were corroborated by a modified Boyden cham-
ber assay (chemotaxis assay) where we observed increased
BMSPCs’ chemotaxis towards plasma isolated from patients
at peak BMSPCs mobilization. Moreover, this migration was
selectively blocked by VPC23019, a specific S1P

1
antagonist,

further implicating S1P as a potent BMSPCs chemoattractant
duringMI [65]. As previously described, MI induces a potent
proteolytic environment in which numerous enzymes such as
metalloproteinases and proteases irreversibly degrade potent
BMSPCs chemoattractants such as SDF-1. Recent evidence
suggests a role for antimicrobial protein cathelicidin LL-37 in
sensitizingBMSPCs towards significantly lower levels of SDF-
1 [66]. LL-37 sensitizes BMSPCs by incorporating CXCR4
into the lipid rafts thereby augmenting CXCR4 signaling.
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Figure 2: Sequence of events in BMSPC mobilization from the BM towards ischemic myocardium during MI. Acute MI initiates an
inflammatory response resulting in release of proteases (by granulocytes and osteoclasts) in the BMwhich proteolytically inactivate the SDF-1
CXCR4 interaction between BM osteoclasts and BMSPCS. The now mobilized BMSPCs follow an increasing SDF-1 and bioactive lipid (S1P
and C1P) gradient to exit the BM niches into the PB. Acute inflammation also promotes the release of cathelicidins (LL-37) which facilitate
clustering of CXCR4 into lipid rafts thereby increasing their sensitivity towards lower levels of circulating SDF-1. Together, the increased
sensitivity towards SDF-1 and bioactive lipid gradients facilitate BMSPC homing towards ischemic myocardium.

Most importantly, we observed LL-37 overexpression follow-
ing MI in cardiac tissues as well as cardiac fibroblasts. Fur-
thermore, we implemented the chemotaxis assay to confirm
that priming BMSPCs with LL-37 from patients with MI
increases their mobilization to low, yet physiological, levels of
SDF-1 (2 ng/mL) [65]. Taken together, our findings highlight
the importance of bioactive lipids and innate immunity in
the mobilization and homing of BMSPCs to the ischemic
myocardium (Figure 2).

5. Mobilization of BMSPC Populations
during MI

TheBM cell populations commonly referred to as BMSPCs is
a heterogeneous population of cells consisting of hematopoi-
etic stem cells (HSCs), endothelial progenitor cells (EPCs),
mesenchymal stromal cells (MSCs), and pluripotent very
small embryonic-like cells (VSELs). Acute myocardial infarc-
tion (MI) initiates a systemic inflammatory response that
stimulates a signaling cascade that results in egress of
BMSPCs from the BM. At the onset of MI, BMSPSs are

mobilized following the gradient of a multitude of previ-
ously described chemoattractants, including bioactive phos-
pholipids, kinins, chemokines, cytokines, growth factors,
and the complement cascade [67–72]. Several studies have
demonstrated the chimerism of cardiomyocytes, a process
that is maintained, at least in part, by BM-derived stem cells
[2, 3, 73, 74]. Innate cardiomyocyte renewal is an effective
process that replaces up to 45% of the adult cardiomyocytes
during the normal lifespan [4] suggesting that development
of cardiac cell based therapies is feasible and essential to treat
MI-damaged myocardium. The heterogeneity of the BM cell
populations could be responsible for the differential response
to the multitude of chemoattractants.

6. Fate of Adults Stem Cells after MI

6.1. Biology of Infarcted Myocardium. However, the question
still remains what is the fate of BMSPCs once they reach
the ischemic myocardium?The fate of BMSPCs is ultimately
determined by the nature of the myocardial microenvi-
ronment. The onset of ischemic injury and subsequent
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Figure 3: Effect of S1P on expression of cardiac and endothelial
factors in BMSPCs. Bar graphs showing the mRNA expression of
cardiacmarkers, Nkx2.5 andGATA4, and endothelialmarkers, vWF
and VE-cadherin in cells following 48 hours of treatment with
250 nM S1P. Cells incubated with S1P were enriched in these genes
compared to controls (∗𝑃 < 0.05).

reperfusion results in a robust proinflammatory state with
elevated levels of locally activated complement [75–77] and
ROS [78]. The induction of ROS and subsequent cytokine
cascade contributes to rapid neutrophil infiltration of the
infarct region, with neutrophil levels peaking between 24
and 72 hours after MI [76, 79, 80]. Furthermore, neutrophils
attracted to the ischemic myocardium release proteolytic
enzymes and additional ROS which may cause collateral
damage to the infiltrating stem cells. It is clear that the
above described mechanisms as well as the lack of a good
blood supply to the infarct region make the myocardial
microenvironment early on post-MI unsuitable for stem
cell arrival. However, as soon as 5 days after MI the acute
inflammatory response subsides, and angiogenesis, themajor
factor in infarct healing, begins to take place [81, 82]. Thus,
around this time, when the acute inflammatory response
has decreased and the infarct site is being vascularized,
stem cells might find the right environment to attach and
proliferate. This window of opportunity is limited, however,
due to evidence of extensive scar formation as soon as 2
weeks after MI, which would hinder stem cell nesting [82–
84]. Clinical studies’ findings are in agreement with these
pathological findings and temporal trends. REPAIR-AMI
study demonstrated that the beneficial effects of BM derived
mononuclear cells were most evident when the cells were
transplanted ≥5 days after the acute myocardial injury [85].

6.2. Therapeutic Effects of Adult Stem Cells after MI. Once
the stem cells do survive their journey to the infarcted
myocardium afterMI, their ultimate contribution tomyocar-
dial repair is still unclear. Since adult myocardium has
very limited potential for self-regeneration, the stem cells
may contribute to ischemic myocardium repair via various
paracrine mechanisms or differentiation into endothelium

and/or cardiomyocytes. There is ample evidence supporting
the hypothesis that paracrine mechanisms mediated by fac-
tors released by the adult stem cells play an essential role
in myocardial repair after stem cell mobilization following
MI. Numerous groups have shown that adult stem cells, and
especially mesenchymal stem cells (MSCs; described above),
secrete a broad range of chemokines, cytokines, and growth
factors that are potentially involved in cardiac repair [86].
Interestingly, hypoxia at the site of injury in conjunction
with stem cell administration further stimulates production
of these factors which includes hepatocyte growth factor
(HGF), vascular endothelial growth factor (VEGF), insulin-
like growth factor (IGF)-I, basic fibroblast growth factor
(bFGF), and adrenomedullin [87, 88]. The paracrine benefits
were further corroborated by administering conditioned
medium (CM) from adult stem cells and comparing those
effects to actual stem cell therapy [89–91]. These paracrine
effects of BMderived cells extend to other populations such as
cKit+ cells and VSELs, thereby contributing to regeneration
of ischemicmyocardium [92].The authors demonstrated that
the improvement in cardiac functions were disproportionate
to the rate of differentiation of BM derived cells suggesting
that various factors secreted by these cells can explain the
majority of beneficial effects. We observed similar findings
with VSELs in an animal model of acute ischemic injury [93].

Differentiation of adult stem cells into cardiomyocytes
and their subsequent contribution to post-MI repair has been
extensively investigated formore than a decade. Initial in vitro
studies were able to isolate adult stem cells from either BM or
adipose tissue and through various culture conditions, induce
their differentiation into beating cells exhibiting cardiomy-
ocyte morphology and physiology [94–103]. Although recent
in vivo studies have revealed that heart cells are generated
in adult mammals during normal homeostasis as well as
post-MI, the frequency of generation and the source of new
heart cells remain unclear. Some studies suggest a high rate
of stem cell differentiation into cardiomyocytes [104]. Other
studies suggest that new cardiomyocytes are derived from
the division of preexisting cardiomyocytes at a very slow
rate [4, 105, 106]. Most recently Senyo et al. showed that
the genesis of cardiomyocytes occurs at a low rate by the
division of preexisting cardiomyocytes during normal ageing
and this process was markedly increased in areas adjacent
to myocardial injury [107]. However, the evidence presented
herein accents the fact that adult stem cells contribute
to myocardial repair by a wide array of effects including
paracrine mechanisms, differentiating into functional tissues
(cardiac or endothelial), as well as other diverse therapeutic
features, to preserve yet undamaged cells and contribute to
endogenous creation of new functional tissue.

6.3. The Role of S1P in Adult Stem Cell Differentiation.
While evidence suggests that S1P is involved in BMSPC
mobilization, the possibility still remains that bioactive lipid
signalingmay contribute to the ultimate fate of BMSPCs post-
MI.

Since S1P is a potent intracellular second messenger it
has been implicated in numerous physiological processes
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Figure 4: Effect of S1P on cardiac and endothelial protein expression in BMSPCs. Representative confocal and matrigel assay images of
BMSPCs cultured for 4 and 2 weeks in culture medium supplemented with 250 nM of S1P. Panels (a)–(c) depict elongated cells indicative
of cardiomyocyte morphology. (a) Visualization of early myocardial protein expression (GATA4 and Nkx-2.5—green). (b) Staining of late
myocardial protein expression (myosin heavy chain and Troponin—red). (c) Overlay of (a) and (b), depicting colocalization of myocardial
protein expression in the cytoplasmand cardiac transcription factors around the nucleus. Panel (d) depicts round cells indicative of endothelial
morphology and visualization of endothelial protein expression (VWF, PDGFr𝛼, and PDGFr𝛽—red). All cells were stained with DAPI to
visualize the nuclei (blue). (e) and (f) matrigel assay images demonstrate the capillary-like structure formation by BMSPCs cultured in S1P
medium.

including vasculogenesis. Interestingly, recent evidence has
also demonstrated that S1P has promoted embryonic and
neural stem cell differentiation, proliferation, and mainte-
nance [108–110]. Recently, Zhao et al. demonstrated that S1P
drove differentiation of human umbilical mesenchymal stem
cells (HUMSCs) into cells exhibiting cardiomyocyte-like
morphology and physiology, and ultimately the formation
of cell sheets from HUMSCs derived cardiomyocytes [111].
This study was the first of its kind to demonstrate that S1P
potentiates differentiation of HUMSCs towards functional
cardiomyocytes. Furthermore, the engineered cell sheets pro-
vide potential for generating clinically applicable myocardial
tissues. These newly discovered therapeutic effects of S1P
prompted us to extend the work of Zhao et al. by assessing
the ability of S1P to initiate differentiation of BMSPCs
into cardiomyocytes and vascular cells. Indeed, incubation
of BMSPCs with 250 nM of S1P resulted in initiation of
cardiac and endothelial expression after 48 hours in cell
culture. Figure 3 demonstrates the increased expression of
cardiac transcription factors (Nkx-2.5 and GATA4) as well
as endothelial genes (vWF and VE-cadherin). Following our
results indicating the increased expression of early cardiac
and endothelial genes with S1P incubation, we proceeded

with examining the expression of functional cardiac and
endothelial proteins in BMSPCs cultured for 3-4 weeks
in medium supplemented with 250 nM of S1P. BMSPCs
expressedmorphology suggestive of both cardiac (elongated)
and endothelial (rounded) at 4 weeks of culture (Figure 4).
Immunohistochemical examination revealed the expression
of various cardiac proteins such as troponin and cardiac
specific myosin heavy chain in the elongated cells. These
proteins were expressed in the cytoplasm (Figures 4(b) and
4(c)). We also observed remnants of cardiac transcription
factors such as Nkx-2.5 and GATA4 around the nucleus (Fig-
ures 4(a) and 4(c)). Similarly, rounded cells with endothelial
morphology were found to have endothelial proteins such as
vWF, VE-cadherin, PDGFr𝛼, and PDGFr𝛽 in the cytoplasm
suggestive of endothelial lineage differentiation (Figure 4(d)).
In parallel, BMSPCs exposed to S1P demonstrated functional
endothelial lineage commitment as demonstrated by 10-
fold higher tube formation in matrigel assays (𝑃 < 0.05)
(Figures 4(e) and 4(f)). Taken together, our results suggests
that S1P may play a role in the differentiation of BM-
derived stem cells. This is of clinical importance given our
recent findings that confirm the elevation of S1P level in
the plasma and its potential role in BMSPCs mobilization
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Figure 5: Proposed BM-derived stem cell differentiation scheme in the presence of S1P. We propose that following myocardial infarction the
role of S1P is twofold: mobilization of BMSPCs from their BM niches as well as promoting their subsequent differentiation into myocardial
and endothelial lineages, thereby further aiding in myocardial repair following ischemic injury.

following acute myocardial infarction [65]. We propose that
followingmyocardial infarction and the role of S1P is twofold:
mobilization of BMSPCs from their BM niches as well as
promoting their subsequent differentiation into myocardial
and endothelial lineages thereby further aiding inmyocardial
repair following ischemic injury (Figure 5).

Multiple new therapies that modulate the plasma levels
of S1P or its receptors’ expression are approved by the
FDA and can be utilized in improving the mobilization
and differentiation of BMSPCs in myocardial ischemia in
future myocardial regenerative studies. Similarly, priming
BM-derived cells with LL-37 can be used to improve their
homing to the ischemic myocardium and thus overcome a
major hurdle in stem cell regenerative myocardial therapies.
We are currently examining both strategies in our laboratory
to improve the mobilization and homing of BMSPCs to the
ischemic myocardium.

7. Conclusion

The emergence of bioactive lipids (S1P and C1P) as sig-
nificant players in the trafficking of BMSPCs has added a
new dimension to our understanding of BMSPC biology.
Available literature and our findings highlight the impor-
tance of bioactive lipids in the mobilization and homing

of BMSPCs to the ischemic myocardium. In conjunction
with our data about their role in stem cell mobilization and
homing, it appears that bioactive lipids have an additional
role in promoting BMSPC differentiation and proliferation
towards cardiac or endothelial tissue lineage. The field of
stem cell-based myocardial regeneration still faces multiple
challenges such as the appropriate stem cell population,
timing of therapy, and the route of administration. Numerous
strategies are currently being explored to improve stem cell
delivery and retention to the ischemicmyocardium following
acute injury and in the setting of chronic ischemic heart
disease. Our and others recent data provide evidence that
innate immunity (cathelicidins and the complement cascade)
contribute to BMSPC homing by modulating the sensitivity
of BMSPC surface receptors, specifically CXCR4. Therefore,
future studies utilizing those, and similar, agents can improve
the yield of stem cell therapy in patients who are in dire need
for regenerative therapies.
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