
RESEARCH ARTICLE PSYCHOLOGICAL AND COGNITIVE SCIENCES

Crosslinguistic word order variation reflects evolutionary
pressures of dependency and information locality
Michael Hahna,b,1 and Yang Xuc

Edited by Gerhard Jaeger, Eberhard Karls Universitat Tubingen Seminar fur Sprachwissenschaft, Tuebingen, Germany; received January 24, 2022;
accepted April 19, 2022 by Editorial Board Member Susan A. Gelman

Languages vary considerably in syntactic structure. About 40% of the world’s languages
have subject–verb–object order, and about 40% have subject–object–verb order. Exten-
sive work has sought to explain this word order variation across languages. However,
the existing approaches are not able to explain coherently the frequency distribution
and evolution of word order in individual languages. We propose that variation in word
order reflects different ways of balancing competing pressures of dependency locality
and information locality, whereby languages favor placing elements together when they
are syntactically related or contextually informative about each other. Using data from
80 languages in 17 language families and phylogenetic modeling, we demonstrate
that languages evolve to balance these pressures, such that word order change is
accompanied by change in the frequency distribution of the syntactic structures that
speakers communicate to maintain overall efficiency. Variability in word order thus
reflects different ways in which languages resolve these evolutionary pressures. We
identify relevant characteristics that result from this joint optimization, particularly the
frequency with which subjects and objects are expressed together for the same verb. Our
findings suggest that syntactic structure and usage across languages coadapt to support
efficient communication under limited cognitive resources.
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The world’s languages show considerable variation in syntactic structure (1–3). A key
syntactic dimension that languages vary along is word order. Linguists have long classified
languages according to their basic word order or the order in which they typically order
verbs, subjects, and objects (1). About 40% of the world’s languages are classified as
following subject–verb–object (SVO) order (as in English: “dogs bite people”), and 40%
are classified as following subject–object–verb (SOV) order (as in Japanese: inu-wa hito-o
kamimasu [“dogs people bite”]) (4) (Fig. 1 has an illustration). Other orders, such as verb–
subject–object (VSO; as in Modern Standard Arabic: taQadQ:u l-kila:bu n-na:sa [“bite dogs
people”]), are much less common. Many languages have more than one ordering or exhibit
historical change in their word order, although typically with one of the orderings being
the most common. This ordering is considered the basic word order of a language in the
typological literature (1, 5). Why do languages vary in word order the way they do, and
what explains the evolution of word order? Here, we present a unified theory that addresses
these long-standing questions.

Different theories have been proposed for the word order variation across languages.
The low frequency of object-initial orderings (e.g., object–subject–verb [OSV]; “human–
dog–bites”) arguably has satisfactory explanations in terms of the meanings and functions
typically associated with objects and subjects (e.g., ref. 6), but there is no consensus on
the frequency distribution of SVO and SOV. Some work has argued that SOV is the
default order in the history of language and that SVO emerged later (7–11), although
phylogenetic simulation suggests that languages can cycle between these two orders in
their historical development (12). Other work suggests there is a tension between different
cognitive pressures that favor SVO and SOV (13, 14), but these accounts do not predict
word order on the level of individual languages. So far, there exists no theory that
coherently explains the principles underlying both crosslinguistic variation and evolution
in word order.

One promising view suggests that crosslinguistic variation is constrained by the func-
tional pressures of efficient communication under limited cognitive resources (15–18).
Under this view, the structure of language in part reflects the way that language is used
(19–22) and adapts to optimize informativeness and effort for human communication
(23–25). Work in this paradigm has argued that many properties of language arise because
they make language efficient for human language use and processing. Several studies have
shown in various domains that the grammars of human languages are more efficient

Significance

Many languages have
subject–verb–object order, while
many others have
subject–object–verb order. Why
do languages vary in the way they
do, and how does word order
evolve? We present a theory
postulating that each language
exhibits the basic word order it
has due to two evolutionary
pressures that trade off against
each other; some languages
prefer to keep syntactically
related elements close together,
while others prefer to keep
elements together if they are
informative about each other.
Using phylogenetic analyses, we
show that our theory explains the
crosslinguistic frequency variation
in word order and the historical
trajectories of word order change.
Our findings suggest that
grammar and usage coadapt in
word order to support efficient
communication.

Author affiliations: aDepartment of Linguistics, Stanford
University, Stanford, CA 94305; bCollaborative Research
Center 1102, Saarland University, 66041 Saarbrücken,
Germany; and cDepartment of Computer Science, Cogni-
tive Science Program, University of Toronto, Toronto, ON
M5S 3G8, Canada

Author contributions: M.H. and Y.X. designed research;
M.H. performed research; M.H. analyzed data; and M.H.
and Y.X. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. G.J. is a guest
editor invited by the Editorial Board.

Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
mhahn2@stanford.edu.

This article contains supporting information online at
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2122604119/-/DCSupplemental.

Published June 8, 2022.

PNAS 2022 Vol. 119 No. 24 e2122604119 https://doi.org/10.1073/pnas.2122604119 1 of 10

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2122604119&domain=pdf&date_stamp=2022-06-08
http://orcid.org/0000-0002-8825-7497
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mhahn2@stanford.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122604119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122604119/-/DCSupplemental
https://doi.org/10.1073/pnas.2122604119


A

B

Fig. 1. Illustrations of crosslinguistic word order variation and the theoretical proposal. (A) English (SVO; Center) and Japanese (SOV; Right) linearize different
syntactic structures into strings of words. Numbers below arcs indicate dependency length. Syntactic structures in A, 1 contain both a subject and an object;
those in A, 2 only express one of the two. The percentage bars show relative usage frequencies computed from large-scale English and Japanese text corpora
(SI Appendix, Fig. S9). In A, 1, English achieves shorter dependency length: two compared with three in Japanese. In A, 2, both languages achieve the same
dependency length. Therefore, structures as those in A, 2 are more favorable for dependency length minimization in SOV languages than those in A, 1. Structures,
such as those in A, 2, are considerably more frequently expressed in Japanese. (B) SOV makes the beginning and end of clauses more predictable from the local
context. For instance, in this example, the end of a clause is always a verb, increasing the mutual information with the subsequent word, irrespective of whether
the clause expresses both subject and object as in B, 1, or only one of the two, as in B, 2. Therefore, SOV tends to be more favorable for IL.

than the vast majority of other logically possible grammars
(26–29). Prior work has also shown that several of the known near-
universal properties of languages hold in most logically possible
languages that are also highly efficient and used this fact to argue
that evolution toward efficiency explains why these properties
are near universal (30–33). However, existing efficiency-based
approaches to grammatical typology leave open two key questions.
First, work in this paradigm focuses on cross-sectional studies,
suggesting that languages are relatively efficient typically without
answering how languages come to be efficient over time. Second,
the idea that languages are shaped by efficiency optimization does
not directly explain why they vary in their grammatical structure:
for instance, why both SVO and SOV are frequently attested
across the world’s languages. In some domains, differences among
languages have been interpreted as reflecting different optima or
points along a Pareto frontier (17, 31). However, it is currently
unknown whether this perspective also applies to syntax and word
order and in particular, to basic word order.

Theoretical Proposal

We address the open questions regarding word order variation
and evolution using a large-scale phylogenetic analysis of 80 lan-
guages from 17 families and contributing the following theoretical
view. We propose that crosslinguistic variation in word order
reflects a tendency for languages to trade off competing pressures
of communicative efficiency. This tendency is a product of an
evolutionary process, whereby different languages are functionally

optimized in both their grammatical structure and the way they
are used. As such, grammar and usage should evolve together to
jointly maintain efficiency, reflecting a process of coadaptation
between grammar and usage.

Our proposal is grounded in prominent efficiency-based ac-
counts of word order that are centered around various local-
ity principles. These accounts assert that syntactic elements are
ordered closer together when they are more strongly related in
terms of their meaning and function (23, 34–37). Recent work
has specifically established two locality principles in word order
typology. The first principle is dependency locality (DL), which is
the observation that languages tend to order words to reduce the
overall distance between syntactically related words (23, 26, 27,
36, 38). DL can be justified in terms of parsing efficiency (23),
memory efficiency (39), and general communicative efficiency
(33). The second locality principle is information locality (IL),
which holds that words are close together if they contain predictive
information about each other (29, 40–42). IL is grounded in the
well-established finding that words are hard to process for humans
to the extent that they are hard to anticipate from preceding
context (43, 44) under constraints of human memory (41). Both
principles have individually received substantial support from
crosslinguistic corpus studies (26, 27, 29). In a recent study,
Gildea and Jaeger (28) even showed for five languages that they
optimize a trade-off of DL and an IL-like quantity, although this
finding has not been replicated on a larger sample yet.

The two locality principles we described can make opposing
predictions concerning basic word order (Fig. 1). DL should
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tend to favor SVO order over SOV (14) because it ensures that
subject (S) and object (O) are both close to the verb (V). In
contrast, IL may tend to favor SOV order over SVO because
uniform placement of S and O makes the beginning and end of
each sentence easier to predict from local information. We thus
hypothesize that the crosslinguistic variation in basic word order
emerges from an evolutionary process in which languages resolve
the tension between these two pressures in different ways.

To illustrate our proposed theory, we consider a simple tran-
sitive sentence, such as dogs bite people (Fig. 1A). DL is de-
fined formally in terms of dependency grammar (45–49). In this
formalism, the syntactic structure of a sentence is drawn with
directed arcs linking words—called heads—to those words that
are syntactically subordinate to them—called dependents. For
instance, arcs link the verb “bite” to its subject “dogs” and object
“people.” The length of an arc is one plus the number of other
words that it crosses. The dependency length of an entire sentence
is the sum of the lengths of all dependency arcs.

The grammars of languages specify how such syntactic struc-
tures are linearized into strings of words. Fig. 1 shows how
the same syntactic structures are linearized differently by the
grammars of English (SVO) and Japanese (SOV). In a simple
sentence as illustrated in Fig. 1A, SVO order results in overall
lower dependency length than SOV (five instead of six).

The extent to which these general predictions are valid in
a particular language will depend on the precise frequency at
which speakers of a language use different syntactic structures.
For example, the difference between SVO and SOV order is
neutralized for DL in sentences like in Fig. 1 A and 2, where only
a subject or an object is expressed. Conversely, there are also syn-
tactic structures where SOV achieves strictly shorter dependency
lengths. Therefore, DL favors SVO more strongly when a language
frequently coexpresses both the subject and object of the same verb
(Fig. 1).

IL is defined in terms of the information-theoretic predictabil-
ity of words from their recent prior context. We adopt a simple
formalization in terms of maximizing the mutual information
between adjacent words; SI Appendix, section S1.1 has other op-
erationalizations of IL. SOV can be advantageous for IL because a
uniform verb-final ordering makes the beginning and end of each
clause more predictable (Fig. 1B).

Which pressure will prevail in shaping a language depends not
only on which pressure the language optimizes more strongly but
also, on the frequency with which different syntactic structures are
used. The average values for DL and IL achieved for a language
depend on both the linearizations provided by grammars and
the frequencies at which different syntactic structures are used.
Languages differ not only in the ways that they linearize these
syntactic structures but also, in the frequencies at which speakers
utilize them. For instance, syntactic structures, such as those in
Fig. 1 A, 1 and B, 1, are used at significantly higher frequencies by
speakers of English than speakers of Japanese. Given a distribution
over syntactic structures, we can identify which grammar orders
them in such a way to achieve optimal average dependency length,
optimal average IL, or any linear combination of the two. This
gives rise to a Pareto frontier of grammars.

We summarize our proposal with the following two theo-
retical predictions (Fig. 2). First, languages evolve to maintain
a relatively efficient balance between DL and IL, and second,
this evolutionary process jointly affects usage frequencies (which
syntactic structures are chosen by speakers) and grammar (how
they are linearized). This means that the actual word orders used by
languages should be close to the most efficient possible grammar
given the distribution over syntactic structures.

Information Locality
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Fig. 2. Illustration of our theoretical proposal. Our theory postulates that
word orders of languages trade off the competing evolutionary pressures
of DL and IL. The space of logically possible word orders is bounded by a
Pareto frontier of optimal orders. Along the Pareto frontier, SVO-like orders
tend to optimize DL more strongly than SOV-like orders do. The precise
distribution of orderings along the frontier is determined by language-specific
usage frequencies, which evolve together with word order in a process
of coadaptation so that the real order used in a language resembles the
orderings more prevalent along the frontier.

Results

We first evaluate our proposed theory in a synchronic setting using
data from 80 languages. We compute, for each language, which
basic word orders are most efficient given its usage distribution
as recorded in large-scale text corpora. We then use a diachronic
model of drift on phylogenetic trees to assess whether languages
have evolved historically toward states where syntactic usage fre-
quency and basic word order are aligned.

To begin with, we compared the efficiency of the attested order-
ings with both a null distribution of baseline grammars and the
Pareto frontier of optimized grammars. We represent grammars
using the established model of counterfactual order grammars
introduced by Gildea and Temperley (50). These are simple para-
metric models specifying how the words in a syntactic structure
are linearized depending on their syntactic relations. They specify
the orders not only of subjects and objects but also, of all other
syntactic relations annotated in the syntactic structures, such as
adpositions, adjectival modifiers, or relative clauses. For instance,
such a grammar may specify that subjects follow or precede verbs,
that adpositions are pre- or postpositions, and that adjectival
modifiers follow or precede nouns (Materials and Methods has
details). Given a frequency distribution over syntactic structures,
any grammar achieves a certain average dependency length and IL
across the syntactic structures from that distribution.

We compare two groups of word orders: SVO-like order, where
S and O are ordered on different sides of the verb, and SOV-like
order, where S and O are ordered on the same side of the verb.
Languages can fall on a spectrum between languages with entirely
strict SVO order and languages with entirely strict SOV order
(51). English is close to one end of the spectrum with dominant
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SVO order, with rare exceptions (e.g., stylistically marked verb–
subject (VS) order in “then came a dog”). Japanese falls entirely
on one end of the spectrum, allowing only SOV and OSV order.
Many languages occupy intermediate positions. For instance, in
Russian, all logically possible orderings of S, V, and O can occur,
although with different frequencies.

We quantify the position of an individual language on the
continuum between SVO and SOV using a quantitative corpus-
based metric called subject–object position congruence. This met-
ric indicates the chance that two randomly selected instances of S
and O from a corpus—not necessarily from the same sentence—
are on the same side of their respective verbs. This number is 1 in
strict SOV languages, like Japanese; close to 0.5 in languages with
flexible word order; and close to 0 in English.

Word Order Variation Reflects Competing Pressures. Fig. 3A
shows the positions of the 80 languages in the efficiency plane
spanned by IL and DL. In order to make efficiency planes com-
parable across different corpora, we rescaled the distance between
the optimal IL (DL) value and the mean of the baseline to one.
Contour lines indicate the density of sampled possible grammars;
the vast majority of the ≈ 1043 possible grammars concentrates
in a range of IL and DL separated from the Pareto frontier, and
only a vanishing proportion of grammars extends to the frontier.
Consistent with findings from prior work on IL and DL (28,
29, 52), the attested grammars occupy the range between the
baseline samples and the frontier, making them more efficient than
almost all other possible grammars. Each language outperformed
at least either ≥ 90% of baselines on DL or ≥ 90% on IL.
All languages outperformed the median baseline on DL, and
all but three outperformed the median baseline on IL. Some
languages are beyond the average curve because their frontiers
are to the left of the average curve. There are also languages that
are more efficient than all computationally optimized grammars
within the formalism of word order grammars, suggesting they
achieve even higher efficiency through flexibility in word order
(SI Appendix, section S28).

The attested grammars of the languages and the possible coun-
terfactual grammars along the Pareto frontier are colored by their
subject–object position congruence as found in corpus data. DL
was correlated with congruence, such that languages with higher
subject–object position congruence optimized DL less strongly
(R =−0.47, 95% CI [−0.63,−0.28], P = 10−5; Spearman’s
ρ= 0.45, P = 3 · 10−5). This agrees with recent findings that
SOV languages optimize DL less strongly (27, 53). To account
for the statistical dependencies between related languages more
rigorously, we grouped the 80 languages into 17 maximal families
(or phyla) describing maximal units that are not genetically related
to each other (Materials and Methods) and performed a regression
analysis where we entered per-family random slopes and inter-
cepts. This analysis confirmed a significant effect of congruence
on DL [β =−0.37, 95% credible interval (CrI) [−0.62,−0.08],
P(β ≥ 0) = 0.009, Bayesian R2 = 0.45]. Subject–object posi-
tion congruence did not correlate with IL (R = 0.09, P > 0.05).

Fig. 3 also shows an analogous result for the counterfactual
grammars along the frontier. Among those, subject–object posi-
tion congruence is higher when DL is not optimized and IL is
strongly optimized; it is lower when DL is most optimized. In
a mixed effects analysis with per-family random effects, subject–
object position congruence was significantly higher at the end
optimizing for IL (on the left) than at the end optimizing for DL
[on the bottom; difference between the two: β = 0.38, 95% CrI
[0.25, 0.53], P(β ≤ 0)< 0.0001].

A

B

Fig. 3. Summary of the efficiency analysis of crosslinguistic word order
variation. (A) All 80 languages in the plane spanned by IL (x axis) and DL
(y axis), with 12 languages annotated (SI Appendix, Fig. S16 shows results with
all language names). IL and DL are scaled to unit length across languages;
SI Appendix, section S22 has raw results. Positions closer to the lower left
corner indicate higher efficiency. Colors indicate subject–object position con-
gruence as attested in corpus data. The contour lines indicate a Gaussian fit to
the distribution of baseline grammars averaged across languages. The curve
indicates the average of the Pareto frontier across all 80 languages. Some
languages are beyond the curve because they utilize word order flexibility to
achieve higher efficiency than any fixed ordering grammar. Colors along the
frontier indicate the average subject–object position congruence of counter-
factual grammars along the frontier of maximally optimal grammars. (B) The
same information as shown in A with languages classified as SOV (Left) and
SVO (Right) in the typological literature. The distribution of optimal grammars
along the frontier overrepresents SOV-like grammars in SOV languages and
SVO-like grammars in SVO languages.

In Fig. 3B, we plot these results specifically for languages
classified as SOV and SVO in the typological literature (54, 55).
SVO languages tend to optimize DL more strongly. Note that
some of the 80 languages belong to less common categories, such
as VSO; SI Appendix, Fig. S17 shows results for those categories.

4 of 10 https://doi.org/10.1073/pnas.2122604119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122604119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122604119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122604119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122604119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122604119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122604119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122604119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122604119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122604119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122604119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122604119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122604119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122604119/-/DCSupplemental
https://doi.org/10.1073/pnas.2122604119


We also observe that subject–object position congruence tends
to be higher along the frontier for SOV languages than SVO
languages. This observation suggests coadaptation. Language users
tend to produce frequency distributions of syntactic structure for
which the real word order of the language is efficient.

To test this idea about coadaptation more rigorously, we
computed the average subject–object position congruence along
the frontier. In Fig. 4A, we compare average congruence along the
frontier with attested congruence. The correlation between the
average congruence and the attested congruence was R = 0.49
(95% CI [0.31, 0.65], P = 4 · 10−6; Spearman’s ρ= 0.49,
P = 4 · 10−6). The correlation was substantially lower when
considering the density not along the full frontier but at the two
end points, where only IL or DL is optimized (Fig. 4 B and C ).
The correlation between the average density and the congruence
was significant in a by-families mixed effects regression predicting
the attested congruence from the average density [β = 0.62,
95% CrI [0.28, 1.0], P(β ≤ 0) = 0.0011, Bayesian R2 = 0.52].
Analogous regressions predicting the attested congruence from
the density at either of the end points yielded inferior model
fit (Bayes factor 32 compared with the IL-optimized end point,
101 compared with the DL-optimized end point). A possible
concern is that a majority of the 80 languages belongs to the Indo-
European family. We confirmed the presence of coadaptation in an
analogous analysis excluding Indo-European [β = 0.72, 95% CrI
[0.25, 1.18], P(β ≤ 0) = 0.0026, Bayesian R2 = 0.74], showing
that this result is not driven by this family.

Word Order Evolves to Maintain Communicative Efficiency. We
have provided evidence that variability in basic word order reflects
competing pressures of IL and DL resolved differently across
languages through coadaptation of grammar and usage. However,
this does not rule out the possibility that the observed correlations
are artifacts of the common histories of languages descended from
common ancestors.

To test whether the observed patterns arise from the process
of language evolution, we performed a phylogenetic analysis on
the evolution of efficiency and word order. Phylogenetic analyses

have previously been applied to studying the historical evolution
of languages (e.g., refs. 56 –59), including the evolution of word
order patterns (12, 60).

A phylogenetic analysis allows us to construct an explicit model
of language change drawing on two sources of information. First,
in several cases, our dataset includes data from different stages of
the same language (such as Ancient Greek and Modern Greek).
Such datasets provide direct evidence of historical development.
Second, using phylogenetic information, the model can also draw
strength from contemporary language data. Data from related
languages may permit inferences about their (undocumented)
common ancestor and thus, about possible trajectories of histori-
cal change (12, 60, 61).

In order to understand how basic word order evolves, we used
a model of drift (or random walks) on phylogenetic trees (61–63)
to model how grammar and usage frequencies of a language evolve
over time. We describe the state of a language L at time t as a vector
ξL,t encoding 1) the efficiency of the language as parameterized
by IL and DL, 2) its subject–object position congruence, and 3)
the average subject–object position congruence along the frontier.
Whenever a language splits into daughter languages, the point ξL,t
continues to evolve independently in each daughter language. As
the components of ξL,t are continuous, we model their change
over time using a random walk given by an Ornstein–Uhlenbeck
process (64–66) (Materials and Methods has details). This process
is parameterized by rates of change in the traits, correlations
between the changes in different traits, and the long-term averages
of the traits (62, 65, 67). This model allows us to model the
development of word order both in the real language and across
the optimization landscape within a single model.

We obtained phylogenetic trees for the 80 languages in our
sample from Glottolog (68) (Materials and Methods) and inserted
historical stages as inner nodes in these trees. We fitted the pa-
rameters of the model using Hamiltonian Monte Carlo methods
(Materials and Methods has details).

The long-term behavior of the Ornstein–Uhlenbeck model is
encoded in its stationary distribution, which describes the likely
outcomes of long-term language evolution (69). First, language

A B C

Fig. 4. Coadaptation between grammar and usage (SI Appendix, Fig. S11 has further results). Real subject–object position congruence (x axis) is compared
against the average subject–object position over the entire Pareto frontier (A), at the end optimizing only for IL (B), and at the end optimizing only for DL (C). The
lines indicate the diagonal. Optimizing for IL or DL tends to over- and underpredict SOV-like orderings, respectively. Considering the joint optimization of both
factors results in better prediction of real orderings.
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evolution maintains relative efficiency; the mean of the stationary
distribution was estimated at μ= 0.35 (95% CrI [0.22, 0.45])
of the distance between the maximum IL and the mean of the
baselines for IL and μ= 0.28 (95% CrI [0.21, 0.35]) of the
distance between the maximum DL and the baseline mean for
DL, with SDs 0.36 (95% CrI [0.3, 0.44]) for IL and 0.24 (95%
CrI [0.2, 0.3]) for DL well separated from the less efficient bulk
of possible grammars. High congruence was correlated with de-
creased efficiency in DL [R =−0.31, 95% CrI [−0.48,−0.14],
P(R > 0) = 0.0004]. Second, attested and average congruences
were substantially correlated [R = 0.36, 95% CrI [0.19, 0.53],
P(R ≤ 0)< 0.0001], confirming the presence of coadaptation
between word order and usage frequencies in resolving the
competing pressures of IL and DL. When excluding the Indo-
European family, there continued to be a correlation between
congruence and DL [R =−0.33, 95% CrI [−0.61, 0.00],
P(R ≥ 0) = 0.026] and—more importantly—substantial
evidence for the presence of coadaptation [correlation between
attested and average optimized congruence: R = 0.39, 95% CrI
[0.10, 0.65], P(R ≤ 0) = 0.005] (SI Appendix, section S8 has
further details).

While the model shows that evolution maintains efficiency, it
might be the case that, once languages are close to the frontier,
most possible changes would keep languages in that area so that
apparent optimization might be simply the result of neutral drift
rather than a pressure toward increasing efficiency. To rule out
this possibility, we compared the model with neutral drift, which
we simulated by iteratively flipping randomly chosen pairs of syn-
tactic relations with minimally differing weights in the grammar.
Results are shown in Fig. 5A (SI Appendix, section S9 has further
results). For each grammar, we created 30 chains with 200 changes
each. Grammars close to the frontier quickly and consistently
move toward the baseline distribution, with very few chains im-
proving efficiency even temporarily. We contrast this with sample
trajectories from the fitted phylogenetic model (Fig. 5B); these
stay along the frontier and move toward it when grammars are
inefficient. This provides evidence that language evolution selects
specifically for grammatical changes that maintain or increase
efficiency.

We visualize the model fit on language families in our sample in
Fig. 6. We plot maximal families (phyla) except within the well-
represented Indo-European family, where we plot smaller units.
In addition to the attested languages, we also show historical

A B

Fig. 5. A comparison of fitted phylogenetic drift model (B) against random
mutations in grammars (A). The analysis is for 40 grammars close to the
frontier (orange) and 40 samples from the baseline distribution (red), each
evaluated on the tree structure distribution of 1 of the 80 languages. Arrows
denote sampled change due to 200 mutations (A) or ≈ 200 y of language
change (B). The fitted model predicts that grammars stay along the frontier
and that inefficient grammars move toward it. In contrast, random mutations
drive grammars toward the baseline distribution.

trajectories as reconstructed by the phylogenetic analysis. For each
family, we show the average congruence across languages.

The families illustrate the findings of the analysis. First,
languages evolve in the area between the baseline samples and
the frontier. Second, evolution toward higher DL goes hand
in hand with lower subject–object position congruence. Third,
languages with high subject–object position congruence, such as
the Turkic languages, also represent such possible grammars more
strongly along the Pareto frontier of optimal possible grammars.
SI Appendix, section S24 has analyses of historical change in
individual languages, which suggest that they either change
toward the optimal frontier or stay near optimal throughout
history.

A well-known variable covarying with word order is case mark-
ing. Languages with case marking are more likely to have free word
order, and loss of case marking has been argued to correlate with
word order becoming more fixed or shifting toward SVO (70);
conversely, SOV languages mostly have case marking (1). This has
a clear functional motivation because case marking can distinguish
subjects and objects when order does not. This raises the question
of whether our results can be explained away by assuming that
both grammar and usage change in response to changes in case
marking. We coded the 80 languages for the presence of case mark-
ing distinguishing subjects from objects (71). We then conducted
a version of the phylogenetic analysis where languages are allowed
to concentrate in different regions depending on the presence of
case marking. The rates of change and the long-term averages were
allowed to depend on the presence or absence of case marking,
and only the correlations between short-term changes in the
different traits remained independent of case marking. We found
that the phylogenetic analysis continued to predict correlations
in changes of word order and DL and in changes of usage and
word order (SI Appendix, section S12). Changes were correlated
in DL and congruence [R =−0.39, 95% CrI [−0.60,−0.18],
P(R ≥ 0)< 0.0001] and in attested and average optimized con-
gruence [R = 0.49, 95% CrI [0.29, 0.67], P(R ≤ 0)< 0.0001].

Relation between Usage and Word Order. Our results provide
evidence that variation in basic word order results from an evo-
lutionary process trading off competing pressures of DL and IL
and that languages resolve these via coadaptation between usage
and basic word order. In what aspects of usage do languages
vary or change that reflect this coadaptation? We predict that
languages favor SOV-like orders more when they do not fre-
quently coexpress subjects and objects on a single verb. Indeed, it
has been argued, based on evidence from Turkish and Japanese,
that SOV languages omit arguments or use intransitive struc-
tures more frequently than SVO languages do (72–74), although
this might not hold for Basque (75). We tested this idea on
a larger scale using the corpora in our sample. We calculated
what fraction of verbs simultaneously realize a subject and an
object, out of all verbs realizing at least one of them. In a
linear mixed effects models, with the by-family intercept and
slope, attested subject–object position congruence was predic-
tive of this fraction [β =−0.11, SE = 0.04, 95% credible in-
terval [−0.20,−0.03], P(β > 0) = 0.006, Bayesian R2 = 0.18]
(Materials and Methods has details). Optimized subject–object po-
sition congruence was also predictive of this fraction [β =−0.23,
SE = 0.05, 95% credible interval [−0.33,−0.13], P(β > 0)<
0.0001, Bayesian R2 = 0.32]. This shows that languages differ in
the rate at which they coexpress subjects and objects and that this
is a factor through which frequency and word order can influence
each other.
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Fig. 6. Historical evolution within language families. All families (maximal phyla or subgroups within the well-represented Indo-European family) with at least
three attested languages in the dataset are shown. Panels 2 to 6 show subgroups of Indo-European. For each family, we show the average of the Pareto frontier
and of the average congruence on the frontier and behind it. Large full dots indicate attested languages, while small faint dots indicate positions and orderings
of historical stages as inferred by the phylogenetic analysis. Languages evolve in the area between the baselines and the frontier. Basic word order tends to
match the order most prevalent among optimal grammars. The prevalence of orderings along the frontier varies between families, indicating coadaptation
between grammar and usage.

We also found an association between order and coexpression
within individual languages. Languages with word order flexibility
tend to order subjects differentially depending on the presence or
absence of an object in a way that is consistent with optimizing
DL (SI Appendix, section S14).

Discussion

We have investigated the frequency distribution and historical
evolution of word order across languages. Languages evolve to
maintain relative efficiency for IL and DL compared with the
vast majority of other logically possible grammars. We found that
variation in basic word order emerges from these two competing
pressures, resolved differently across languages through a process
of coadaptation between grammar and usage.

Our results go beyond existing efficiency-based accounts of
word order in two ways. First, extending the cross-sectional syn-
chronic comparison, we explicitly model the evolutionary process
through which languages maintain efficiency. Second, we make
specific predictions for individual languages based on their distri-
butions of syntactic structures. Ref. 76 proposes that the frequency
of different basic word order patterns is predicted by a tendency
to avoid peaks and troughs in the rate at which information is
transmitted (although ref. 77 reports a replication with diverging
results). The model in ref. 76 accounts for the low frequency of
object-initial orders, but it underpredicts SOV and predicts SVO
as the most efficient order even when it is applied to Japanese
(i.e., an exemplary language for SOV order). In comparison, our
account explains the language dependence of basic word order. For
Japanese, SOV-like orderings are predominant along the Pareto
frontier (SI Appendix, section S22), in contrast with the model in
ref. 76 that predicts SVO across languages.

Among the previous efficiency-based proposals, the one most
closely related to our study, ref. 14, agrees with our proposal
that SVO is favored by DL but proposes that SOV is favored
by a pressure toward predictability of the final verb. Despite the
seeming similarity to our theoretical proposal, there are several
key differences. First, the underlying psycholinguistic theories (43,
44) refer to the predictability of all words in a sentence and do
not warrant the assumption that it is specifically the verb that
should be more predictable. Second, while the arguments in ref.
14 were theoretical in nature, our proposal here is grounded

in large-scale empirical evidence, including both synchronic and
diachronic analyses. Specifically, our work reveals strong empirical
evidence for coadaptation as a key factor in resolving competing
pressures.

The variation between SOV and SVO basic word orders stands
in interesting contrast to some other aspects of word order,
where a clear preference is observed across languages. While the
relative position of the subject relative to the object is variable,
several other syntactic relations have a typologically stable position
relative to the object (1, 78). These patterns, known as Greenberg’s
correlation universals, are predicted uniformly by both DL (23,
36, 37) and IL (SI Appendix, section S21). The interaction of IL
and DL thus explains both why the order of those syntactic rela-
tions shows uniformity across languages and why basic word order
shows variability. The process of coadaptation that we discover in
basic word order might also operate in other aspects of grammar,
and it might explain the observation that language families appear
to systematically differ in which subset of Greenberg’s correlations
they support (60).

Our results on coadaptation do not speak to the causal direction
between usage and grammar in changes in individual languages.
The process of coadaptation as we identified is consistent with
causal influence in different directions, with the possibility of
a third hidden causal factor. In the future, the availability of
more historical data with high temporal resolution might make
it possible to explore the causal direction of change in individual
languages. This might also make it possible to determine whether
further aspects of usage beyond the coexpression of subjects and
objects are affected by coadaptation.

A limitation of our work is that corpus data with syntactic an-
notation are available primarily for European and Asian languages.
Alternative approaches to estimating usage distributions could
leverage either manual annotation of text for relevant quantities,
such as subject–object coexpression, or automatically projecting
syntactic annotation to other languages on multilingual text, such
as Bible translations. However, those approaches would either not
reflect usage distributions in sufficient detail to identify optimized
orderings or risk reflecting nonidiomatic properties of translated
text.

Our phylogenetic analysis confirmed that grammar and usage
patterns evolve together so that the real order distribution found
in a language tends to resemble that dominating along the
Pareto frontier of optimal orderings. This process of coadaptation
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highlights that grammar and usage frequencies can interact in the
evolution of language. This finding has connections to findings in
some other areas. Existing work has suggested that communicative
need, or how frequently a linguistic element is used by its speakers,
differs across languages and that this is responsible for some of the
differences observed among the structures of different languages
(79–81). Ref. 79 provides evidence that differences in social
structure account for differences in the complexity of deictic
inflection across languages; ref. 80 shows that languages in small-
scale societies tend to have higher inflectional complexity. It has
been argued that color-naming systems are influenced by the way
color names are used (82). Ref. 81 suggests that color-naming sys-
tems differ between industrialized and nonindustrialized societies
due to differences in the usefulness of color in a society, and ref. 83
shows that vocabulary about the environment depends on the cli-
matic conditions in which a language is spoken. In syntax, recent
work argues that adjective use (84) and comprehension (85) in-
teract with word order in a way beneficial for communicative effi-
ciency. The coadaptation account is also compatible with evidence
that human language comprehension itself adapts to the statistics
of the language (86). Related to our findings on the correlation
between DL and subject–object position congruence, ref. 87
finds that SOV languages tolerate longer head-final dependencies,
attributing this to adaptation of the human language processing
system.

It has been argued that there is an inherent directionality in
the evolution of basic word order and that SOV is the default or
original order in the history of language. Many historically doc-
umented word order changes have gone from SVO to SOV, and
the protolanguages of several extant families are thought to have
been SOV (7, 9, 12). However, only a small fraction of all word
order changes is directly documented through written evidence of
historical languages. Ref. 12, using phylogenetic modeling, found
that languages can cycle between SOV and SVO over long-term
development, with little bias toward either order. The strongest
evidence that SOV might be the “default” order comes from
recently emerged sign languages (8, 88–90) and from gesturing
tasks (10, 13). If this is true, then our proposed theory would
predict that emerging languages tend to use those structures that
maximize the IL advantages of SOV languages. Indeed, multiple
studies report high frequencies of utterances where only one
argument is expressed in recently emerged sign languages and
home-sign systems (88, 89, 91, 92) and in sign languages more
generally (93).

Assuming that SOV is the historically earlier order, some
studies have further argued that SVO order later arises to avoid
ambiguity in communicating reversible events (11, 94) or to
communicate more complex structures (13, 14, 95) and inten-
sional predicates (96, 97). In agreement with our proposed theory,
this view also explains the distribution of SOV and SVO in
terms of a tension between distinct cognitive and communicative
pressures favoring SOV and SVO, respectively (13). However,
those proposals do not explain the fine-grained per-language
distribution of word order patterns since they do not explain
why specific languages have SVO or SOV order. Our theory
provides a more precise account of the fine-grained distribution
because it explicitly accounts for the language dependence of
word order, providing per-language predictions of optimal word
orders through the process of coadaptation between grammar and
usage.

Our work combines evidence from richly annotated syntac-
tic corpora with phylogenetic modeling. This approach can be
generally useful for characterizing the fine-grained evolution of
grammar in the world’s languages.

Materials and Methods

Ordering Grammars. The counterfactual order grammars have a weight in
[−1, 1] for every 1 of the 37 syntactic relations annotated in the Universal De-
pendencies 2.8 corpora (e.g., subject, object). Dependents of a head are ordered
around it in order of these weights; dependents with negative weights are placed
to the left of the head, and others are to its right. SI Appendix, section S2 has more
details and examples.

Locality Principles. We compute dependency length in terms of the Universal
Dependencies 2.8 representation format.

IL can be formalized in multiple ways grounded in information-theoretic
models of human language processing (29, 41). We adopt a simple formalization
in terms of maximizing I[Xt : Xt+1] or the mutual information between adjacent
words. SI Appendix, section S1.1 has other formalization choices.

Inferring Frontier and Congruence along Frontier. We create approxi-
mately optimal grammars using the hill-climbing method in ref. 50 and the
gradient descent method in ref. 33. The hill-climbing method is applicable
to IL and DL and any combination; the gradient descent method is fast but
only applicable to DL. SI Appendix, section S2.2 has details. These optimization
methods result in approximately optimal grammars populating the area between
the baselines and the Pareto frontier. We ran these optimization methods at
linear combinations (1 − λ) · DL + λ · IL forλ= 0, 0.25, 0.5, 0.75, 1, obtain-
ing at least 150 approximately optimal samples per language. Due to the dif-
ficulty of high-dimensional combinatorial optimization, determining the exact
Pareto frontier is not feasible; we thus approximated it as the convex hull of
the approximately optimized grammars. For each language, we further randomly
constructed at least 75 baseline ordering grammars. For each language, we
interpolated subject–object position congruence throughout the efficiency plane
using a Gaussian kernel applied to the approximately optimized grammars and
the baseline grammars, with scales chosen for each language using leave-one-
out cross-validation (SI Appendix, section S3). SI Appendix, section S22 has raw
results.

Data. We drew on the Universal Dependencies 2.8 tree banks (98), including
every language for which data with at least 10,000 words were available while
excluding code-switched text, text produced entirely by nonnative speakers, and
text only reflecting specific types of sentences (e.g., questions). Data for one
further language (Xibe) became available after completion and were included.
For the phylogenetic analysis, we included additional historical languages as
follows. In addition to the data available in Universal Dependencies 2.6, we
added Old English, Medieval Spanish, and Medieval Portuguese dependency
tree banks in a slightly different but comparable version of dependency grammar
(99). We further split two tree banks spanning multiple centuries (Icelandic and
Ancient Greek) into multiple stages based on documented word order changes
(SI Appendix, section S25). While there are some other historical tree banks, such
as the Penn Parsed Corpora of Historical English (100), they are not in the Uni-
versal Dependencies format; calculating dependency length is highly nontrivial
without a high-quality conversion.

We obtained the topology of phylogenetic trees from Glottolog (68), inserted
documented historical languages as inner nodes, and assigned dates for the
other inner nodes based on the literature (SI Appendix, section S6 has details).

Bayesian Regression Analyses. We conducted Bayesian inference for
mixed effects analyses using Hamiltonian Monte Carlo in Stan (101–103).
We assumed the prior N(0, 1) for the fixed effects slopes, N(0.5, 1) for the
intercepts, weakly informative Student’s t priors (ν = 3 degrees of freedom,
location 0, and scale σ = 2.5) for the SDs of the residuals and the random
effects, and a Lewandowski–Kurowicka–Joe prior with parameter 1 (104) for
the correlation matrix of random effects. SI Appendix, section S16 has details
and results with more strongly regularizing priors. We computed Bayesian R2

values following ref. 105. We report P(β ≤ 0), the posterior probability that the
coefficient is not positive, to quantify the fraction of the posterior supporting the
hypothesis of a positive coefficient. The families in the random effects structure
correspond to the maximal subgroups in the phylogenetic trees described
in Data.

Model of Language Change. We model the state of a language L as a tuple
ξL ∈ R

4 consisting of the position of the language in the efficiency plane
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spanned by DL and IL, the observed subject–object position congruence, and the
average subject–object position congruence of optimized grammars.

A common choice in phylogenetic modeling of coevolving traits is correlated
Brownian motion, also known as the independent contrasts model (62, 67). This
model can quantify the correlation between pairs of traits (e.g., DL and position
congruence) in evolution. To enable the model to capture biases toward specific
parts of the parameter space (e.g., toward regions of high or low efficiency),
we added a drift term that can model drift into a specific region. This leads to
an Ornstein–Uhlenbeck process (64–66) described by the following stochastic
differential equation for the instantaneous change of the state ξL,t of a language
L at a given time t:

dξL,t = Γ · (ξL,t − μ)dt +
√
ΣdBt ,

where μ ∈ R
4 is a vector, Σ ∈ R

4×4 is a covariance matrix, Γ ∈ R
4×4 is

diagonal with negative entries, Bt is Brownian motion in four dimensions, and√
Σ ∈ R

4×4 is positive definite and symmetric such that (
√
Σ)2 =Σ.

The first term, Γ · (ξL,t − μ)dt, encodes deterministic drift and describes
which region μ ∈ R

4 of parameter space languages tend to concentrate around
in the long run.

The dynamics of stochastic change are described by the second term,
√
ΣdBt .

Σ is the covariance matrix of instantaneous changes (69); its diagonal entries
encode rates of random change in each dimension. The off diagonals Σij en-
code correlations between the instantaneous changes in different dimensions
(62, 67). Standard results (69) imply that the long-term stationary distribution
is a Gaussian centered around the vector μ with a covariance Ω given as
(SI Appendix, section S7.1)

Ωij =
Σij

Γii + Γjj
.

The Pearson correlation coefficient R between the ith and jth components (e.g.,
DL and position congruence) is then obtained by normalizing the corresponding
off-diagonal entry by the individual variances of the two components:

Rij =
Ωij√
ΩiiΩjj

.

Without the first term (i.e., with Γ = 0), the simpler independent contrasts
model (62, 67) would result. SI Appendix, section S10 has results from that sim-
pler model and model comparison.

In the version controlling for case marking, the parameters μ, Γ are allowed
to depend on the presence or absence of case marking. This model has no unique
stationary covarianceΩ across languages with and without case marking; hence,
we computed the correlation coefficient R using the covariance matrix Σ of
instantaneous changes instead of using Ω.

SI Appendix, section S7.1 has more on the calculation of the long-term sta-
tionary distribution, and SI Appendix, section S7.3 has the calculation of the
correlations between short-term changes in different traits.

We conducted Bayesian inference using Hamiltonian Monte Carlo in Stan
(101, 102). SI Appendix, section S7.2 has implementation details.

Data Availability. Optimized grammars for 80 languages have been deposited
in GitLab (https://gitlab.com/m-hahn/efficiency-basic-word-order/) (106).
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