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Abstract: The pharmaceutical compounds that modulate pluripotent stem cell (PSC) identity and
function are increasingly adopted to generate qualified PSCs and their derivatives, which have
promising potential in regenerative medicine, in pursuit of more accuracy and safety and less
cost. Here, we demonstrate the peroxisome proliferator-activated receptor α (PPARα) agonist as
a novel enhancer of pluripotency acquisition and induced pluripotent stem cell (iPSC) generation.
We found that PPARα agonist, examined and selected Food and Drug Administration (FDA)
-approved compound libraries, increase the expression of pluripotency-associated genes, such as
Nanog, Nr5A2, Oct4, and Rex1, during the reprogramming process and facilitate iPSC generation by
enhancing their reprogramming efficiency. A reprogramming-promoting effect of PPARα occurred
via the upregulation of Nanog, which is essential for the induction and maintenance of pluripotency.
Through bioinformatic analysis, we identified putative peroxisome proliferator responsive elements
(PPREs) located within the promoter region of the Nanog gene. We also determined that PPARα can
activate Nanog transcription by specific binding to putative PPREs. Taken together, our findings
suggest that PPARα is an important regulator of PSC pluripotency and reprogramming, and PPARα
agonists can be used to improve PSC technology and regenerative medicine.

Keywords: agonist; Nanog; peroxisome proliferator-activated receptor α; pluripotency; induced
pluripotent stem cell; reprogramming

1. Introduction

Pluripotent stem cells (PSCs) have unique properties of unlimited self-renewal and pluripotency
to differentiate into all kinds of cell types in the body, which represent valuable biomaterial
for applications in regenerative medicine [1]. The pluripotency of PSCs is tightly controlled by
a network of core transcriptional regulatory factors, such as Oct4, Sox2, and Nanog [2,3], as well
as nuclear receptors and ligand-dependent transcription factors, such as Esrrb, the Nr5A family,
and Nr0b1 [4,5]. Various combinations of these transcription factors have been tested and identified
for somatic cellular reprogramming to pluripotency, particularly the four “Yamanaka factors (Oct4,
Sox2, Klf4, and c-Myc, abbreviated as OSKM)” [6,7] and other alternative factors (Oct4, Sox2, Nanog,
and Lin28) [8]. Alternative transcription factors that can replace classical reprogramming factors or
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enhance reprogramming efficiency have been suggested [9,10]. Esrrb can replace Klf4 [11] or Sox2 [12],
and Nr5A2 can replace Oct4 [13] in the derivation of induced pluripotent stem cells (iPSCs). Nr0b1 and
Nanog can stabilize induced pluripotency synergistically during somatic cellular reprogramming [14].
In addition to transcription factors, small molecule compounds, offering ease of use and administration
and cost-effectiveness, have been extensively tested, and the use of pre-existing small molecules has
been suggested to advance iPSC generation and utility [15,16].

The peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription
factors that belong to a superfamily of nuclear hormone receptors [17,18] and play critical roles in
numerous cellular processes, including lipid metabolism, inflammatory pathway, glucose homeostasis,
cell cycle control, differentiation, development, and extracellular matrix remodeling [17–20]. PPARs
share a highly conserved structure and molecular mode of action as a heterodimer with the retinoid x
receptor (RXR), recognizing specific DNA sequences in target genes known as peroxisome proliferator
response elements (PPREs) [21–23]. PPREs are characterized by a direct repeat sequence of the
consensus hexanucleotide AGGTCA interspaced by a single nucleotide [23,24]. Each PPAR isoform
regulates different target genes, thereby modulating distinct biological processes [24]. However,
the mechanism underlying the specificity of regulation and the degree of acceptable sequence variability
in PPREs is unclear [24,25]. In addition, functional PPREs have been identified only in a limited number
of target genes, although numerous genes are known to be regulated by PPARs [25,26].

PPARs comprise the three isoforms, PPARα, PPARγ, and PPARβ/δ, which are differentially
expressed in several tissues: PPARα and PPARβ/δ are expressed ubiquitously, whereas PPARγ is
mainly expressed in macrophages, adipocytes, and colon cells [17,18]. During Xenopus laevis Daudin
gastrulation, the pluripotency-related chromatin signature (H3K27me3) can be recognized by PPARβ [27].
PPARγ agonists have been reported to induce the loss of leukemia inhibitory factor (LIF)-dependent
self-renewal of mouse embryonic stem cells (ESCs) and adipocyte differentiation [4,28,29]. In combination
with the Rho-associated kinase (ROCK) inhibitor Y-27632, a PPARγ agonist blocked apoptosis and
enhanced the cloning efficiency of human PSCs after dissociation [30]. However, the roles of PPARα,
which is the best characterized isoform, remain not fully understood in PSCs.

Here, we demonstrate that PPARα agonists, such as fenofibrate, have a positive effect on
the generation of iPSCs by a high-throughput screening strategy from selected FDA-approved
compound libraries using genetically homogeneous secondary mouse embryonic fibroblasts (MEFs)
harboring doxycycline (dox)-inducible OSKM transgenes. The PPARα-mediated enhancement of
reprogramming efficiency was found to be associated with PPARα-mediated Nanog promoter
activation. Taken together, our findings may provide new roles for the PPARα agonist as a PSC
fate controller in somatic cellular reprogramming and iPSC technology.

2. Experimental Section

2.1. Chemicals and Reagents

Fenofibrate (#4113), WY14643 (#1312), and A769662 (#3336) were purchased from Tocris (Tocris,
Minneapolis, MN, USA) and dissolved in dimethyl sulfoxide (DMSO; Sigma-Aldrich, St. Louis, MO,
USA). Cell culture medium (DMEM-high glucose), fetal bovine serum (FBS), glutamine, nonessential
amino acid (NEAA), penicillin-streptomycin, and trypsin/EDTA were acquired from Thermo Fisher
(Thermo Fisher Scientific, Waltham, MA, USA).

2.2. Mice

C57BL/6J and R26rtTA; Col1a14F2A and BALB/c-nude mice were obtained from Jackson
Laboratory (Bar Harbor, Maine ME, USA) and maintained at Korea Research Institute of Bioscience &
Biotechnology (KRIBB). All mice maintenance and experiments were approved by the Institutional
Animal Care and Use Committee of KRIBB.
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2.3. Cell Culture

For the feeder-dependent condition, undifferentiated mouse PSCs were cultured on gamma-irradiated
MEF feeder layer in PSC medium composed of PSC basal medium DMEM-high glucose supplemented
with 2 mM glutamine, 1% NEAA, 0.1 mM β-mercaptoethanol (Sigma-Aldrich, St. Louis, MO, USA),
100 units/mL penicillin, 100 µg/mL streptomycin, 1% NEAA, 15% FBS, and 1000 U/mL leukemia
inhibitory factor (LIF) (Millipore, Billerica, MA, USA). In the feeder-free condition, the cells were
maintained on 0.2% gelatin-coated dish in PSC medium. The PSC medium change was performed
every other day. In 2–3 days, cells were washed once with PBS and treated with 0.25% trypsin/
Ethylene Diamine Tetraacetic Acid (EDTA) and dissociated into a cell and then transferred to 0.2%
gelatin-coated dish.

2.4. Somatic Cellular Reprogramming

Following the protocol, 4F2A MEFs were isolated from embryonic day 13.5 (E13.5) embryos of the
single Dox inducible transgenic mouse strains that express four reprogramming genes OSKM separated
by three sequences encoding 2A self-cleaving peptides from the Col1a1 locus [31]. Briefly, internal
organs and heads of embryos were removed before MEFs isolation, and then MEFs were expanded in
DMEM-high glucose supplemented with 10% FBS, 100 units/mL penicillin, 100 µg/mL streptomycin,
and 1% NEAA. The reprogramming scheme is in accordance with the published procedures [31,32].

2.5. Alkaline Phosphatase (AP) Staining

Alkaline Phosphatase (AP) staining was performed using a commercially available AP detection
kit (Sigma-Aldrich, St. Louis, MO, USA), as previously reported [32]. Briefly, cells were fixed by fixation
solution composed of citrate solution, acetone, and 37% formaldehyde for 30 s at room temperature.
Then cells were stained with AP staining solution in the dark. Staining solution was removed and
washed with distilled water. AP stained colonies were observed by light microscopy.

2.6. Immunocytochemistry

Cells were fixed with 4% paraformaldehyde for 10 min at room temperature. Then cells were
permeablized with 0.1% Triton X-100 for 30 min, and washed with Phosphate buffered saline with
Tween-20 (PBST) followed by blocking was performed by using 4% bovine serum albumin (BSA).
Primary antibodies in blocking buffer were treated and then incubated overnight at 4 ◦C. Alexa Fluor
594 and Alexa Fluor 488 (Life Technologies, Carlsbad, CA, USA) were used for secondary antibodies.
The primary antibodies used for PSCs were anti-Oct4 (sc-5279, Santa Cruz, Dallas, TX, USA), -Nanog
(ab80892, Abcam, Cambridge, UK), and -SSEA1 (sc-21702, Santa Cruz, CA, USA).

2.7. Three Germ Layer Differentiation in Vivo and in Vitro

For in vitro three germ layer differentiation, cells were trypsinized and transferred to petri dishes
in the PSC medium without a LIF. After a week, aggregated cells were plated onto 0.2% gelatin-coated
Lab-Tek 4 well chamber and cultured for another week. Cells were stained with anti-Tuj1 (PRB-435P,
Covance, Princeton, NJ, USA), -Nestin (sc-23927, Santa Cruz, CA, USA), -Desmin (AB907, Millipore,
Burlington, MA, USA), -α-SMA (A5228, Sigma Aldrich, St. Louis, MO, USA), -Foxa2 (07-633, Millipore,
Burlington, MA, USA), and -Sox17 (sc-17355, Santa Cruz, CA, USA). Teratoma formation was performed
for in vivo three germ layer differentiation. iPSCs were harvested in single cell using 0.25% trypsin/EDTA.
Cells were injected with Matrigel by subcutaneous injection on 4-week-old BALB/c-nude mice. Two weeks
after injection, teratomas were isolated from mice and fixed overnight in 4% paraformaldehyde at 4 °C
and then embedded in paraffin. Paraffin-embedded tissues were sectioned, stained with hematoxylin
and eosin, and were observed using light microscopy to examine whether all three germ layer tissues
were presented.
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2.8. Quantitative Real-Time PCR

Total RNA isolated using a Rneasy Kit (Qiagen, Valencia, CA, USA) was reverse transcribed
using a First Strand Synthesis kit (Invitrogen, Carlsbad, CA, USA). Quantitative real-time
RT-PCR analysis was performed in triplicate using 1/50 of the reverse transcription reaction in
an ABI Prism 7500 (Applied Biosystems, Foster City, CA, USA) with QuantiTect SYBR green
PCR kit (Qiagen, Venlo, The Netherlands). The following primers were used for qPCR: Oct4,
Forward 5′-CTTCACCACACTCTACTC; Reverse 5′-CCAGGTTCTCTTGTCTAC; Nr0b1, Forward
5′-TCCAGGCCATCAAGAGTTTC; Reverse 5′-ATCTGCTGGGTTCTCCACTG; Nanog, Forward
5′-TGAGCTATAAGCAGGTTAAGAC; Reverse 5′-CAATGGATGCTGGGATAC TC; Nr5a2, Forward
5′-AGATGCCAGAAAACATGCAA; Reverse 5′-TATCGCCACACA CAGGACAT; PPARα, Forward
5′-TATTCGGCTGAAGCTGGTGTAC; Reverse 5′-CTGGCATTTGTTCCGGTTCT; Rex1, Forward
5′-GATCCGCAAACACCTGCTTT; Reverse 5′-CCAAGTGTTG TCCCCAAATACC. The quantitation
of the relative expression levels of the marker genes was achieved by normalizing for the endogenous
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) using the delta CT method, as described
previously [32].

2.9. Reporter Gene Assay

The plasmid pSG5-PPARα and Nanog5P [33] were a gift from Bruce Spiegelman (Addgene
plasmid # 22751) and Austin Cooney (Addgene plasmid # 16337), respectively. pGL3-basic promoter
luciferase reporter (Promega, Madison, WI, USA) and pSG5 null vector (Agilent, Santa Clara, CA, USA)
were used as controls. Renilla luciferase activities were used to normalize transfection efficiencies.
Cells were transfected using Lipofectamine 2000 (Thermo Fisher Scientific, Waltham, MA, USA). 48
h after transfection, luciferase activity was measured using Dual-Luciferase Reporter Assay System
according to the manufacture’s protocol (Promega, Madison, WI, USA). Briefly, cells were lysed with
passive lysis buffer for 15 min on a gently shaking orbital shaker. The luminescence of the samples
was measured following the manufacturer’s assay protocol for 96-well plates.

2.10. Bioinformatic Analysis and Chromatin Immunoprecipitation

Putative PPARα/RXR or PPARα consensus sequence identification was performed by using
JASPAR and PROMO (version 8.3 of TRANSFAC) databases. Chromatin immunoprecipitation (ChIP)
assay was performed by Pierce Agarose ChIP Kit (Thermo Fisher Scientific, Waltham, MA, USA)
following the manufacturer’s instructions. Cells were crosslinked with 1% formaldehyde, washed
with cold PBS, and the cells were lysed. The genomic DNA was sonicated, immunoprecipitated with
an anti-PPARα antibody (sc-9000, Santa cruz, CA, USA), and then analyzed by qPCR using specific
primers able to amplify the regions including putative PPARα/RXRα and PPARα consensus sequence
(Forward 5′-GTGAGTTGGAAGCCAG; Reverse 5′-CCTCAGCCGTCTAAGC).

2.11. Statistical Analysis

Results are shown as the mean + standard error of the mean (SEM) (n = 3). The statistical
significance was determined using a Kruskal–Wallis test with Dunn´s multiple comparison (* p < 0.05,
** p < 0.01, *** p < 0.001).

3. Results

3.1. Experimental Results

3.1.1. PPARα Agonists Enhance Cellular Reprogramming to Derive iPSCs

To facilitate the cellular reprogramming process using pre-existing small molecule compounds,
we conducted a high-throughput chemical screen of the collection comprised of 665 FDA-approved
compounds (Table S1) using Col1a1 4F2A MEFs [31]. The reprogramming procedure is in accordance
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with published procedures [31,32], with modifications (Figure 1a). Col1a1 4F2A MEFs can generate
iPSCs in PSC medium by Dox, with or without drug (Figure 1a), as previously reported [31].
We evaluated cellular reprogramming efficiency by counting the number of alkaline phosphatase
(AP)-positive ESC-like colonies at 21 days of Dox induction. Among the tested FDA-approved
compounds, the PPARα agonist, third generation fibrate, fenofibrate (FEN) was found to be the
most effective compound in the generation of AP-positive ESC-like colonies. FEN improved the
reprogramming efficiency in a dose-dependent manner, and the maximal effect of FEN on improving
reprogramming efficiency was 5 µM (~2.42-fold) (Figure 1b). We randomly isolated two iPSC
colonies derived by FEN treatment (FEN-iPSCs) and verified their pluripotency by immunostaining
for pluripotency markers, such as Oct4, Nanog, and SSEA1 (Figure S1a), and in vitro and in vivo
three-germ layer differentiation (Figure S1c,d). We also confirmed the normal karyotype of FEN-iPSCs
(Figure S1b).

FEN is well known as a typical PPARα agonist, as well as an AMP-activated protein kinase
(AMPK) activator in an independent manner of PPAR receptor activation [34–36]. To clarify the
effect of FEN during the reprogramming process, we tested whether the selective PPARα agonist
WY14643 and the AMPK activator A769662 have a simulative effect on iPSC generation. Distinctively,
WY14643 improved the reprogramming efficiency (~3-fold) compared to the control DMSO treatment,
but A769662 had no noticeable effect (Figure 1c). These results suggest that PPARα agonists are able to
accelerate somatic cellular reprogramming.
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The enhancement of cellular reprogramming efficiency by selective PPARα agonist WY14643 but not 
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3.1.2. FEN-Stimulated PPARα during the Early Stage of Reprogramming Contributes to the 
Improved Reprogramming Efficiency 

Figure 1. Screening and identification of PPARα agonist fenofibrate (FEN) from selected FDA-approved
compound libraries that promote mouse embryonic fibroblasts (MEFs) reprogramming. (a) Schematic
experimental procedure. The Col1a1 4F2A MEFs were seeded at 7.5 × 103 cells per well in 96-well
plates. After two days, cells were treated with or without compound and cultured in Dox to activate
OSKM expression. The number of AP+ colonies on day 21 post-treatment was used as a measure
of the reprogramming efficiency. (b) Dose-dependent enhancement of reprogramming efficiency
by FEN. OSKM-induced cells were incubated with or without FEN at the indicated concentrations.
Representative images of AP+ colonies per well were presented in the right panel. (c) The enhancement
of cellular reprogramming efficiency by selective PPARα agonist WY14643 but not AMPK activator
A769662. The Col1a1 4F2A MEFs were seeded, and incubated with or without drug in pluripotent
stem cells (PSC) medium supplemented with or without Dox. The number of AP+ colonies on day 21
post-treatment was used as a measure of the reprogramming efficiency. Representative images of AP+
colonies per well were presented in the bottom panel.
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3.1.2. FEN-Stimulated PPARα during the Early Stage of Reprogramming Contributes to the Improved
Reprogramming Efficiency

PPARα agonists have been demonstrated to increase the expression of PPARα [37–39]. With FEN
treatment, PPARα expression was significantly increased in the early stage of reprogramming at
day 5 (Figure 2a and Figure S2b), but other PPARs, such as PPARγ, were not (data not shown).
Additionally, in response to FEN treatment, the expression of the pluripotency-associated Nanog
(~16.5-fold), Nr5A2 (~1.9-fold), Oct4 (~2.4-fold), and Rex1 (~2.9-fold) genes was significantly increased
in reprogrammed cells that were in an early stage of reprogramming (day 5) compared to the
control DMSO treatment (Figure 2b). Likewise, the protein levels of PPARα, Nanog, and Oct4 were
significantly increased in response to FEN treatment compared to the control (Figure S2b). Noticeably,
Nanog expression was most upregulated by FEN treatment during the same time period (Figure 2b).
The endogenous expression level of the PPARα gene was not significantly different between PSCs,
such as fully reprogrammed iPSCs and undifferentiated ESCs, and nonpluripotent MEFs (Figure S2a).
These results indicate that the PPARα-mediated beneficial effect on cellular reprogramming may be
limited by pluripotency reestablishment rather than maintenance and this effect is dependent on the
FEN-stimulated PPARα-mediated regulation of genes, particularly pluripotency-associated genes,
such as Nanog, Nr5A2, Oct4, and Rex1.
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Figure 2. FEN significantly increases PPARα and pluripotency-associated genes. (a) Expression of
PPARα in OSKM-induced cells with or without FEN 5 µM for 5 days. The results were normalized
to GAPDH and expressed as a fold-increase over Mock (DMSO, vehicle control). (b) Expression of
the pluripotency-associated genes (Nanog, Nr5A2, Oct4, and Rex1) in OSKM-induced cells with or
without FEN 5 µM for 5 days. The results were normalized to GAPDH and expressed as a fold-increase
over Mock (DMSO, vehicle control).

3.1.3. Prediction of Putative PPARα Binding Elements in the Nanog Promoter Region

PPARα plays an important role in lipid and lipoprotein metabolism as a master regulator of
fatty acid oxidation (FAO) [24] and shows numerous protective effects, including anti-inflammatory,
antioxidant, metabolic control, and apoptotic regulation [40–42]. Nevertheless, limited numbers of
PPARα-regulated genes harboring functional PPREs have been determined. Nanog is well known
to be involved in the control of PSC self-renewal, naïve pluripotency, tumor initiation, and the
chemoresistance of tumor-initiating stem-like cells (TICs) [43,44]. In addition, Nanog ChIP-seq
analysis showed that oxidative phosphorylation (OxPhos) and FAO were involved in Nanog-mediated
oncogenic pathways [43]. To explore the possible novel PPARα target in the control of pluripotency
and reprogramming, we speculated and confirmed whether functional PPREs could be occupied by
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PPARα in the Nanog promoter. Significantly, we identified the putative PPARα/RXRα or PPARα
binding sites within −1.5 kb of the transcription start site of Nanog by using JASPAR and PROMO
(version 8.3 of TRANSFAC). Six putative PPREs within the Nanog promoter, including consensus
sequences for PPARα/RXRα, PPARα, or PPARγ/RXRα, were selected (Figure 3a) to measure binding
energies between the DNA strand and the PPARα/RXRα complex. The computational calculation
of protein-DNA binding energies requires a three-dimensional structure. Thus, homology modeling
to generate the mouse PPARα/RXRα complex with the DNA binding region was performed by
PQR-SA (Pseudo Quadratic Restraints with Simulated Annealing) [45], which can find several template
structures in the PDB using HHblits [46]. The calculated structures of mouse PPARα and RXRα
(Figure 3b) and their validation metrics were generated in terms of radius of gyration, radar charts
on various protein quality scores, and distance heat map (Figure S3a,b). The template structures for
mouse PPARα and RXRα were obtained from human PPARγ (PDB entry code: 3DZY) and RXRα (PDB
entry code: 1K7L), and the similarities of each of the two structures were 3.4 Å and 3.6 Å, respectively,
indicating that the homology structures were similar to each other, although the ligand/DNA binding
domains were slightly different (Figure S3a,b).
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on the template structure of the PPARα/RXRα complex, which comprised two chains (C and F) 
sharing the backbone structure (phosphate and sugar rings) (Figure 3b). The DNA structure was 
generated using the CHARMM (Chemistry at HARvard Macromolecular Mechanics) modeling 
program [47]. The combined structure (DNA strand, PPARα and RXRα) was energy minimized on 
an implicit solvation model (GBSW: Generalized Born model with SWitch function) [48] and 
simulated with all heavy atoms fixing to prevent the system from exploding because of the many 
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Figure 3. Predictive peroxisome proliferator response elements (PPREs) in the Nanog promoter region.
(a) Putative PPARα/RXRα, PPARα, or PPAR/RXRα binding sites within −1.5 kb of the transcription
start site of the Nanog promoter were identified by using JASPAR and PROMO (version 8.3 of
TRANSFAC). a. MA1148.1 and MA0065.2 are the matrix IDs for JASPAR, and T00694 is the matrix ID
for PROMO. b. W: A or T, V: A or G or C, R: A or G, B: C or G or T, K: G or T, and Y: C or T. (b) Structure
construction of the mouse PPARα/RXRa and Nanog DNA complexes, which are drawn by gray
and yellow cartoons, respectively. (c) Calculation of protein-DNA binding energy. The protein-DNA
binding energies of six plausible DNA strands are numbered from 1 and 6 in the first column. The ‘Seq’
column represents the corresponding sequences with the predicted or revealed DNA sequences as
shown (a). ‘Binding energy’ indicates the protein-DNA binding energy in units of kcal/mol. ‘∆E’ is the
relative binding energy with respect to the reference energy, which is the average energy of all binding
energies on the whole sequence.

All putative sequences with extended 20 bp nucleotides were structured and moved by a base on
the template structure of the PPARα/RXRα complex, which comprised two chains (C and F) sharing
the backbone structure (phosphate and sugar rings) (Figure 3b). The DNA structure was generated
using the CHARMM (Chemistry at HARvard Macromolecular Mechanics) modeling program [47].
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The combined structure (DNA strand, PPARα and RXRα) was energy minimized on an implicit
solvation model (GBSW: Generalized Born model with SWitch function) [48] and simulated with
all heavy atoms fixing to prevent the system from exploding because of the many clashes caused
by superimposition. The protein-DNA interaction energies on all of the combined structures were
measured by subtracting protein only (Eprot) and DNA only energies (EDNA) from the total energy
of the system (Etotal). The binding energy and relative binding energies (∆E) on six plausible DNA
strands were estimated by the CHARMM program, resulting in three regions, AAGTCCCAGGACA
(−1267 to −1255), GCAAACTTTGAACTTGGG (−950 to −933), and TGACCAA (−840 to −834),
from the transcription start site of Nanog that showed a greater than 2-fold increase in ∆E compared to
reference elements (Figure 3c). These results suggest that at least three PPARα binding elements exist
within the proximal Nanog promoter.

3.1.4. FEN Upregulates the Nanog Promoter via the PPARα Regulatory Pathway

To examine the binding of PPARα to the Nanog promoter, we performed ChIP assays and qPCR
analyses using specific primers to amplify regions of 518 bp that included putative PPRE motifs at
−1267 to −1255, −950 to −933, and −840 to −834 bp upstream of the transcription start site (Figure 4).
At five days after reprogramming with or without FEN treatment, the reprogrammed cells were fixed,
and total chromatin was extracted. The binding of PPARα to the Nanog promoter was observed to
be 3-fold enriched in FEN-reprogrammed cells (Figure 4), suggesting that PPARα was specifically
recruited by FEN and bound to the Nanog promoter. Next, to determine whether these PPARα binding
elements and their binding to PPARα affect Nanog transcription, we performed reporter assays
using J1 ESCs and 293T cells transiently transfected with the reporter plasmid Nanog5P, which was
constructed by the insertion of 2.5 kb of the 5’ promoter region of the mouse Nanog gene into the
pGL3-Basic luciferase vector [33]. Forty-eight h after treatment with FEN, Nanog promoter activity
was significantly increased in a dose-dependent manner up to 10 µM in both J1 ESCs (Figure 5a,
left) and 293T cells (Figure 5b, left). Similarly, co-transfection with Nanog5P and specific PPARα
expression plasmids also increased Nanog promoter activity in both J1 ESCs (Figure 5a, right) and
293T cells (Figure 5b, right), thereby confirming the direct activation of the Nanog promoter by PPARα.
These results strongly suggest the existence of active PPARα binding elements within the Nanog
promoter region and their functional contribution as a direct target of the PPARα regulatory pathway
in the control of pluripotency and reprogramming.
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Figure 4. PPARα directly binds the Nanog promoter. ChIP assay demonstrates that PPARα binds to
the regions including putative PPRE motifs at −1267 to −1255, −950 to −933, and −840 to −834 bp
upstream of the Nanog promoter in vivo. Chromatin samples were prepared from OSKM-induced
cells at 5 days after treatment with or without FEN and immunoprecipitated with antibodies against
rabbit IgG or PPARα. qPCR detection was performed using specific primers for regions of 518 bp that
included putative PPARα binding sites as shown in the schematic in the upper panel.
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Figure 5. PPARα activates the Nanog promoter. Transcriptional activation of the Nanog promoter by
PPARα stimulation in (a) J1 ESCs and (b) 293T cells. J1 ESCs and 293T cells were transfected with
the Nanog5P luciferase reporter plasmid and treated with FEN at the indicated concentrations (a and
b, left) the next day. Nanog5P (2 µg) was transfected together with pSG5- PPARα (0, 1, 2, and 4 µg,
respectively) into J1 ESCs and 293T cells (a and b, right). Firefly luciferase activity was normalized to
renilla luciferase activity to correct for transfection efficiencies.

4. Discussion

In this study, we unveiled the novel role of PPARα agonists, such as FEN, in the control of the
PSC state, especially in the early phase of cellular reprogramming. Moreover, we identified Nanog as
a direct target harboring PPRE motifs of PPARα relevant to pluripotency and cellular reprogramming.

Studies have demonstrated the various biological activities of PPARα agonists. Fibric acid
derivative (fibrate)-mediated PPARα stimulation increases the gene expression of superoxide dismutase
(Sod), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione-S-transferase (GST),
resulting in an enhanced antioxidant and cellular oxidation-reduction (redox) state [40,42]. Fibrates
were also found to play an important role in restoring the cellular redox balance in aged mice by
regulating oxidative stress via a PPARα-dependent or an independent mechanism [49]. FEN activates
nuclear factor erythroid 2-related factor 2 (Nrf2), which is involved in the expression of many
antioxidant and detoxifying enzymes by p62-dependent Keap1 degradation [50]. Recent studies
have shown that the modulation of PSC fate is partially regulated by reactive oxygen species
(ROS), which mediate the redox state of cells as a secondary messenger [51–53]. However, thus far,
the potential role of PPARα in PSCs has not been elucidated.

Nr5a2 (also known as LRH-1) was shown to activate the master regulator of stemness Oct4 at
the epiblast stage of embryonic development [54] and coactivate Oct4 expression in mouse ESCs
by interaction with Nr0b1 (also known as Dax1), which is regarded as an important factor of
pluripotency [55], as well as replace Oct4 during cellular reprogramming [13]. Based on these reports,
we hypothesized that Nr5A2 increased by FEN may be involved in Oct4 upregulation, resulting in the
activation of Oct4 itself, and Rex1 and Nanog, which are well-known Oct4 target genes [56] (Figure 6).
However, further investigation is required because PPARα may be involved in the regulation of Oct4
or Rex1, individually and/or directly.
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PPARα has been shown to heterodimerize with RXR and recruit spatiotemporally orchestrated
associations of coactivators resulting from canonical ligand binding, followed by the ligand-dependent
transcriptional activation of target genes involved in diverse biological processes [21–23]. These protein
complexes can modulate chromatin remodeling, facilitate DNA unwinding by histone acetylation or
methylation, and link to the RNA polymerase II machinery for the transactivation of specific target
genes [57]. Thus, it may be possible to recruit coactivators or coactivator-associated proteins into
the interaction with liganded PPARα within the putative PPARα binding elements of the proximal
Nanog promoter, and the unknown sites of the distal Nanog promoter lead to the enhancement of
pluripotency circuitry reestablishment (Figure 6). The study of PPARα-specific coactivators for Nanog
transactivation will be necessary to further understand the molecular mechanisms underlying PSC
fate control.

During PSC induction, the reprogrammed cells have substantially increased ROS levels and
oxidative stress [58,59], thereby reducing the survival rate of reprogrammed cells and the generation of
iPSCs [60,61]. Interestingly, FEN-mediated PPARα stimulation enhances antioxidant and detoxifying
enzymes [50], metabolic shift [62], and the cellular redox state [40,42], suggesting that FEN may
modulate PSC fate via a PPARα-dependent or PPARα-independent mechanism. Nanog is also
able to quench ROS production and restore OxPhos during metabolic reprogramming, resulting
in an enhancement of self-renewal and stemness [43]. According to Nanog ChIP-seq analysis in TICs,
Nanog can physically interact with PPARδ and then co-occupy the Acadvl locus, thereby suggesting
a possible cooperation to increase FAO in TICs to support self-renewal ability and drug resistance [43].
Thus, PPARα and Nanog may be closely associated with maintaining and reinitiating pluripotency
either separately or together. Our results indicate that the positive effects of PPARα agonists on cellular
reprogramming in PSC fate by demonstrating PPARα-mediated Nanog regulation may contribute to
the beneficial use of FEN in regenerative medicine.
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Figure 6. Pharmacological regulation of pluripotency circuitry establishment during cellular reprogramming
via the FEN-stimulated PPARα regulatory pathway. Nr5a2 increased by FEN may interact with Nr0b1
and function in Oct4 upregulation together, resulting in the target activation of Oct4 itself, Rex1,
and Nanog. Nanog was also identified as a direct target of PPARα and then transcriptionally activated
with or without coactivators.
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Figure S1: Characterization of FEN-iPSCs, Figure S2: The expression levels of PPARα, Nanog, and Oct4, Figure S3:
Homology modeling of PPARα/RXRα. Table S1: A list of compounds tested in this study.
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