
Poly (lactic-co-glycolic acid) nanoparticle-based vaccines delivery systems as a
novel adjuvant for H9N2 antigen enhance immune responses
Adelijiang Wusiman,*,y Yi Zhang,* Telieke Ayihengbieke,* Xike Cheng,* Tuerhong Kudereti,*
Dandan Liu,* Deyun Wang,y and Saifuding Abula*,1

*Xinjiang key laboratory of new drug study and creation for herbivorous animal (XJ-KLNDSCHA), College of
Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830000, PR China; and yCollege of Veterinary

Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
ABSTRACT Poly (lactic-co-glycolic acid) (PLGA)
nanoparticle used as vaccine adjuvants have been widely
investigated due to their safety, antigen slow-release ability,
and good adjuvants activity. In this study, immunopoten-
tiator Alhagi honey polysaccharide encapsulated PLGA
nanoparticles (AHPP) and assembled pickering emulsion
with AHPP as shell and squalene as core (PPAS) were
prepared. Characterization of AHPP and PPAS were
investigated. H9N2 absorbed nanoparticles formulations
were immunized to chicken, then the magnitude and kinet-
ics of antibody and cellular immune responses were
assessed. Our results showed that PPAS had rough
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strawberry-like surfaces, a large number of antigens could
be absorbed on their surfaces through simple mixing. Adju-
vant activity of PPAS showed that, PPAS/H9N2 can
induce long-lasting and high HI titers, high thymus, spleen,
and bursa of fabricius organ index. Moreover, chicken
immunized with PPAS/H9N2 showed a mixed high differ-
entiation of CD4+ and CD8a+ T cell, and strong Th1 and
Th2-type cytokines mRNA expression. Thus, these findings
demonstrated that PPAS could induce a strong and long-
term cellular and humoral immune response, and has the
potential to serve as an effective vaccine delivery adjuvant
system for H9N2 antigen.
Key words: alhagi honey polysaccharide, pickering emulsion, poly(lactic-co-glycolic acid) nanoparticles, vaccine
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INTRODUCTION

Vaccination is one of the safest and most effective
tools to prevent many infectious and chronic diseases,
such as prevent avian influenza (Wang et al., 2019a).
The H9N2 avian influenza virus (AIV), which is one
subtype of Avian influenza virus, has led to severe eco-
nomic losses in the global poultry industry ( Gan et al.,
2019; Yitbarek et al., 2019; Su et al., 2020). It has been
reported that the H9N2 virus not only reduces the egg
production and growth rate of chickens ( Ellakany
et al., 2018; Jake et al., 2018), but also may be transmit-
ted to humans, causing harm to human health ( Jake
et al., 2018; Zhou et al., 2018). It is reported that both
humoral and cellular immunity plays a vital role in the
protection of H9N2 infection (Park et al., 2014;
Umar, et al., 2016). To enhance the immunogenicity of
vaccines and produce a long-term and effective cellular
and humoral immune protection effect for animals, the
vaccine is usually mixed with an adjuvant (Lung et al.,
2020; Plotkin. and Stanley., 2014). Aluminum adjuvant,
known as the conventional adjuvant, has widely applied
in vaccines because it induces effective antibodies
immune responses (Yue and Ma, 2015; Nazmi et al.,
2017; Wang et al., 2019a ). However, aluminum adju-
vant has the inability to elicit the cell-mediated type-1 T
cell (Th1) or cytotoxic T lymphocyte (CTL) responses
(Patel et al., 2006; Xia et al., 2018; Yue and Ma, 2015 ).
The oil emulsion adjuvant could effectively enhance
immune responses for vaccines and is widely used in vet-
erinary, but also can cause local granuloma, abscess, and
other side effects, affecting the quality of livestock prod-
ucts (Bo et al., 2017; Giuseppe et al., 2018). Therefore, it
is still necessary to develop a safe H9N2 adjuvant that
can induce humoral and cellular immune responses.
Alhagi honey polysaccharide (AHP) extracted from

alhagi honey has been demonstrated that it possesses
excellent immune enhancement, and widely used as
immune-stimulator (Wusiman et al., 2019a). Our previ-
ous research has been showed that encapsulation of the
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AHP and antigen in PLGA nanoparticles as vaccine
adjuvants has ability to induced long lasting and strong
humoral and cellular immune responses (Mir et al.,
2017; Xia, et al., 2018; Wusiman et al., 2019b). However,
the antigen encapsulation method will directly expose
antigens to organic solvents. Compared with particles
nano-adjuvant, assembled particles-oil adjuvants picker-
ing emulsion may adsorb more antigens because of the
rough strawberry-like surface area (Xia et al., 2018).

In addition, Pickering emulsions based on PLGA nano-
particles will promote the interaction between nanopar-
ticles and cell membranes and antigen uptake by antigen-
presenting cells (APCs) due to their large surface area
and core fluidity. Additionally, PLGA nanoparticle-based
Pickering emulsion will promote nanoparticles interac-
tions with the cell membrane due to their large surface
area and good flow variability. When the nanoparticles
are in contact with APCs, large amounts of antigen are
taken up by the APCs, and the activated APC carry a
large number of nanoparticles into lymph nodes therefore
it also process excellent lymph node targeting (Mir et al.,
2017; Xia et al., 2018). After uptake of a large number of
antigens, immune cells induced a strong cellular or
humoral immune response through different ways
(Mir et al., 2017; Xia et al., 2018).

In our previous research, an immunopotentiating
AHP encapsulated PLGA nanoparticles (AHPP) deliv-
ery system was successfully designed and developed as a
nano-adjuvant. However, the antigen encapsulating
method limits the clinical application of the nano-adju-
vant. In this study, the assembled pickering emulsion
was prepared by assembling AHPP with oil-phase squa-
lene (PPAS) via phacoemulsification. We hypothesized
that PPAS, as a stable vaccine adjuvant, could load
large amounts of antigens on the strawberry-like surface
area through simple mixing and induce strong and long-
lasting humoral and cell-mediated immune response by
antigen slow-release effect and different antigen treat-
ment pathways. Therefore, the morphological struc-
tures, antigen loading efficacies, in vitro antigen release
behaviors, and the change of physical forms of the
PPAS adjuvants were measured. PPAS vaccine delivery
system surface-adsorbed with H9N2 antigen were pre-
pared, and their immunoadjuvant activity was detected
by various methods.
MATERIALS AND METHODS

Preparation of PPAS and PEI-PPAS
Emulsion

AHPP nanoparticles were prepared using the double
emulsion technique as previously described
(Wusiman et al., 2019a). First, immunostimulatory
Alhagi honey polysaccharide (AHP, MW 47479 Da,
Carbohydrate content = 99.0%) was dissolved in water
sonicated with PLGA (MW 18KDa, 75:25) dichlorome-
thane solution to obtain the primary AHP encapsulated
PLGA emulsion, then the primary emulsion was mixed
and sonicated with Pluronic F68 solution to form a
stable AHPP emulsion. The obtained nanoparticle
emulsion was freeze-dried, and the powder was stored at
�20°C. The encapsulation efficiency of AHP in the
AHPP nanoparticles was about 64.09 § 2.55%, accord-
ing to our previous research (Wusiman et al., 2019c).
AHPP based Pickering emulsion (PPAS) was pre-

pared by sonication. Briefly, 10 mg nanoparticles are
fully dissolved in 1.6 mL water and sonicated with
0.4 mL the oil phase squalene (Shanghai Macklin Bio-
chemical Technology Co., Ltd, China) at 80 W for 90 s
to form a stable PPAS emulsion (Xia et al., 2018).
Morphology and Antigen Adsorption
Characteristics of the PPAS

Cryo-scanning electron microscopy (Cryo-SEM, FEI
quanta250) and Scanning electron microscopy (SEM,
Model S-4800 II FESEM,) were used to observed the
morphology and structure of PPAS and AHPP, respec-
tively. To evaluate the antigen loading characteristics of
PPAS, OVA-FITC (green, Beijing Solaibao Technology
Co. Ltd, China) solution was mixed the PPAS (red)
emulsion, to prepare the OVA-FITC loaded PPAS. The
morphology of antigen adsorption of PPAS was
observed by confocal laser scanning microscopy.
Assay on Characterization of the PPAS

To investigate the change of the characteristics of
PPAS and AHPP emulsion before and after antigen
loading. The changes of polydispersity index (PDI),
hydrodynamic size, and zeta potentials was measured
using a Nano ZS instrument (Hydro2000Mu, Malvern
Instruments, UK) before and after loading H9N2.
Antigen Adsorption Efficiency and In Vitro
Release of PPAS

PPAS or AHPP were (5 mL, 10%, v/v) mixed with
H9N2 antigen (5 mL) at room temperature for 20 min,
to prepare the H9N2 loaded PPAS (PPAS/H9N2) or
H9N2 loaded AHPP (AHPP/H9N2). In brief, free H9N2
in emulsion were isolated from PPAS or AHPP by
means of a Sephadex G-100 column (Beijing Solaibao
Technology Co. Ltd), and the antigen adsorption effi-
ciency (AE) was measured with BCA assay (Beijing Sol-
aibao Technology Co. Ltd). The H9N2 antigen
adsorption efficiency was calculated using Eqs:

Antigen adsorption efficiency

¼ Total antigen� Supernatant antigen
Total antigen

To determine the antigen slow effect of PPAS and
AHPP, 30 mL of PPAS/H9N2 or AHPP/H9N2 were
poured into the dialysis bag, and shacked at 37°C,
100 rpm. At predetermined intervals 500 mL samples
were collected and the free H9N2 was separated by
Sephadex G-100 column and determined by BCA assay.



Table 1. Chicken spleen cytokine primer design.

Gene Primers sequences 5’ to 3’ Bases number

INF-g F: AAAACCCACTCATACCTGCTC 21
R: GAGTGTCACATTTCCTGGAGC 21

IL-4 F: AGGTTTCCTGCGTCAAGATG 20
R: ATGGTGCCTTGAGGGAGGTG 20

IL-6 F: GGTGATAAATCCCGATGAAGTG 22
R: CAGAGGATTGTGCCCGAAC 19

IL-2 F: ATCTTTGGCTGTATTTCGGTAG 22
R: GCAGAGTTTGCTGGGTGCA 19

b-actin F: GAAGTACCCCATTGAACACGG 21
R: GCATACAGGGACAGCACAGC 20
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Animal Immunization

Inactivated H9N2 antigen was a gift from the Animal
Health and Epidemiology Center (Qingdao, China).
H9N2 AIV was a reassortant rGX55 virus, which carries
the HA and NA genes of A/chicken/Guangxi/55/2005
(H9N2) virus and the internal genes of PR8, was recov-
ered by using reverse genetics. EID50/mL = 1 £ 10�9.75.
H9N2 antigen was collected from allantoic fluid of
chicken embryo which cultured with H9N2 virus, and
then inactivated at 37°C for 24 h mixed with formalde-
hyde (0.1%). Animal experiments were conducted in
strict accordance with the guide for the care and use of
laboratory animals, Nanjing Agricultural University
IACUC (Approval ID: 2019034). One-day-old HY-LINE
Variety Brown chickens purchased from Hai ’an Shuan-
gli Hatch Poultry farm (Nantong, China) were ran-
domly divided into 5 groups (n = 22) after centralized
feeding for 1 wk. The chickens were intramuscular
immunized with 0.2 mL of the PPAS/H9N2
(1:1 = VPPAS:VH9N2), AHPP/H9N2(1:1 = VAHPP:
VH9N2), the control groups were Alum/H9N2 (Alum
Adjuvant, Thermo Fisher Scientific, Waltham, MA,
1:1 = VAlum:VH9N2), free H9N2, and PBS. All of the
chickens were sacrificed at d 7, 21, and 35 after the sec-
ond immunization.
Detection of Hemagglutination Titer and
Immune Organ Index

Hemagglutination (HI) titer of sera weas determined
by hemagglutination inhibition methods at the d 7, 21,
and 35 after the final vaccination according to a previous
study (Wang et al., 2016). On d 21and 35 after the sec-
ond immunization, chicken (n = 5) immune organs
spleen, thymus and bursa of fabricius were collected,
and weighed quickly. The chicken immune organ index
was calculated, immune organ index = (Immune organ
weight/body weight) £ 100% (Wang et al., 2016).
Activation of the CD4+ and CD8+ T Cells

On 21 d after the second immunization, chicken
splenic lymphocyte (n = 5) were collected and stained
with anti-Chicken -CD3-FITC antibody, anti-CD4-PE
antibody and anti-CD8A-APC antibody (Southern Bio-
tech) according to a previous study (Bo et al., 2018).
The expression of T cell differentiation was analyzed by
the flow cytometer (BD Accuri C6).
QRT-PCR Analysis of Cytokines for
Peripheral Blood Lymphocytes

Peripheral blood lymphocytes were collected from
immunized chickens at 21 d after the final vaccination,
and the mRNA expression levels of IL-2, INF-g, IL-4,
and IL-6 were measured with qRT-PCR analysis accord-
ing to a previous study. Briefly, total RNA of peripheral
blood lymphocytes was isolated using TRIzol reagent
(Life Technologies, Rockville, MD). Reverse transcrip-
tion was performed using TaKaRa Prime Script RT
reagent Kit with gDNA Eraser, and real-time PCR were
performed by TB Green Premix Ex Taq II (TaKaRa
Co., Ltd, Nanjing, China) according to the manufac-
turer’s instructions. The different primers of cytokine
genes and reference genes (b-actin) were shown in
Table 1, and the data analyses were performed using the
2-DDCt method (Bo et al., 2018).
Histopathological Analysis

Spleen, thymus and bursa of fabricius were collected
from the immunized chickens and fixed with 4% parafor-
maldehyde on d 35 after the second immunization
(n = 3). Then, the fixed organs were performed by hema-
toxylin and eosin (HE) staining.
Statistical Analysis

Quantitative data were expressed as means § SEM.
Statistical significance was analyzed using One-way
ANOVA analysis with Turkey’s test. A probability
value P < 0.05 was considered statistically significant.
RESULTS

Morphology Observation

PPAS emulsion was prepared by ultrasonic emulsifi-
cation with squalene as the internal oil core and AHPP as
the hydrophilic shell. As shown in Figure 1A, AHPP was
smooth spherical in morphology, and the particle size was
about 200 nm. The PPAS emulsion were all spherical in
morphology, with a rough surface in strawberry shape
and a size of about 1,000 nm (Figure 1B). The results
showed that the distribution of AHPP on the surface of
PPAS emulsion were uniformly and compactly.
Characterization of OVA Adsorbed PPAS

PPAS has a large specific surface area and provide a
greater number of surface gaps for antigen adsorption.
As shown in Figure 2, a large among of antigen evenly
distributed on the surface of PPAS. The results indi-
cated that the large among of antigens were absorbed by
the special surface gaps of PPAS.



Figure 1. Morphology of the nanoparticles (A) scanning electron microscopy of AHPP; (B) cryo-scanning electron microscopy of PPAS.
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Characterization of H9N2 Adsorbed PPAS

In order to detect the characterization of nanopar-
ticles pre and post-antigen loading, the changes of
size, zeta potential and PDI of the nanoparticles were
measured. As shown in Figure 3, the particle size of
AHPP and PPAS were about 200 nm and 1,000 nm,
and the particle size of antigen loaded AHPP/H9N2
and PPAS/H9N2 were increased, in which particle
size of PPAS increased more clearly. The larger parti-
cle size of PPAS/H9N2 may due to the adsorption of
H9N2 antigen on the surface. The PDI value of
AHPP and PPAS increased after loading antigen,
Figure 2. Confocal laser scanning microscopy antigen loaded PPAS. Mo
but all of the value were lower than 0.3, the results
that the nanoparticles have good dispersibility. The
changes of zeta potentials due to the fact that a large
among of negatively charge antigen adsorbed on the
surface of the AHPP and PPAS.
As shown in Figure 3B, the adsorption efficiency of

H9N2 antigen on AHPP and PPAS was about 20 and
65%, respectively. The in vitro release of H9N2 from
AHPP/H9N2 and PPAS/H9N2 at 37°C was shown in
Figure 3C. Within 12 h (pH = 7.0), more than 50% of
antigen had been released from AHPP, more than 15%
of antigen had been released from PPAS, and then both
of the nanoparticles followed by slow release over 40 d.
del antigen OVA-FITC was in green, oil phase squalene of PPAS is red.



Figure 3. (A) Change of size, PDI, and Zeta potential of pre- and post-H9N2 loaded nanoparticle. (B) H9N2 antigen adsorption morphology of
AHPP and PPAS. (C) In vitro release of H9N2 from AHPP/H9N2 and PPAS/H9N2. Data are expressed as the mean § SEM (n = 4).
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HI Antibody Titers

As shown in Figure 4A, AHPP/H9N2, PPAS/
H9N2, and positive control Alum/H9N2 could induce
long-lasting and significantly higher HI titers from d
7 to d 35 than H9N2 group (P < 0.05). Among them,
PPAS/H9N2 induced the strongest HI titer at d 21
and 35 in all groups, but there was no significant dif-
ference with AHPP/H9N2 and PPAS/H9N2 groups
(P > 0.05).

The immune organ index is an important index
reflecting the immune status of the body. As shown in
Figures 4B and 4C, PPAS/H9N2 and Alum/H9N2
exhibited high thymus, spleen, and bursa of fabricius
organ index compared to other groups. The thymus
index of PPAS/H9N2 on d 21 and 35 was significantly
higher than that of H9N2 and PBS groups (P > 0.05).
Differentiation of CD4+ and CD8a+ T-Cells

Chicken was intramuscular injected with different for-
mulations, and then the differentiation of CD4+ and
CD8a+ T-cells in the splenic lymphocyte were detected
at the d 21 after the final immunization. As shown in
Figures 7A and 7B, chicken in AHPP/H9N2 and
PPAS/H9N2 group displayed significantly higher quan-
tity of CD3e+ CD4+ and CD3e+CD8+ T cells expression
than all other groups (P < 0.05). The differentiation lev-
els of CD3e+ CD4+ and CD3e+CD8+ T cells in PPAS/
H9N2 groups were higher than those in AHPP/H9N2
groups (P > 0.05). The above results indicate that
PPAS/H9N2 could improve the differentiation of
CD3+CD4+ and CD3+CD8+ T cells.
Expression of Cytokines mRNA

The PPAS/H9N2 formulations induced highest levels
of IL-4 and IL-6 (Th2-type cytokines), and IFN-g and
IL-2 (Th1-type cytokines) among all of the groups. The
Th1-type cytokines IFN-g and IL-2 levels induced by
PPAS/H9N2 group was significantly higher than that in
AHPP/H9N2 and Alum/H9N2 groups. The Th2-type
cytokines IL-4 and IL-6 levels induced by PPAS/H9N2
group was significantly higher than that in Alum/H9N2
groups, but there was no significantly significant differ-
ent with PPAS/H9N2 group (Figures 6A and 6B).
These results indicated that PPAS/H9N2 formulations
could induce a strong mixture secretion of Th1 and Th2
mediated responses.



Figure 4. (A) The expression of HI titers. (B, C) Immune organ index at d 21 and 35. a−c Bars with different superscripts differed significantly
(P < 0.05), n = 5.
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Histology Analysis

The thymus, spleen, and bursa of fabricius were col-
lected on d 35 after the second immunization. The col-
lected organs were performed by HE staining (Figure 7).
The results showed that there were no obvious toxicities
or inflammatory infiltrates in all the experimental
groups, which indicated the safety of all the H9N2-
loaded nanoparticles.
DISCUSSION

H9N2 is the most widely distributed influenza virus in
the world had caused serious economic losses in the poul-
try industry worldwide (Lee et al., 2008; Uddin et al.,
2015; Yitbarek et al., 2019). Vaccination remains the
most effective and economically prudent strategy to
counter the threat posed by the H9N2 avian influenza
virus (Nicholson et al., 2010; Golchin et al., 2017;
Su et al., 2020). H9N2 influenza vaccine combined with
commercial adjuvants such as alum adjuvant or oil
emulsion adjuvant-induced strong humoral immune
responses, but with a poor cellular immune response
(Atmar et al., 2006; Riaz et al., 2017). The cellular
immune response is crucial for the host defence system
against infection (Xie et al., 2012; Marjolein et al.,
2020). Moreover, it has been reported that in addition to
humoral immunity, effective cellular responses also play
a crucial role in protection against H9N2 infection
(Jafari et al., 2017). Therefore, preparing a vaccine adju-
vant that can induce an effective mixture of cellular and
humoral immune responses is critical to defence against
H9N2 influenza. PLGA is a biodegradable material that
has been widely investigated due to its safety, antigen
slow-release ability, and good adjuvants activity.
(Dhakal et al., 2017; Mir et al., 2017). AHP has been
demonstrated that possesses excellent immune enhance-
ment, and widely used as immune-stimulator
(Wusiman et al., 2019a). In our previous research, AHP
encapsulated PLGA nanoparticles have been used as an
effective nano-adjuvant to improve the immune effect of
antigens (Wusiman et al., 2019b). However, the antigen
adsorption rate of AHPP is low. During the preparation
of AHPP, the antigen will be indirectly in contact with
organic solvents, inevitably exposing antigens to harsh
conditions.
In this study, PLGA nanoparticles based PPAS were

prepared by assembling AHPP with oil-phase squalene
via phacoemulsification. From the SEM and Cryo-SEM
images, it was clear that AHPP has a spherical shape
and a smooth surface was about 200 nm in size. PPAS
also has a spherical shape but with rough strawberry-
like surfaces was about 1 mm in size. A large number of
H9N2 vaccines can successfully adsorb on the surface of
the PPAS. The antigen adsorption morphology, changes
of particle size, and high antigen loading efficiency veri-
fied this effect. As shown in Figures 2 and 3A, a large
among of antigens will be adsorbed on the strawberry-



Figure 5. Differentiation of CD4+ and CD8a+ T cell in spleen. (A) Expression of CD4+ and CD8a+ T cell. (B) Differentiation of CD4+ and
CD8a+ T cell in splenic T lymphocytes. a−c Bars with different superscripts differed significantly (P < 0.05), n = 4.
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like surface of the PPAS after simple mixing so that the
particle size increases by 100 nm. The adsorption capac-
ity of AHPP is weak, so the particle size did not change
significantly. The antigen loading rate of AHPP/H9N2
and PPAS/H9N2 were 24.6 § 1.91% and 64.7 § 3.34%
(Figure 3B); this result was consistent with the results
reported above.

Vaccines are the best defence against infectious dis-
eases (Chrzastek et al., 2018; Shin-Hee, 2018). H9N2
infection is usually defended by H9N2 vaccine, but due
to poor immunogenicity of vaccine antigen, adjuvants
need to be added to enhance the immune effect of the
H9N2 vaccine (Kilany et al., 2016; Riaz et al., 2017).
However, commercial adjuvants such as aluminum adju-
vants and oil adjuvants are limited in their clinical appli-
cation due to their defects, such as inability to induce
effective cellular immune responses or large toxic and
side effects (Kilany et al., 2016; Irshad et al., 2018). It is
necessary to develop safe and effective adjuvants to
induce strong humoral and cellular immune responses.
In this study, the adjuvant effects of the AHPP and
PPAS for the H9N2 vaccine were evaluated. It was
found that PPAS/H9N2 induced long-lasting and high
HI titer comparable to the other groups and promoted a
high immune organ index (Figures 4A−4C). Further-
more, in all treatment groups, PPAS/H9N2 significantly
increased the differentiation of CD3e+ CD4+ and
CD3e+CD8+ T cells in the spleen compared to Alum/
H9N2 group (Figures 5A and 5B). Alum adjuvant is
known to induce strong Th-2 polarized humoral immune
responses (Hawken and Troy, 2012; Patel et al., 2006).
As such, these data suggested that the PPAS/H9N2 not
only induced a strong Th-2 type immune response but
also mediates an effective Th-1 type immune response.
As shown in Figures 6A and 6B, PPAS/H9N2 promoted
the mRNA expression of IFN-g, IL-2, IL-4, and IL-6
cytokines, further suggesting that PPAS/H9N2 induced
a mixed Th1 and Th2 immune response. Histology anal-
ysis of immune organs from PPAS immunized chickens
indicated the safety of the PPAS/H9N2 formulations.
Therefore, these results show that AHPP based assem-
bled particles-oil adjuvants PPAS nanoparticles provide
an excellent alternative for adjuvant development of the
H9N2 vaccine.



Figure 6. Relative mRNA expression levels of (A) IL-4 and IL-6, (B) IFN-g and IL-2 cytokines in chicken peripheral blood lymphocytes. a-d Bars
in the histogram with different letters were significantly different (P < 0.05). n = 4.

Figure 7. Histological analysis of thymus, spleen, and Bursa of Fabricius in chickens (200 £, HE, scale bar was 100 mm).
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CONCLUSIONS

In summary, to our knowledge, this is the first study
to synthesize, characterization and in vivo evaluation of
the PLGA nanoparticles and PLGA nanoparticles
assembled pickering emulsion. Among the 2 types of
nanoparticles, PPAS could load a large amount of H9N2
antigen by simple mixing showed a good antigen sus-
tained-release effect. PPAS/H9N2 immunized chicken
can induce high HI antibody titer, immune organ index,
a mixed CD4+ and CD8a+ T cell differentiation, and
Th1 and Th2-type cytokines mRNA expression. The
acquired data on PPAS/H9N2 formulation is potentially
served as a novel and effective vaccine adjuvant in
chicken to induce specific immune responses against
infections and diseases.
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