
International  Journal  of

Environmental Research

and Public Health

Review

The Impact of Meteorological Factors on Communicable
Disease Incidence and Its Projection: A Systematic Review

Mazni Baharom 1 , Norfazilah Ahmad 1,* , Rozita Hod 1 , Fadly Syah Arsad 1 and Fredolin Tangang 2

����������
�������

Citation: Baharom, M.; Ahmad, N.;

Hod, R.; Arsad, F.S.; Tangang, F. The

Impact of Meteorological Factors on

Communicable Disease Incidence and

Its Projection: A Systematic Review.

Int. J. Environ. Res. Public Health 2021,

18, 11117. https://doi.org/10.3390/

ijerph182111117

Academic Editor: Paul B. Tchounwou

Received: 25 August 2021

Accepted: 18 October 2021

Published: 22 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak,
Kuala Lumpur 56000, Malaysia; mazni_baharom@yahoo.com (M.B.); rozita.hod@ppukm.ukm.edu.my (R.H.);
fadlysyaharsad@gmail.com (F.S.A.)

2 Department of Earth Sciences and Environment, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; tangang@ukm.edu.my

* Correspondence: norfazilah@ppukm.ukm.edu.my

Abstract: Background: Climate change poses a real challenge and has contributed to causing the
emergence and re-emergence of many communicable diseases of public health importance. Here, we
reviewed scientific studies on the relationship between meteorological factors and the occurrence
of dengue, malaria, cholera, and leptospirosis, and synthesized the key findings on communicable
disease projection in the event of global warming. Method: This systematic review was conducted
according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
2020 flow checklist. Four databases (Web of Science, Ovid MEDLINE, Scopus, EBSCOhost) were
searched for articles published from 2005 to 2020. The eligible articles were evaluated using a
modified scale of a checklist designed for assessing the quality of ecological studies. Results: A
total of 38 studies were included in the review. Precipitation and temperature were most frequently
associated with the selected climate-sensitive communicable diseases. A climate change scenario
simulation projected that dengue, malaria, and cholera incidence would increase based on regional
climate responses. Conclusion: Precipitation and temperature are important meteorological factors
that influence the incidence of climate-sensitive communicable diseases. Future studies need to
consider more determinants affecting precipitation and temperature fluctuations for better simulation
and prediction of the incidence of climate-sensitive communicable diseases.

Keywords: climate change; global warming; meteorological factors; communicable disease projection;
dengue; malaria; cholera; leptospirosis

1. Introduction

In the last decades, the global burden of disease has shifted from communicable to
non-communicable causes [1]. The coronavirus disease 2019 (COVID-19) pandemic on
the other hand has demonstrated how communicable disease remains a significant threat
to global health, particularly as the climate crisis continues to influence disease spread
in a variety of ways. The evidence shows that the global surface temperature during
the most recent decade (2011–2020) was 1.09 [0.95 to 1.20] ◦C higher relative to the pre-
industrial period (1850–1900), which was driven by human activities [2]. Based on the
Sixth Assessment Report of the Intergovernmental Panel on Climate Change, the global
surface temperature will continue to rise, ranging from 1.5 to 4.4 ◦C in the twenty-first
century. The global warming of 2 ◦C is likely to occur in the mid-term period (2041–2060)
under the high greenhouse gases emissions scenario (Shared Socioeconomic Pathways,
SSP3-7.0) [2]. A warming of 2 ◦C and more poses greater risk to human health [3], par-
ticularly on vulnerable subpopulations such as the elderly, low-income populations, and
people with comorbidities [4,5].

Climate change poses a real challenge to public health and has contributed to causing
the emergence and re-emergence of many communicable diseases of public health impor-
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tance [5]. Climate change impacts communicable disease in many different ways through
ecosystem changes or by disrupting disease control efforts. Among the communicable
diseases, vector-borne and water-borne diseases are the two main categories predicted
to be most affected [6]. Vector-borne diseases such as dengue [7,8] and malaria [9,10],
water-borne disease such as cholera [11,12] and leptospirosis [13,14] were well known to
be highly sensitive to climatic factors. An increase in global surface temperature and ocean
temperature causes the sea level to rise. Rising sea levels will affect low-lying areas and
cause seawater intrusion to coastal rivers and freshwater, and frequent flooding events [3].
Under these conditions, the transmission of water-borne disease such as cholera and lep-
tospirosis was markedly increased. If stagnant water remains after a flood, the risk of
vector-borne illnesses (such as malaria or dengue fever) increases [15]. Due to the increased
global burden of dengue and leptospirosis [16,17], as well as increased mortality of malaria
and cholera, particularly among children in developing countries [18], hence this review
focuses on four highly climate-sensitive communicable diseases, namely dengue, malaria,
cholera, and leptospirosis. Climate change has the greatest impact on developing countries,
yet they are also the least able to cope with its consequences. Multiple factors contribute
to their vulnerability, limiting their ability to prevent and adapt to the effects of climate
change [19].

While the impacts of climate change on communicable diseases have been observed
worldwide, the magnitude and types of effects vary based on the location of the country
and its socioeconomic circumstances [3,5]. Risks from vector-borne and water-borne
diseases are expected to surge with potential shifts in their geographic range due to
changes in temperature and water imbalances [3]. Understanding this emerging field is
essential for future mitigation, adaptation, and control measures in this issue. There are
several gaps in the evidence base linking climate change to communicable disease [12],
particularly on the role of meteorological factors and intra-annual variability as opposed to
long-term climate change projections related to disease risk [5]. Assessing the projected
communicable disease projection due to climate change would be an essential step for
public health agencies to prepare for the climate change impacts. By examining the
projection studies, besides enhancing the understanding of pathway linking the exposure
to the health outcome, the key findings such as data needs for the modelling effort, type
of global climate model (GCM) used, and mathematical model used for analysis can be
obtained [20]. Understanding these findings are important for developing early warning
systems and adaptation strategies to strengthen climate resilience in facing the impending
impacts of 1.5/2.0 ◦C global warming. An effective early warning system will enhance
outbreak preparedness and control, subsequently minimize the health and economic
burdens of communicable diseases.

To guide future research and action to mitigate and adapt to the health impacts of
climate change, particularly on communicable disease, a complete and thorough overview
of the current research is needed. In the present study, we reviewed scientific studies on the
relationship between meteorological factors and the occurrence of dengue, malaria, cholera,
and leptospirosis, and synthesized the key findings on communicable disease projection in
the event of global warming.

2. Materials and Methods

This systematic review is registered with PROSPERO (CRD42021239975) and is re-
ported in accordance with the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) 2020 statement [21].

2.1. Research Question Formulation

The review question was developed based on the PEO concept [22]. Generally, sys-
tematic reviews have been used to evaluate the efficacy of health interventions by critically
evaluating and summarizing the findings of randomized controlled trials. Therefore, the
PICO approach often has been used as guidance to develop the review question [23]. How-
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ever, this systematic review is an aetiology/risk type of review, which aims to determine
the association between particular exposures/risk factors and health outcomes. Thus, the
PEO concept, which comprises population, exposure of interest (independent variable),
and the outcome (dependent variable), was recommended [23]. Based on this concept,
population refers to general population, exposure of interest is meteorological factors, and
outcome is the occurrence of the selected communicable diseases, namely dengue, malaria,
cholera, and leptospirosis. The PEO concept guided the formulation of the main review
question: What is the impact of meteorological factors on communicable disease incidence
(i.e., dengue, malaria, cholera, leptospirosis)? The second review question was: What is the
communicable disease projection due to climate change?

2.2. Data Sources and Search Strategy

The literature search was conducted in May 2021, and involved four primary databases:
Web of Science, Ovid MEDLINE, Scopus, and EBSCOhost. The keywords used to search
for the related articles are listed in Supplementary Materials Table S1. There were 1342
potentially relevant records identified from the four databases. A total of 189 duplicate
records were found and removed. Using automation tools, 487 records were excluded
based on year, publication type, and language, leaving 666 records for title screening. The
records were exported from the databases and arranged for screening in an Excel sheet.

2.3. Inclusion and Exclusion Criteria

The inclusion criteria were: (1) publication within the 15-year span from 2005 to 2020;
(2) full original article in a journal; (3) published in English; (4) related to meteorological
factors and the morbidity rates of dengue, malaria, cholera, and leptospirosis. The exclusion
criteria were: (1) non-original articles such as conference proceedings, reports, systematic
reviews, and meta-analyses; (2) related to vector or agent distribution in which dengue
and malaria incidence is not a study outcome.

2.4. Study Selection

Two authors (MB and FSA) screened the titles and abstracts independently according
to their relevance based on the review questions. We removed 585 articles during the
screening; the remaining 81 articles proceeded to full-text retrieval for further assessment
and eligibility. MB and FSA also assessed the article eligibility according to the inclusion
and exclusion criteria. Disagreements were resolved by discussion with a third researcher
(NA) to reach consensus. Forty-three articles were excluded because they focused only on
spatial distribution (n = 43), had different study outcomes (n = 14) or focused only on vector
distribution (n = 9). Subsequently, the remaining 38 articles proceeded to quality appraisal.

2.5. Quality Assessment

MB and NA assessed the quality of the 38 articles. The articles were evaluated using
a modified scale of a checklist designed for assessing the quality of ecological studies by
Dufault and Klar [24]. In this review, we chose this modified scale because we believe it is
the best approach to assess ecological studies’ quality that incorporates methodological
characteristics such as sample-based on the ecological unit, level of data aggregation, and
analytical method [24]. The most concerning issue was using and adjusting covariates in
the regression analyses to reduce the ecological bias. The quality assessment was based on
11 items, with a maximum overall score of 15 points. Supplementary Materials Table S2
presents the assessment scale adapted from Dufault and Klar [24]. The article quality was
graded as low-(≤5 points), medium-(6–10 points), and high-relevance (≥11 points).

2.6. Data Extraction and Synthesis

MB and NA extracted the data independently using a standardized data extraction
form and organized it in a standard Microsoft Excel 2019 spreadsheet. The data and
information collected included: (1) authors, (2) year of publication (3) country, (4) time
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frame, (5) statistical analysis and climate model, (6) findings related to meteorological
factors and climate change prediction, and (7) adjustment for confounding and cross-
validation. Figure 1 shows the PRISMA flow diagram. All of the studies that were chosen
followed an ecological design. Due to nature of the data, which is too heterogenous in
term of statistically methods, study outcomes, and settings, the quantitative synthesis and
analysis was not carried out.
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Figure 1. PRISMA flow diagram.

3. Results
3.1. Background of the Eligible Studies

A total of 38 studies were included in this systematic review. Table 1 shows a de-
scriptive summary of the included studies. The 38 studies were conducted in Bangladesh,
Brazil, China, Indonesia, India, Iran, Korea, Malaysia, Mexico, Nepal, Nigeria, Philippines,
Puerto Rico, Sri Lanka, Singapore, Sudan, Taiwan, Tanzania, Thailand, and Vietnam. When
categorized into World Health Organization (WHO) regions, the majority of the studies
had been conducted in the Western Pacific Region (WEPRO) and South-East Asia Region
(SEARO). The analyzed articles were published between 2007 and 2020. More than half of
the studies (60.5%) were conducted between 2015 and 2020. The study time frame varied
from ≤5 years (10.5%) to 6–10 years (52.6%). Most of the studies explored the association
of meteorological factors with vector-borne diseases: 23 studies (60.5%) focused on dengue
and 11 studies (29%) focused on malaria as the health outcome. Three studies and one
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study examined the impact of meteorological factors on cholera (7.9%) and leptospirosis
(2.6%), respectively. Table 2 shows the characteristics of the included studies in terms of
statistical analysis and climate model used, the association between meteorological factors
and communicable disease incidence, target outcome, future prediction, adjustment for
confounding factors, validation, and quality appraisal scoring.

Table 1. Descriptive summary of included studies (n = 38).

Characteristic Frequencies

WHO geographical region
African Region (AFRO) 4 (10.5%)

Region of the Americas (PAHO) 4 (10.5%)
South-East Asia Region (SEARO) 12 (32%)

Eastern Mediterranean Region (EMRO) 2 (5%)
Western Pacific Region (WEPRO) 16 (42%)

Publication year
2005–2009 3 (8%)
2010–2014 12 (31.5%)
2015–2020 23 (60.5)

Time frame
≤5 years 4 (10.6%)

6–10 years 20 (52.6%)
11–15 years 6 (15.8%)
16–20 years 5 (13%)

≥21 3 (8%)

Health outcome (communicable disease)
Dengue 23 (60.5%)
Malaria 11 (29%)
Cholera 3 (7.9%)

Leptospirosis 1 (2.6%)

3.2. Meteorological Factor Variables

The meteorological factor variables used in the included studies mainly consisted of
rainfall/precipitation (34 studies), average/minimum/maximum temperature (33 stud-
ies), relative humidity (20 studies), and wind properties (three studies). Of these four
meteorological factors, precipitation was most frequently associated with the selected
climate-sensitive communicable diseases, followed by temperature, relative humidity, and
wind properties. Of 23 studies reporting on dengue incidence, more than half reported
a positive association between temperature (n = 17, 74%) and precipitation (n = 16, 70%)
with dengue incidence. Furthermore, ten studies (43.5%) and three studies (13%) reported
a positive association between relative humidity and wind properties, respectively, with
dengue incidence. For malaria incidence, the majority of the studies reported a positive
association with temperature (ten studies, 91%) and precipitation (nine studies, 81.8%).
For the association between relative humidity and malaria incidence, five studies (45.5%)
reported a positive association and three studies (27.3%) reported a negative association.
No study reported an association between wind properties with malaria incidence. Two of
three studies showed a positive association between temperature and precipitation with
cholera cases. Additionally, Magny et al. [59] reported a positive association between
chlorophyll A anomaly with cholera cases, while Reyburn et al. [60] reported a negative
association. Lastly, Dhewantara et al. reported a positive association between temperature
and precipitation with leptospirosis [61]. Table 3 summarizes the meteorological factors
associated with the selected climate-sensitive communicable diseases. The other covariates
included in the studies were duration of sunshine, El Niño-Southern Oscillation (ENSO),
Indian Ocean Dipole (IOD), sea surface height (SSH), sea surface temperature (SST), sea
level pressure, ocean chlorophyll concentration (OCC), and average river level. Some of
the studies also included covariates related to landscape, such as normalized difference
vegetation index (NDVI) and modified normalized difference water index (MNDWI), as
well as covariates related to socio-economics, such as piped-water access, human migration,
and population growth.
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Table 2. Characteristics of all the included studies.

Author, Year Study Region
Time
Frame
(Years)

Statistical Analysis & Climate
Model

Association between Meteorological Factors
with Communicable Disease Incidence Target

Outcome Future Prediction
Adjustment

for
Confounding

Factors

Cross
Validation

Quality
Score

Temperature Relative
Humidity Precipitation Other

Factors

Adde et al.,
2016 [25]

French Guiana,
region of

France
1991–2013
(22 years)

Time-lagged Spearman’s
correlations,

composite analysis,
logistic binomial regression

model

No
significant
correlation

No
significant

correla-
tion

−VE Not studied DF
outbreak

French Guiana would likely
experience an outbreak

(probability of 0.92) in 2016.

No
adjustments Validated 10

Arcari et al.,
2007 [26] Indonesia 1992–2001

(10 years)

Pearson
correlation.

Stepwise multiple regression
analyses.

+VE

No
significant

correla-
tion

+VE Not studied DI/DHF I Not studied No
adjustments

Not
mention 12

Banu et al.,
2014 [27]

Bangladesh
(Dhaka)

2000–2010
(11 years)

Spearman’s correlation.
Poisson time series model

combined with DLM
+VE +VE No significant

correlation Not studied DI

If 1 ◦C T increase
in 2100, an increase of 583 DF

cases.
If 2 ◦C T increase, increase of

2782 DF cases. If T increase by
3.3 ◦C, increase of 16,030 cases.

Adjusted Validated 12

Banu et al.,
2015 [28] Bangladesh 2000–2012

(12 years)
Wavelet coherence analysis,
DLMN, Poisson time series

model

+VE
(Nino3.4 &

DMI)
+VE No significant

correlation Not studied DI Not studied

Adjusted for
temperature,
rainfall, DMI
and Nino 3.4

Validated 13

Cheong
et al.,
2013 [29]

Malaysia
(Selangor, KL,
and Putrajaya)

2008–2010
(2 years)

Correlation analyses, Poisson
GAM, DLNM +VE

No
significant

correla-
tion

+VE −VE DI Not studied Seasonal
trends Validated 11

Colo’
n–Gonza’
lez et al.,
2013 [30]

Mexico 1985–2007
(22 years)

GAM
Projected changes for the years

2030, 2050, and 2080 under
three climate change scenarios

(A1B, A2, and B1).

+VE Not
studied No association Not studied DI

Mean annual DI may increase
by about 12–18% by 2030,

22–31% by 2050, and 33–42% by
2080.

No
adjustments Validated 10

Chumpu
et al.,
2019 [31]

Thailand 2001–2014
(15 years)

Generalized linear models
(Poisson regression, negative

binomial regression, quasi
likelihood

Regression)
ARIMA and SARIMA

+VE

No
significant

correla-
tion

+/−VEdepending
on province +VE DI Not studied Adjusted Validated 14

Chuang
et al.,
2017 [32]

Taiwan (South
western)

1998–2015
(8 years) DLNM, Wavelet analysis +VE Not

studied +VE Not studied DI Not studied Adjusted Validated 11

Duarte et al.,
2018 [33]

Rio Branco,
Brazil

2001–2012
(12 years)

Generalized autoregressive
moving average

models with negative binomial
distribution

−VE −VE −VE Not studied DI Not studied Adjusted Not
mention 13

Hii et al.,
2009 [34] Singapore 2000–2007

(8 years)
Time series Poisson regression

model +VE Not
studied −VE Not studied DI Not studied No

adjustments Validated 10
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Table 2. Cont.

Author, Year Study Region
Time
Frame
(Years)

Statistical Analysis & Climate
Model

Association between Meteorological Factors
with Communicable Disease Incidence Target

Outcome Future Prediction
Adjustment

for
Confounding

Factors

Cross
Validation

Quality
Score

Temperature Relative
Humidity Precipitation Other

Factors

Iguchi et al.,
2018 [35]

Davao Region,
Philippines

2011–2015
(5 years)

A quasi-Poisson time series
model coupled with DLNM. −VE Not

studied +VE Not studied DI Not studied Adjusted Not
mention 11

Jiang et al.,
2017 [36]

San Juan,
Puerto Rico

1990–2013
(23 years)

K-nearest neighbor (KNN)
regression +VE +VE No significant

correlation Not studied DI
Regression prediction

Error (RMSE) is
6.88 person/week.

No
adjustments Validated 9

Li et al.,
2017 [37]

Guangzhou,
China

1998–2014
(17 years)

Spearman rank coefficient and
Pearson correlation coefficient.

Generalized additive model
(GAM)

+VE +VE +VE +VE DI

Under RCP 2.6, overall
incidence of DF is low Under

RCP 8.5, both the overall
incidence and occurrence of

high numbers of cases increase.

No
adjustments Validated 8

Minn An &
Rocklöv
2014 [38]

Vietnam
(Hanoi)

2002–2010
(9 years)

Stepwise multivariate linear
regression analysis +VE +VE +VE Not studied DI Not studied Bonferroni

corrections Validated 8

Noureldin &
Shaffer
2019 [39]

Sudan
(Port Sudan)

2008–2013
(6 years)

Wilcoxon rank sum test and
multiple linear regression +VE +VE +VE Not studied DI No adjustments Not mention Not

studied 9

Pham et al.,
2020 [40]

Vietnam
(Mekong Delta

region)

2000–2016
(17 years) ARIMA +VE Not

studied +VE Not studied DI DF incidence
mostly in rainy seasons

No
adjustments Validated 14

Sirisena
et al.,
2017 [41]

Sri Lanka 2009–2014
(6 years) Spearman’s correlation +VE +VE +VE Not studied DI Not studied No

adjustments
Not

mention 12

Sharmin
et al.,
2015 [42]

Dhaka,
Bangladesh

2000–2009
(10 years)

Spearman’s rank correlation test.
Negative binomial generalized

linear model.
+VE

No signifi-
cant corre-

lation
+VE Not studied DI Not studied Adjusted Not

mention 8

Tang et al.,
2020 [43]

Indonesia
(Surabaya,
East Java)

2009–2017
(9 years)

One-Sample
Kolmogorov–Smirnov Test,
Spearman non-parametric

correlation test.

−VE +VE +VE Not studied DHF I Not studied No
adjustments

Not
mention 8

Tosepu et al.,
2017 [44]

Sulawesi,
Indonesia

2010–2015
(6 years)

Spearman and time-series
Poisson multivariate regression.

GEE
with a Poisson distribution

+VE −VE −VE Not studied DHF I Not studied Adjusted Not
mention 10

Xiang et al.,
2017 [45]

Guangdong,
China

2005–
2014 (10
years)

DLNM, GEE with negative
binominal distribution. +VE +VE +VE −VE DI Not studied Adjusted Not

mention 11

Xuan et al.,
2014 [46] Vietnam 2008–2012.

(5 years) Poisson regression model No
association +VE +VE Not studied DI Not studied Adjusted Not

mention 10

Xu et al.,
2014 [47] Singapore 2001–2009

(9 years)

Spearman rank correlation
analysis.

Poisson regression combined
with DLNM

+VE Not
significant +VE Not

significant DI Not studied Adjusted Not
mention 12
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Table 2. Cont.

Author, Year Study Region
Time
Frame
(Years)

Statistical Analysis & Climate
Model

Association between Meteorological Factors
with Communicable Disease Incidence Target

Outcome Future Prediction
Adjustment

for
Confounding

Factors

Cross
Validation

Quality
Score

Temperature Relative
Humidity Precipitation Other

Factors

Akinbobola
& Omotosho
2011 [48]

Nigeria
(Akure city)

2001–2007
(7 years) ARIMA +VE +VE +VE Not studied MI Not studied Not adjusted Not

mention 9

Bhandari
et al.,
2013 [49]

Nepal
(Jhapa district)

1999–2008
(10 years) ARIMA +VE

No signifi-
cant corre-

lation
+VE Not studied MI Not studied Not adjusted Not

mention 8

Gao et al.,
2012 [50]

China
(Anhui

province)
1990–2009
(20 years)

Spearman correlations.
Polynomial distributed lag

(PDL) time-series regression
+VE +VE +VE

+VE with El
Niñ

o/Southern
Oscillation

MI Not studied Adjusted Validated 12

Jones et al.,
2007 [51]

North-west
Tanzania

1990–1999
(10 years)

Multiple linear regression
analysis +VE

No
significant

correla-
tion

+VE Not studied MI Not studied Adjusted Validated 9

Kwak et al.,
2014 [52] Korea 2001–2011

(11 years)

Spectral analysis.
Brock–Dechert–Scheinkman

(BDS) Statistic. Nonlinear
Regression Analysis.

PCA-Regression Analysis

+VE +VE +VE Not studied MI

Under RCP 4.5, malaria
occurrence trend will gradually

increase. Malaria occurrence
will increase before the rainy

season in summer (April
and July).

Adjusted Not
mention 12

Ostovar
et al.,
2016 [53]

Iran 2003–2009
(7 years)

ARIMA models with Transfer
Function. +VE −VE No significant

correlation Not studied MI Not studied Adjusted Not
mention 9

Rejeki et al.,
2018 [54] Indonesia 2005–2014

(10 years)

Poisson model, quasi–Poisson
model, and negative binomial

model

No
significant

association.
−VE +VE Not studied MI Not studied Not adjusted Not

mention 11

Sehgal et al.,
2020 [55]

India
(Andhra
Pradesh)

2014–2016
(3 years)

GLM with Poisson distribution.
Quasi-Poisson method with

GAM
+VE −VE +VE Not studied MI Not studied Adjusted Not

mention 10

Wardrop
et al.,
2013 [56]

Yunnan
Province,

China
1991–2006
(16 years)

Poisson regression with
distributed lag non-linear +VE Not

studied +VE Not studied MI Not studied Adjusted Not
mention 10

Xiang et al.,
2018 [57]

Anhui, Henan,
and Yunnan

Provinces
China

2005–2012
(8 years)

Generalized estimating
equation models

with negative binominal
distribution.

+VE +VE −VE Not studied MI Not studied Adjusted Not
mention 13

Zhao et al.,
2014 [58]

South-west
China

2004–2009
(6 years)

Multilevel Distributed Lag
Non-linear Model(MDLNM) +VE +VE +VE Not studied MI Not studied Adjusted Not

mention 13

Asadgol
et al.,
2019 [11]

Iran 1998–2016
(19 years)

Artificial Neural Networks
(ANNs) +VE Not

studied −VE Not studied Cholera
cases

Under RCP8.5, the cholera
trend will increase by the year

2050.
Adjusted Validated 11

Magny et al.,
2008 [59]

Kolkata, India,
and Matlab,
Bangladesh

1998–2006
(9 years)

GLM with a Poisson
distribution and a log link

No
significant
correlation

Not
studied +VE +VE CHL

anomaly
Cholera

epidemic Not studied Adjusted Validated 12
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Table 2. Cont.

Author, Year Study Region
Time
Frame
(Years)

Statistical Analysis & Climate
Model

Association between Meteorological Factors
with Communicable Disease Incidence Target

Outcome Future Prediction
Adjustment

for
Confounding

Factors

Cross
Validation

Quality
Score

Temperature Relative
Humidity Precipitation Other

Factors

Reyburn
et al.,
2011 [60]

Zanzibar, East
Africa

1997–2006
(10 years) SARIMA +VE Not

studied +VE

No
significant
correlation

with
CHLano

Cholera
cases Not studied Adjusted Validated 10

Dhewantara
et al.,
2019 [61]

China
(Megla and

Yunan county)

2006–2016
(11 years)

Time series cross-correlation
analysis +VE Not

studied +VE Not studied
Leptospirosis

notifica-
tion

Not studied Adjusted Validated 12

ARIMA: Autoregressive integrated moving average, CHLano: Chlorophyll concentration anomaly DLNM: Distributed lag non-linear models, DI: Dengue incidence, DHF: Dengue Hemorrhagic Fever, GAM:
generalized additive models, GEE: Generalized estimating equations, GLM: Generalized linear model, MI: Malaria incidence.
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Table 3. Summaries of mereological factors associated with selected climate-sensitive communicable disease.

Temperature Relative Humidity Precipitation Wind Properties

n (%) n (%) n (%) n (%)

Dengue (23 studies)
Positive association 17 (74) 10 (43.5) 16 (70) 2 (8.7)

Negative association 3 (13) 2 (8.7) 3 (13) 2 (8.7)
Positive and negative association 1 (4.3)

Total 20 12 20 4

Malaria (11 studies)
Positive association 10 (91) 5 (45.5) 9 (81.8) 0

Negative association 0 3 (27.3) 1 (9.1) 0

Total 10 8 10 0

Cholera (3 studies)
Positive association 2 (66.7) 0 2 (66.7) 0

Negative association 0 0 1 (33.3) 0

Total 2 0 3 0

Leptospirosis (1 study)
Positive association 1 (100) 0 1 (100) 0

Negative association 0 0 0 0

Total 1 0 1 0

Grand total 33 20 34 3

3.3. Projection of Climate-Sensitive Communicable Diseases

For the projection of dengue incidence in the event of climate change, Colon–Gonzales
et al. reported that, under three climate scenarios (A1B, A2, B1), the mean annual dengue
incidence across Mexico would increase around 12–18% by 2030, 22–31% by 2050, and
33–42% by 2080 [30]. A similar study conducted in Dhaka, Bangladesh, reported that
dengue incidence would increase by 1.5 times if ambient temperatures increased by 1 ◦C in
2100 relative to 2010. If the temperature increases by 2 ◦C, the incidence of dengue would
increase by seven times, and the worst-case scenario of a 3.3 ◦C rise would increase dengue
incidence in Dhaka by 43 times in 2100 relative to 2010 [27]. In Guangzhou, China, Li et al.
reported that under climate scenario Representative Concentration Pathway (RCP) 2.6, the
overall incidence of dengue fever would be low, as would the occurrence of high numbers
of cases. However, the overall incidence and the occurrence of high numbers of cases
would increase under climate scenario RCP8.5 [37].

For malaria projection, Kwak et al. reported a gradually increased trend of malaria
in Korea during a simulation using the RCP4.5 climate change scenario and the CNCM3
climate model. The maximum occurrence shifted from August (during 2010–2011) to July
(using simulation data of 2011–2100). In the future, malaria occurrence would continually
increase between April and July (before the rainy season in the summer) compared to
between June and August in 2010–2011 [52]. Asadgol et al. reported that, under RCP8.5,
the trend of cholera cases in Iran would increase by 2050. For the next 30 years, the seasonal
pattern of cholera will change and the highest cases will be observed during spring and
summer. The average monthly cholera cases will be highest in August if compared to the
baseline data [11].

3.4. Critical Appraisal of the Studies

The studies were appraised using a modified scale of a checklist for assessing ecolog-
ical research quality [24]. None of the studies were scored as low relevance: 20 studies
(52.6%) and 18 studies (47.4%) were scored as high and medium relevance on the assess-
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ment scale. For level of data aggregation, 8 (21%) studies were conducted at the national
level, 11 (29%) conducted at regional or state level, and the remaining 19 (50%) involved
province, county, district, or city as population unit. Only two (5.3%) studies used basic
Spearman’s rank and Pearson correlation as analytical methods. The rest of the studies
applied advance statistical analysis such as Linear regression or Poisson regression, Autore-
gressive integrated moving average (ARIMA), and Multilevel Distributed Lag Non-linear
Model (MDLNM). A total of 27 (71%) studies were conducted with a proper adjustment
for covariates as suggested for ecological studies. For “quality of reporting”, only eight
(38%) studies include a statement of ecological study design. However, 13 (34.2%) studies
explicitly justified study design, and most (97.4%) of the studies discussed the risk of
ecological bias. The justification of study design allows readers to understand the rationale
of choosing the design and apply the ecologic analysis. The risk of ecological bias needs to
be explained clearly so that the authors sufficiently caution the readers in interpreting the
results, representing the aggregated level. Table 4 presents the scores of modified scale for
each quality assessment item adapted from Dufault and Klar [24].
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Table 4. Critical appraisal of selected studies. Modified scale from Dufault and Klar [24].

Author (Year)

Study Design and Focus Statistical Methodology Quality of Reporting Score

Sample
Size

Level of
Data Ag-
gregation

Level of
Inference

Pre-
Specification
of Ecologic

Units

Analytic
Methodol-

ogy

Validity of
Statistical
Inferences

Use of
Covariates

Proper Ad-
justment

for
Covariates

Statement
of Study
Design

Justification
of Study
Design

Discussion of
Cross-Level

Bias and
Limitations

Points

Adde et al.,
2016 [25] 2 2 1 1 2 0 1 0 0 0 1 10

Arcari et al.,
2007 [26] 2 2 1 1 2 1 1 1 0 0 1 12

Banu et al.,
2014 [27] 2 3 1 1 2 0 1 1 0 0 1 12

Banu et al.,
2015 [28] 2 3 1 1 2 0 1 1 0 1 1 13

Cheong et al.,
2013 [29] 1 2 1 1 2 1 1 1 0 0 1 11

Colo’n–Gonza’
lez et al.,
2013 [30]

2 2 1 1 2 0 1 0 0 0 1 10

Chumpu et al.,
2019 [31] 2 3 1 1 2 1 1 1 0 1 1 14

Chuang et al.,
2017 [32] 2 1 1 1 2 1 1 1 0 0 1 11

Duarte et al.,
2018 [33] 2 1 1 1 2 1 1 1 1 1 1 13

Hii et al.,
2009 [34] 2 3 1 0 2 1 0 0 0 0 1 10

Iguchi et al.,
2018 [35] 2 2 1 0 2 1 1 1 0 0 1 11

Jiang et al.,
2017 [36] 2 2 1 0 2 1 1 0 0 0 0 9

Li et al.,
2017 [37] 1 1 1 0 2 1 1 0 0 0 1 8
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Table 4. Cont.

Author (Year)

Study Design and Focus Statistical Methodology Quality of Reporting Score

Sample
Size

Level of
Data Ag-
gregation

Level of
Inference

Pre-
Specification
of Ecologic

Units

Analytic
Methodol-

ogy

Validity of
Statistical
Inferences

Use of
Covariates

Proper Ad-
justment

for
Covariates

Statement
of Study
Design

Justification
of Study
Design

Discussion of
Cross-Level

Bias and
Limitations

Points

Minn An &
Rocklöv
2014 [38]

1 1 1 0 2 1 0 1 0 0 1 8

Noureldin &
Shaffer
2019 [39]

1 1 1 0 2 1 0 0 1 1 1 9

Pham et al.,
2020 [40] 2 2 1 1 2 1 1 1 1 1 1 14

Sirisena et al.,
2017 [41] 2 3 1 1 2 1 0 0 0 1 1 12

Sharmin et al.,
2015 [42] 1 1 1 1 1 1 0 1 0 0 1 8

Tang et al.,
2020 [43] 1 1 1 1 1 1 0 0 1 0 1 8

Tosepu et al.,
2017 [44] 1 1 1 1 2 1 1 1 0 0 1 10

Xiang et al.,
2017 [45] 2 1 1 1 2 1 1 1 0 0 1 11

Xuan et al.,
2014 [46] 1 1 1 1 2 1 1 1 0 0 1 10

Xu et al.,
2014 [47] 2 3 1 1 2 1 0 1 0 0 1 12

Akinbobola &
Omotosho
2011 [48]

1 1 1 1 2 1 1 0 0 0 1 9

Bhandari et al.,
2013 [49] 1 1 1 1 2 1 0 0 0 0 1 8
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Table 4. Cont.

Author (Year)

Study Design and Focus Statistical Methodology Quality of Reporting Score

Sample
Size

Level of
Data Ag-
gregation

Level of
Inference

Pre-
Specification
of Ecologic

Units

Analytic
Methodol-

ogy

Validity of
Statistical
Inferences

Use of
Covariates

Proper Ad-
justment

for
Covariates

Statement
of Study
Design

Justification
of Study
Design

Discussion of
Cross-Level

Bias and
Limitations

Points

Gao et al.,
2012 [50] 2 1 1 1 2 1 1 1 0 1 1 12

Jones et al.,
2007 [51] 1 2 1 1 2 0 0 1 0 0 1 9

Kwak et al.,
2014 [52] 2 3 1 1 2 0 1 1 0 0 1 12

Ostovar et al.,
2016 [53] 2 1 1 0 2 0 1 1 0 0 1 9

Rejeki et al.,
2018 [54] 2 1 1 1 2 0 1 0 1 1 1 11

Sehgal et al.,
2020 [55] 2 1 1 0 2 0 1 1 1 0 1 10

Wardrop et al.,
2013 [56] 2 1 1 1 2 0 1 1 0 0 1 10

Xiang et al.,
2018 [57] 2 2 1 1 2 1 1 1 0 1 1 13

Zhao et al.,
2014 [58] 2 2 1 1 2 1 1 1 0 1 1 13

Asadgol et al.,
2019 [11] 2 1 1 0 2 0 1 1 1 1 1 11

Magny et al.,
2008 [59] 2 3 1 1 2 0 1 1 0 0 1 12

Reyburn et al.,
2011 [60] 2 1 1 0 2 0 1 1 0 1 1 10

Dhewantara
et al., 2019 [61] 2 2 1 0 2 0 1 1 1 1 1 12
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4. Discussion

The aim of the present systematic review was to summarize key findings related to
the relationship between meteorological factors and the occurrence of dengue, malaria,
cholera, and leptospirosis, and to review recent communicable disease projection in the
event of global warming. The present systematic review of 38 publications demonstrates
that dengue, malaria, cholera, and leptospirosis transmission can be influenced by meteoro-
logical variables such as temperature, precipitation, relative humidity, and wind properties.
The actions of these climate variables in influencing the transmission of communicable
diseases are rarely independent. The combinations of a few climatic variables appear to be
related to climatological niches for optimal disease transmission [62]. Although the effects
of climate change have been observed worldwide, the extent and patterns of the effect
differ based on the country’s location and socio-economic conditions [6].

The present review shows that both precipitation and temperature are the most impor-
tant meteorological factors for climate-sensitive communicable diseases, especially dengue
and malaria. Several studies of different ecological units varying from city [37,39,45],
province [31], regional [26,29,40], to national [41,47] levels have demonstrated a positive
association between temperature and precipitation with dengue incidence. This result
is not limited to studies conducted in countries with tropical climates, but also includes
studies conducted in Guangzhou, which has a subtropical monsoon climate [37,45]. How-
ever, meteorological factors do not directly influence the incidence of dengue. Instead,
meteorological variables such as temperatures, rainfall, and relative humidity have a direct
impact on the larval development period, larval and adult mosquito survival, and the
duration of the gonotrophic cycle of the primary dengue vector, and affect the general
activity of the dengue vector, including host-seeking and blood meal intake [63].

4.1. Relationship between Metreological Factors and Dengue

The ambient temperature alters the vector population dynamic by affecting the de-
velopment of immature stages and reproductive behavior [64]. The ideal temperature
for Aedes aegypti development is between 22 and 32 °C, while that for the A. aegypti
adult lifespan and fecundity is between 22 and 28 °C [65]. Increasing the temperature will
shorten the egg-laying time of A. aegypti, thereby increasing egg quantity [66]. Moreover,
higher temperatures are a favorable survival range for the vector and reduce the extrinsic
incubation periods of the dengue virus. This will result in higher rates of viral transmission
that can lead to increased dengue incidence [67]. On the other hand, three studies have
demonstrated a negative association between temperature and dengue [33,35] and dengue
haemorrhagic fever (DHF) [43]. According to Duarte et al. [33], the monthly incidence of
dengue will decrease by 32% with every 1 ◦C increment in the monthly average maximum
temperature. This effect is particularly for increasing the maximum temperature to >32 ◦C,
which is higher than the temperatures considered optimum for the vector. These tempera-
tures help hasten the evaporation and drying of wastewater distributed around the city
that would otherwise create mosquito breeding grounds.

Rainfall has also been highly associated with dengue fever incidence [26,29,32,35,37–
43,45–47]. Rainfall provides abundant outdoor breeding sites for A. aegypti, for example,
containers such as drums, discarded tires, and leaf axils that are naturally filled with
rainwater. However, rainfall has also been negatively associated with dengue incidence in
French Guiana [25], Singapore [34], Sulawesi, Indonesia [44], and Rio Branco, Brazil [33].
According to the literature [68,69], heavy rainfall may reduce mosquito density because
most mosquito eggs and larvae are carried away from breeding sites. This theory might
explain why dengue in the abovementioned areas is reduced as rainfall increases. Relative
humidity has also been associated with dengue incidence [27,28,36–39,41,43,45,46]. Relative
humidity affects all stages of the mosquito life cycle, the survival rate of the mosquito,
the number of blood meals, and eventually its capacity to become infected and transmit
dengue [70].
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Wind speed and direction are also important climatic factors. According to Chumpu
et al. the best-fit model of Phayao province, Thailand, which incorporated wind direction
and wind power, showed the highest dengue occurrences at wind speeds of 5–6 knots.
This indicates that wind power is crucial for the spreading of dengue by mosquitoes. A
higher wind power may affect dengue fever cases. More wind power on the sea surface
results in a greater evaporation zone. Adult mosquitos may be able to survive longer and
spread dengue as a result of the increased humidity. For mountainous areas, the most
significant meteorological factors are wind direction variables [31]. On the other hand, two
studies conducted in the central region in Malaysia [29] and in Guangzhou [45] found that
strong wind may suppress mosquito host-seeking activity and consequently reduce dengue
transmission risk. However, only three studies included utilizing the wind properties as
the independent variables. Future studies are recommended to explore wind properties as
a possible meteorological factor related to dengue to overcome this limitation.

4.2. Relationship between Metreological Factors and Malaria

Additionally, the majority of the 11 studies on malaria included in the present review
reported a positive association between temperature and precipitation with malaria in-
cidence [48–52,55,56,58]. According to the data, increases in temperature, humidity, and
rainfall facilitate the proliferation of mosquito populations at high altitudes. This expands
the geographical distribution of malaria, allowing it to spread to new areas where mosquito
populations previously did not exist. Furthermore, rising temperatures at lower altitudes,
where mosquitoes and malaria are already endemic, alter the development cycle of the
parasite that causes the Anopheles mosquito to transmit the disease, allowing it to develop
malaria faster and therefore raising transmission rates [9]. Other than climatic factors,
factors such as human migration, population growth, and deforestation are associated with
malaria transmission. The relative contribution of these factors may vary between countries
and regions. Furthermore, malaria transmission can be exacerbated by human behavior,
such as actively storing water in open containers, routine outdoor socializing during peak
hours of Anopheles biting time (dawn and dusk), and other activities such as farming and
fishing, which may increase the risk of exposure to mosquitoes and malaria infection.

4.3. Relationship between Metreological Factors with Cholera and Leptospirosis

There is substantial evidence [11] that cholera infection is linked to meteorological
factors, such as low precipitation and high temperatures during the summer months,
which might facilitate bacterial reproduction and increase cholera incidence. However, in
Zanzibar, East Africa, Reyburn et al. [60] reported that a 1 ◦C increase (at a four-month
lag) would lead to two-fold increased cholera cases. Meanwhile, an increase of 200 mm
rainfall (at a two-month lag) might increase cholera cases by 1.6-fold. Interestingly, a study
in Matlab, Bangladesh, demonstrated a statistically significant one-month lag between
OCC anomaly and cholera cases. Therefore, ocean and climatic trends are good predictors
of cholera epidemics [59]. For leptospirosis, a study in China has shown that land surface
temperature and rainfall are significantly associated with leptospirosis notification [61].
Warm temperature aids leptospire survival in the environment [71,72]. Hot weather
encourages some activities, such as people and animals swimming in the same pool of water,
e.g., rivers. Besides, high humidity is a favorable condition for leptospire survival [73];
however, Dhewantara et al. [61] did not include relative humidity as one of the covariates.

4.4. Projection of Selected Climate-Senstive Communicable Disease

The association between human activities and climate change has drawn increasing
attention in recent years. It has been confirmed that human activity has a significant
impact on present global warming. The rising emission of greenhouse gases has led
to global warming and climate change, which have had various impacts, including on
health, particularly toward communicable diseases [74]. Projection of the geographic
distribution of A. aegypti and A. albopictus has revealed that the abundance of mosquitoes
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will increase by the 2030s and beyond compared to the present, suggesting that more
individuals will be at risk of dengue fever [7,75,76]. A few studies have projected that
exposure to the Aedes mosquito and the Aedes-transmitted virus would increase with
1.5/2.0 ◦C global warming [76,77]. For example, most of the tropics are now ideal for virus
transmission year-round for both Aedes aegypti and Aedes albopictus, with suitability
decreasing along latitudinal gradients. However, projected warming temperatures in 2050
will substantially increase the potential for year-round transmission in the tropics, even
into previously protected high-elevation locations. In addition, many temperate regions are
presently devoid of significant Aedes vectors. However, in 2050, the risk of Ae. albopictus
transmission is projected to increase significantly in temperate countries, particularly in
high-latitude portions of Eurasia and North America [75].

Elementary modelling predicts that the rising of global temperatures would increase
the rate of malaria transmission and expand its geographical distribution [78–81]. Several
studies have reported that the increased malaria transmission [82] or its re-emergence [83]
is associated with global warming. Khormi and Kumar projected that the southern regions
of China might become susceptible to malaria mosquito infection in the future, in which
suitability is expected to increase. Anopheles would be able to survive in large regions
of southern China that are now unsuitable or marginal [82]. Due to the high population
density in these highly suitable areas, the number of individuals exposed to the Anopheles
mosquito and hence to malaria is considerably increased. The predictive results indicate
that modelling aids understanding of the disease transmission mechanism and assists in
communicable disease intervention and control programs. However, the fundamental
challenge for predicting climate-sensitive communicable disease transmission is how future
climates can be best modelled at regional and/or local level. In other words, how can the
results of global climate models (GCM) be suitably downscaled to a regional and/or local
level? The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report
(AR5) describes different climate futures, all of which are considered possible depending
on the volume of greenhouse gases emitted in the years to come. These scenarios are
categorized into four classes: RCP2.6, RCP4.5, RCP6, and RCP8.5, labelled after a possible
range of radiative forcing values in 2100. These scenarios can be used to project future
climates based on GCM [84].

4.5. Strenghts and Limitations

This review highlights the current public health issues on climate-sensitive commu-
nicable disease. All papers included in this review had undergone systematic critical
appraisal using an adapted appraisal tool suitable for ecological study design, as described
by Dufault and Klar [24]. Thus, we used and adapted the structured assessment scale
reported in other ecological review studies [85,86]. None of the papers included in this re-
view were low relevance, as based on the quality appraisal score. However, we recommend
caution when estimating the relationships between climate variables and dengue in the
following aspects: use of time lags, analysis of extreme climatic events, differences between
seasonal and long-term trends, nonlinear effects and threshold effects in the associations.
In addition, there should be more emphasis on data quality and the use of information for
decision making.

One limitation of this review is the included articles related to leptospirosis and
cholera are limited. Therefore, caution is advised for interpretation when utilizing find-
ings related to leptospirosis and cholera. Another limitation is that very few studies use
the IPCC standardized climate change scenarios to predict future dengue, malaria, and
cholera incidence. Besides, the exclusion criteria of non-English language articles could be
one of the limitations of this review. Nearly half of the included studies were from WE-
PRO, which majority comprises of non-English speaking countries. Therefore, this review
might miss the wealth of related literature in particular published in Chinese. Due to the
“English-language bias”, this review could have bias estimates of effect, therefore reduce
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its generalizability. However, including studies published in non-English language may
pose additional resources with respect to cost, time, and non-English language proficiency.

One of the strengths of using the IPCC AR5 climate model is its ability to predict
climates over a longer time or glacial year. The disadvantage is that it only considers the
natural Earth systems and not the interaction between humans and nature. Furthermore,
most of the individual studies assumed that human hosts are immobile. However, mass
migration may contribute to dengue and malaria infection dynamics, especially at scales
that exceed the limits of mosquito dispersal [50].

We recommend that for future research to better understand dengue, malaria, cholera,
and leptospirosis ecology to be directed at predicting the climate–biological relationships on
disease transmission. Uncertainties due to confounding effects of urbanization, population
growth, and human migration are required to develop scenarios based on future projections
of population growth and socio-economic development, including human behavior. Future
projection of climate-sensitive communicable diseases is greatly essential to aid planning
and mitigation strategies by stakeholders, hence the need for scientific consensus on data
potentially used in modelling.

5. Conclusions

This review provides robust evidence of an association between meteorological factors
and the incidence of climate-sensitive communicable diseases, i.e., dengue, malaria, cholera,
and leptospirosis. Precipitation and temperature are important meteorological factors that
influence the incidence of climate-sensitive communicable diseases. Future studies need
to consider more determinants affecting precipitation and temperature fluctuations for
better simulation and prediction of the incidence of climate-sensitive communicable dis-
eases. In addition to future forecasts, accounting for alternative climate factor variables,
considering climate change scenarios and other non-climatic drivers such as the pres-
ence/absence of dengue and malaria vectors, human migration, population growth, and
socio-economics as crucial factors triggering communicable disease transmission would be
beneficial. This would strengthen projection realism and act as a platform for academic and
policymaker consensus on provisions to mitigate future climate-sensitive communicable
diseases incidence.
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