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ABSTRACT

A method providing absolute transcript concen-
trations from spotted microarray intensity data is
presented. Number of transcripts per mg total RNA,
mRNA or per cell, are obtained for each gene,
enabling comparisons of transcript levels within
and between tissues. The method is based on
Bayesian statistical modelling incorporating avail-
able information about the experiment from target
preparation to image analysis, leading to realistically
large confidence intervals for estimated concentra-
tions. The method was validated in experiments
using transcripts at known concentrations, showing
accuracy and reproducibility of estimated concentra-
tions, which were also in excellent agreement with
results from quantitative real-time PCR. We determ-
ined the concentration for 10 157 genes in cervix
cancers and a pool of cancer cell lines and found
values in the range of 105–1010 transcripts per mg
total RNA. The precision of our estimates was suffi-
ciently high to detect significant concentration dif-
ferences between two tumours and between different
genes within the same tumour, comparisons that
are not possible with standard intensity ratios. Our
method can be used to explore the regulation of
pathways and to develop individualized therapies,
based on absolute transcript concentrations. It can
be applied broadly, facilitating the construction of
the transcriptome, continuously updating it by
integrating future data.

INTRODUCTION

Recent developments in molecular techniques, such as serial
analysis of gene expression (SAGE), massive parallel signa-
ture sequencing (MPSS) and microarray technology, have
opened for genome-wide exploration of the transcriptome
(1–3). Such data increase our understanding of complex
biological processes and diseases and are becoming useful
in the design of molecular therapies (4). SAGE and MPSS
provide quantitative and comparable measures of the tran-
script abundance, whose universality allows for integration
into future studies. The complexitity of SAGE and MPSS
has, however, limited their utility (5). Efficient production
of spotted glass-slide arrays has made the microarray techno-
logy to a widespread technique that is more suitable for
high-throughput analysis. The technique has provided valu-
able information on the relative transcript levels in tissues,
but differences in experimental protocols and normalization
methods make direct comparison of datasets between microar-
ray studies very difficult (6). Improved methods to extract
useful information from such data that lead to absolute rather
than relative transcript concentrations would be of high value
(6–8), facilitating the building up of an universal transcript
database. This is the goal of several public data repositories,
including, for example, the Gene Expression Omnibus (GEO)
(http://www.ncbi.nlm.nih.gov/projects/geo/) and SAGEmap
(http://sagemap.wr.usgs.gov/index.asp).

Extraction of absolute transcript levels from spotted
microarray data is complicated owing to significant experi-
mental variation and noise originating in the production and
hybridization processes (7–9). The use of probes with different
length and base composition, leading to differences in hybrid-
ization efficiency between probes, makes assessment of abso-
lute levels difficult. Most analyses are based on intensity ratios
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between two biological samples, hybridized together in a
single experiment. Normalization of the ratios reduces the
influence of systematic effects, though absolute levels are
lost as well as possibly important biological information
(10–12). Analysis based on intensities per se rather than ratios
opens for calculating accurate transcript levels.

We have developed a model based on a new principle that
enables estimation of absolute transcript levels on a genome-
wide scale by extended exploitation of microarray data. Once
the concentrations have been estimated, new analyses are pos-
sible, including within sample comparison, merging of data-
sets with a design lacking connectivity or based on amplified
and non-amplified starting materials, cross-platform and cross-
species comparisons and more general meta-analyses. The
technique was thoroughly validated on datasets with known
mRNA concentrations. Moreover, we estimated the transcript
concentrations of 10 157 genes and expressed sequence tags
(ESTs) in 12 cervix cancers and a pool of 10 human cancer cell
lines, and found values consistent with quantitative real-time
PCR (qRT-PCR) data and with previously publised data (13).
We generated new views into the transcriptome, by comparing
transcript abundance between genes or groups of genes within
a population. The model follows the different steps of the
microarray experiment, incorporating information associated
with array, cDNA synthesis, hybridization and scanning char-
acteristics. We computed the joint posterior distributions of the
absolute transcript levels of all genes, describing dependencies
between genes, both within and between individual samples.
Uncertainties from sample preparation to imaging were coher-
ently propagated in a global statistical approach, leading to
realistically large confidence intervals around estimated
concentrations.

Few methods quantifying transcript concentrations from
spotted microarray data have been developed so far. The
approach proposed by Dudley et al. (14) requires hybridization
of each sample with a reference of known concentration. Other
methods rely on calibration of each array with additional tech-
niques (15). The present method is the first quantifying abso-
lute transcript levels from spotted microarray data without the
need for calibration of each sample or gene individually. There
are a few quantitative methods based on in situ synthesized
arrays (16,17) and, notably, (18) which takes an empirical
Bayesian approach, but the data produced from them are
scarce, probably because of a limited access to such arrays.
The possibility to directly use the spotted microarray techno-
logy for the estimation of absolute transcript concentrations
opens for a more comprehensive generation of transcript data-
bases. Results reported here were based on spotted cDNA
microarrays, which feature particularly large experimental
variation. Our technique can also be directly applied to spotted
oligoarrays and can handle experiments based on amplified as
well as non-amplified material.

MATERIALS AND METHODS

Principles

The idea is to follow conceptually the mRNA molecules
through the microarray experiment, from cDNA synthesis
to hybridization and subsequent washing (Figure 1). We mod-
elled mathematically the process as a simple selection, where

each molecule had a certain probability of being kept in
the experiment. This probability depended on known experi-
mental covariates, like mRNA purity, array, pen, gene and
probe identification, replication, length and quantity. We trea-
ted scanning and image analysis as an integral part of the
experiment and used associated covariates, such as dye, scan-
ner setting and spot size. Also characteristics specific for the
scanner and hybridization technique were included: the scan-
ner amplification factor was needed to account for differences
in the intensity response among scanner types; the hybridiza-
tion factor identified the absolute scale of the estimates.
Both factors were determined in two off-line calibration
experiments.

Basic data are the average fluorescence intensities, back-
ground corrected or not, and standard deviations of each spot
on the microarray slide. Intensities should be within the linear
range of the scanner, and saturated intensities should either be
excluded or corrected (19). No transformation nor normaliza-
tion are done. Non-connected datasets are allowed as long as
the design includes at least one loop, like a self–self or dye–
swap hybridization. About 50 genes must be spotted at least in
duplicates, their number being independent of the number of
genes in the analysis, but related to identifiability of probe and
pen effects. Our method succeeds in obtaining absolute con-
centrations because it makes explicit use of probe and spot
related covariates like probe length and quantity, to describe
probe-dependent hybridization efficiency. By means of duplic-
ate spotting, we have many transcripts with more than one
probe, and the effect of probe-dependent covariates can
be estimated and further incorporated into the estimates of
concentrations for genes spotted only once. Experiments
with amplified material are handled like those with non-
amplified ones, but estimates are transformed back to original
scale.

The model is simple and natural. We performed Bayesian
estimation of its parameters and calculated the posterior joint
distribution of all absolute transcript concentrations using
Markov Chain Monte Carlo (MCMC; http://www.statslab.
cam.ac.uk/~mcmc/) (20). This distribution reflects biological
variation of and dependencies between the numbers of tran-
scripts. Based on this distribution we estimated the number of
transcripts for each gene in each sample together with their
uncertainty, described by 95% credibility intervals. The values
were given in terms of number of transcripts per mg of total
RNA, mRNA or per cell, depending on the experimental
protocol.

Covariates

The steps of the microarray experiment were modelled as a
binomial selection process, using covariates associated with
cDNA synthesis, dye labelling, purification, hybridization and
washing (Figure 1 and Supplementary Data 1). The corres-
ponding covariates were sample purity, array, pen, gene, probe
replication (RID), probe identification (PID), probe length
and probe quantity. Replicated genes had both PID and RID
effects, where PID accounted for different probes and RID for
replications of equal probes. The number of base pairs in the
probe sequence was used as probe length. Probe quantity was
the mean spot fluorescence intensity in a test slide of each
printing series that was stained for single-stranded DNA by
use of SYBR green II (Molecular Probes). Probe quantity was
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included, although probe in excess was assumed, since hybrid-
ization efficiency of high density probes may be reduced (21).
About 50 genes must be spotted at least in duplicates to be able
to estimate the effect of the probe and spot related covariates.

Estimates are more precise if the duplicated genes are chosen
to span over the range of probe length and quantity (not of
the concentrations). Additional probe-related covariates may
improve estimates further.

Figure 1. Illustration of the microarray experiment. The various steps of the experiment and the corresponding covariates used in the model are listed with their
symbols. The model consists of three levels: (i) selection, (ii) scanning and (iii) measurement. In (i), K1

g and K2
g mRNA molecules for gene g present in sample 1 and 2

undergo a selection process. Each molecule succeeds or fails in each of the experimental steps: cDNA synthesis, dye labelling, purification, hybridization and
washing. Success for each molecule is modelled as a Bernoulli coin toss. The success probability depends on properties of the molecule and of the experiment
(covariates). Molecules of the same gene can have different covariates, e.g. if they hybridize on different spots with different probes. If probe is in excess, molecules
can be modelled as independent variables and the number of remaining molecules after each step is binomially distributed. The probability of successfully passing
through the entire experiment is the product of the probabilities of surviving each individual step. Nested binomial variables are binomial and the final number of
molecules ready for being scanned is binomial with two parameters: the unknown original number of transcripts per gene in each sample and the selection probability,
modelled as in Equation 1. Level (ii) describes the translation of the bound molecules remaining after washing (Ht‚ a

s , on array a, spot s, for sample t ¼ 1, 2) into
fluorescence intensities, as in Equation 2. Measurement error (iii) of pixel-wise intensities Lt‚ a

j‚ s (on array a, pixel j on spot s for sample t ¼ 1, 2) is assumed to be
normally distributed as in Equation 3. This model allows to obtain estimates of absolute concentrations K1

g and K2
g together with their posterior marginal probability

density, as sketched at the bottom.
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Covariates associated with scanning were dye, photo mul-
tiplier tube (PMT) voltage and the scanner amplification
factor. The dye covariate represented the dye effect in both
labelling and scanning. The amplification factor was a measure
of the increase in intensity per unit of increase in PMT voltage.
The factor was determined once for each dye and scanner as
the slope in log-linear plots of intensity versus PMT voltage
(19). A covariate associated with image analysis was the
hybridization factor, used to scale the estimated values to
the true number of transcripts. It was determined with
weighted linear regression of estimates versus true values in
a dataset based on samples with known transcripts concentra-
tions. Such control samples in general show a more efficient
cDNA synthesis and dye labelling than biological samples,
owing to the high purity of these molecules. The samples
are therefore not useful for calibration of intensities. However,
after cDNA synthesis and labelling, the binding behaviour to
the array slides of cDNA synthesized from the control samples
resembles that of the cDNA from biological samples. This
step is not dependent on the quality of the applied mRNAs,
justifying the use of control samples for validation and deter-
mination of the hybridization factor. Under ordinary stable
experimental settings it is sufficient to determine this factor
once for each hybridization machine.

Statistical methods

The known quantity of material for sample t on array a is
denoted as qt,a, e.g. the weight of mRNA after amplification
or of total RNA, as in our study on cervix cancer. For each
gene g, let Kt

g denote the unknown number of transcripts per
weight unit present in sample t (Figure 1). Let Lt‚ a

j‚ s be the
measured intensity for sample t in pixel j in spot s on array
a. The non-linear model that relates these data to the number of
transcripts consists of three layers: (i) a model for the selection
process, describing the proportion of target molecules (from
the original qt‚ a · Kt

g) that have survived the several steps of
the experiment until washing of the hybridized slides; (ii) a
model for the scanning process of the hybridized slides; and
(iii) a model for measurement and residual errors.

In (i), the qt‚ a · Kt
g molecules undergo a series of processes

from cDNA synthesis to hybridization and washing (Figure 1).
Let na

s be the number of pixels in spot s on array a and na
g the

total number of pixels in all spots related to gene g on array a.
After successful cDNA synthesis, labelling and purification, a
proportion c · na

g of the qt‚ a · Kt
g molecules candidates to

reach the correct spots for hybridization. Here c is the hybrid-
ization factor per pixel. Each of these c · na

s · qt‚ a · Kt
g

molecules has a success probability pt‚ a
s to hybridize and to

remain fixed after subsequent washing, independently of
other molecules. This independency corresponds to the
usual probe in excess assumption. As discussed in Supple-
mentary Data 1, pt‚ a

s also accounts for successful cDNA
synthesis, dye labelling and purification and it depends on
biological and experimental conditions described by covari-
ates. Let Ht‚ a

s be the unknown number of molecules in sample
t that succeeds in hybridizing on spot s on array a, and resists
subsequent washing, thus being available for imaging. Then
we obtain the simple model

Ht‚ a
s � Binomialðc · na

s · qt‚ a · Kt
g‚ pt‚ a

s Þ‚

where g is the gene spotted in spot s on array a and

pt‚ a
s ¼ min½1‚expfb0 þ be þ ba þ bp þ bg þ bRID þ bPID

þ bl · probe length½ � þ bq · probe quantity½ �

þ bm · purityt½ �g�:

1

The b’s represent effects of the various covariates for spot s on
array a (ba array, bp pen, bg gene, bPID probe identification and
bRID probe replication), [probe length] is the number of base
pairs of the probe in spot s, [probe quantity] is the SYBR green
intensity, [purityt] is the purity of sample t and exp(b0) is the
global baseline selection probability. When non-connected
datasets are analysed jointly, an effect be is required for
each connected subset. Identifiability of all parameters is
assured (Supplementary Data 2).

In (ii), the expected scanned intensity on spot s, array a, is
modelled as

mt‚ a
s ¼ 2f dye · PMTt‚ a

Ht‚ a
s adye‚ 2

where PMTt,a is the PMT-voltage used during scanning of
sample t on array a, fCy3 or fCy5 are the known scanner amp-
lification factors, while aCy3 and aCy5 are unknown chemical
and optical dye effects.

In (iii), we assume for the pixel-wise intensity measure-
ment Lt‚ a

j‚ s ,

Lt‚ a
j‚ s ¼ mt‚ a

s

na
s

þ et‚ a
j‚ s ‚ 3

where et‚ a
j‚ s is a normally distributed error term with mean zero

and a spot varying variance st‚ a
s

� �2
. By conditional independ-

ence of the pixel-wise intensities, only the spot-wise mean
intensity is required in computations. st‚ a

s

� �2
is estimated dir-

ectly from the intensities as their sample variance in each spot.
In the statistical analysis of several arrays and samples,

many of the unknown parameters are shared, like array,
dye, pen, gene and probe related effects; all data involving
sample t contribute information on the unknowns Kt

g. To
assure statistical identifiability, some genes must be spotted
at least in duplicate. The number of required replicated genes
is independent on the total number of spotted genes, since
replicates are used to estimate the common parameters. The
whole dataset must include at least one self–self array or a
dye–swap or a longer loop, necessary to identify the relative
dye effect aCy3/aCy5. Beyond this, we do not require a con-
nected design. To facilitate estimation, the model is repara-
metrized, so that the baseline b0, be, bg, bm and aCy5 are
estimated only on the basis of the variances in the binomials.
Data relative to non-duplicated genes and samples hybridized
only once are not used to estimate variances (Supplementary
Data 2). MCMC was implemented to compute the joint and
marginal posterior distributions of all unknowns of interest
(Supplementary Data 3). The joint distribution describes
dependencies between variables, e.g. between Kt

g’s for various
genes and samples. A priori nothing is assumed on the number
of transcripts. The model naturally introduces dependency
through shared experimental factors, so that the quantities
Ht‚ a

s are dependent. Observed dependencies in the data are
then attributed backwards in part to this experimental
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dynamics. The residual unexplained dependence is summar-
ized by the posterior joint distribution of the Kt

g’s. Estimates of
parameters are marginal posterior modes with 95% symmetric
credibility intervals.

Microarray experiments

Microarray slides produced at the Microarray Facility at
Health Enterprise Rikshospitalet-Radiumhospitalet were
used. The slides contained 18 432 spots printed with 32 pens.
The probes were human cDNAs of known genes and ESTs,
selected from the Research Genetics 40K I.M.A.G.E. clone
selection (Invitrogen). Probe lenth ranged from 525 to
>2000 bp. A total of 17 DNA control probes (Lucidea
Universal ScoreCard, Amersham Biosciences) were printed
in equal amounts on six subarrays. These control spots were
used for validation of our method and for determination of the
hybridization factor optimal for the experiments on cancers
and cell lines. Samples from 12 cervix cancers (FIGO stages
2b–4a) and a pool of 10 cancer cell lines, originating from
mammary gland and cervix adenocarcinoma, liver hepato-
blastoma, testis embryonal carcinoma, glioblastoma, melan-
oma, liposarcoma, lymphoma, B-lymphocyte myeloma and
T lymphoblast leukaemia, were analysed. Total RNA was
isolated from the tumours by use of Trizol reagent (Life
Technologies), whereas total RNA from the cell lines was
commercially available (Stratagene). Labelled cDNA was
synthesized from 20 mg total RNA using Superscript II tran-
scriptase (Life technologies) and Fairplay Microarray
Labeling kit (Stratagene) in the presence of either Cy3-
dUTP or Cy5-dUTP (Amersham Pharmacia). Each tumour
sample was co-hybridized with the cell line sample in a
dye–swap design, yielding totally 24 microarrays analysed
jointly. Two control samples, each containing 17 different
mRNA sequences pre-mixed at specific concentrations,
were included in the hybridization mixture for analysis of
the control spots (Lucidea Universal ScoreCard, Amersham
Biosciences). A total of 0.5 ml of each control sample was
used, corresponding to a number of transcripts in the range of
5.8 · 105–5.8 · 109. RNA purity was optimal and equal for
all samples and was therefore currently not used in our model.
The slides were imaged at a resolution of 10mm using an Agilent
G2565BA scanner (Agilent Technologies). The laser power and
the PMT voltage were 100%. Saturated spot intensities were
corrected as described previously (19). Spot and background
intensities were quantified using the GenePix 4.1 image analysis
software (Axon Instruments). Bad spots, regions with high
unspecific binding of dye and weak spots that were not auto-
matically detected by the software were filtered out and
excluded from the further analysis. The background signal
was very low for control spots, and hence no background
correction of intensities was necessary. For other spots, we
performed analysis for intensities both background corrected
(background subtraction) and not. A detailed description of
materials is given in Supplementary Data 4.

Quantitative real-time PCR

The estimated transcript concentrations of eight genes that
covered the whole concentration range were compared with
data obtained by use of qRT-PCR. The TaqMan PCR
system (Applied Biosystems) with a 7500 Sequence Detector

(Perkin-Elmer) was used. cDNA was synthesized from 2 mg of
the total RNA used in the microarray experiments by use of
Superscript II transcriptase (Life Technologies). Pre-designed,
gene-specific TaqMan probe and primer sets (Applied Biosys-
tems), consisting of a specific fluorogenic probe and a pair of
oligonucleotides, were used to run standard qPCRs for CDK4,
CTNNB1, HK2, MYC, CSTA, PPT2, CCND1 and PDK2
(Supplementary Data 5). We employed 1 ng cDNA for all
but the low abundant genes CCDN1 and PDK2, 10 ng
cDNA were used, to increase the signal. The reactions were
carried out in triplicate in a 25 ml reaction volume and a
96-well plate format. The transcript concentration of each
gene was calculated using the standard curve method and
presented relative to the expression of TBP, which served
as an internal, endogenous control (22).

RESULTS

Validation of the methodology

Two different dye–swap experiments using samples with
known transcript concentrations bound to the control spots
of our arrays were used for validation of our method. The
spot intensities covered the whole detection range, from
near background values to saturation. There was a highly
linear relationship between estimates and true numbers of
transcripts in double logarithmic plots (Figure 2). Scaling
of the data in the first experiment (Figure 2A) led to a hybrid-
ization factor c of 4.31 · 10
10 and estimates in good agree-
ment with the true numbers of transcripts. The lowest numbers
(<107) were, however, overestimated, possibly because low
intensity spots had more noise (14,16,17). The uncertainty of
our estimates increased for the most abundant molecules with
numbers >109.

We used the hybridization factor c ¼ 4.31 · 10
10 determ-
ined from experiment in Figure 2A to scale the data in the
second experiment (Figure 2B). This also resulted in values
consistent with the true ones, showing good reproducibility in
our estimates (Figure 2B). There was a systematic underes-
timation of log10 concentrations by 0.1, which was small
enough not to influence the estimated values significantly,
since log10 concentrations were in the range 6–10. The optimal
hybridization factor determined from the data of Figure 2B
was 3.45 · 10
10 and hence only slightly different from the
other one. For further comparison, the hybridization factor
based on the control samples included in the cancer data
was found to be 5.94 · 10
10, in agreement with the findings
of the validation experiments. Estimates of the transcript con-
centrations obtained using either of the three hybridization
factors were not significantly different.

We performed a further validation of our method by com-
paring the transcript concentrations of eight genes in cancer
cell lines and primary tumours with corresponding data
achieved with qRT–PCR. The transcript concentrations of
10 157 genes and ESTs in 12 cervical tumours and in a
pool of 10 cancer cell lines were determined. Eight genes
covering the whole concentration range were selected for
qRT–PCR. We found a clear and strong correspondence
between the qRT–PCR data and the transcript concentrations
determined with our method (Figure 3A). The best agreement
occurred at intermediate and high concentrations, reflecting
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the increased uncertainties of both methods in quantification of
low abundant transcripts. There was also positive correlation
between estimated concentration and PCR data for some indi-
vidual genes, despite a limited within-gene variability and few
data points. While Figure 3A is based on not-background
corrected data, Supplementary Figure 1 relates to background
subtracted intensities. The difference is minimal, since back-
ground was not particularly high in the involved spots. The
validation clearly showed that our technique was reproducible
and stable, and estimates were reliable.

Standard log-ratio expressions based on normalized intens-
ities of tumour and cell line samples also showed a significant
correlation to qRT–PCR data (Figure 3B), although the cor-
relation was not as good as for the absolute concentration
estimates when individual genes were considered. Many
genes had approximately the same log-ratio although their
absolute transcript concentrations differed considerably
(Figure 3A), demonstrating the additional information that
is achieved in absolute measures. We hypothesize that such
information may increase our knowledge of transcript dosage
and pathway regulation in a way that cannot be achieved by
means of standard log-ratio expressions. The log-ratio expres-
sions were also significantly correlated to the concentration
estimates (data not shown). However, while concentrations
can be compared directly between tumours and genes, this
is not the case for log-ratio expressions, which can be com-
pared only between tumours.

Transcript concentrations in cancer cell lines
and cervix tumours

To test our model we analysed further the transcript concen-
tration of 10 157 genes and ESTs determined for 12 cervical
tumours and a pool of 10 cancer cell lines. We listed estimated
concentrations for each gene and for each tumour, equipped
with its 95% confidence interval in a table available at http://
www.nr.no/pages/samba/area_emr_smbi_transcount. Simil-
arly for the cancer cell lines, we reported estimated concen-
trations and confidence intervals for each gene in a second
table, which also includes the mean concentrations of the
cervix tumours. This is also available at the same web site.
Concentrations are reported based on intensities both back-
ground corrected and not. Background corrected concentra-
tions are systematically slightly smaller than not-background
corrected ones, the difference being minimal and of interest
only for low concentrations <3 · 106. The transcript distribu-
tions were skewed, with a heavy tail towards higher concen-
trations for both the cell lines and tumours (Figure 4). The
concentrations ranged from 6.9 · 105 to 1.1 · 1010 transcripts
per mg total RNA for the cell lines and from 9.9 · 105 to
9.1 · 109 for the tumour, here using averages over the 12
estimates. Limitation in the sensitivity of the microarray tech-
nology leads to lack of data for many genes at low expression.
We therefore expect the existence of transcripts at lower
concentrations than 105 as well. The cell lines had a slightly
higher median concentration (2.36 · 107) than the tumours
(1.17 · 107). The genes with the highest mean transcript con-
centration in the tumours are listed in Table 1, and include
genes known to be involved in growth (TMSB4X, FABP5,
TRAM2 and CPA4), immune response (HLA-A, S100A8,
HLA-C, S100A10 and IGLC2), metabolism (RPS16 and
CPA4), cell communication (LAMR1 and ITGA3) and signal
transduction (LAMR1 and ITGA3).

Transcript concentrations in the cell lines were estimated
precisely, since the sample was hybridized 24 times. Much
more data were available her than for the 12 tumour samples,
each hybridized only twice. Reported 95% credibility intervals
for each gene in the cell lines represent the precision achiev-
able with our technique, given this level of replication of the
experiment. Credibility intervals for each of the 12 cervix
tumours depict the uncertainty of our estimates based on a

A

B

Figure 2. Validation of the methodology to estimate absolute numbers of
transcripts. Control samples with 17 genes of known mRNA concentrations
were used, each printed on six spots with six different pens. The data in (A) and
(B) are based on two different dye–swap experiments and show estimated
numbers of transcripts (y-axis) and true ones (x-axis). Positions on the x-axis
are slightly shifted to facilitate visualization. Diagonal lines are shown; the fit is
good when the line passes through the credibility interval. The inset in (A)
shows the posterior probability density of the number of transcripts for a gene
with estimated 5.8 · 107 mRNA molecules (mode) and its 95% credibility
interval. The data in (A) were used to determine the hybridization factor, which
was found to be 4.31 · 10
10. Analysis of the data in (B), using the hybridiza-
tion factor from (A) showed a strong concordance between the two estimates,
although the numbers of transcripts were slightly underestimated.

e143 Nucleic Acids Research, 2005, Vol. 33, No. 17 PAGE 6 OF 13

http://


single dye–swap. The accuracy of these estimated concentra-
tions depends on the number of spots available for each gene.
The standard deviation of the log-concentration for each of
the 10 157 genes and ESTs in the 12 cervix tumours ranged

between 3.6 and 9.82. The corresponding coefficient of vari-
ation ranged between 0.53 and 1.059. There were only 217
genes with a coefficient of variation >1. This shows that our
confidence intervals have a good precision.

A

B

Figure 3. qRT-PCR validation of the methodology to estimate absolute numbers of transcripts. Transcript concentration (number of transcripts per mg total RNA) of
10 157 genes and ESTs in 12 cervical tumours and a pool of 10 cancer cell lines was determined with our technique. Our estimated concentrations and the standard log-
ratio data of eight genes covering the whole concentration range were plotted against the corresponding data achieved with qRT-PCR in (A) and (B), respectively.
TBP was used as endogenous control of the qRT-PCR data. The data in (A) show a strong correlation between our estimates and the qRT-PCR data (r ¼ 0.79,
P < 0.0001, Pearson product moment correlation for all points). There was also positive correlation, sometimes significant, for some individual genes, despite a
limited concentration range (r ¼ 0.81, P ¼ 0.0007 for CSTA; r ¼ 0.71, P ¼ 0.007 for CCND1; r ¼ 0.50, P ¼ 0.09 for HK2; r ¼ 0.48, P ¼ 0.1 for PDK2). The
correlation remained if each estimated concentration was first normalized dividing it with the corresponding estimated concentration of TBP in the same sample and
then plotted against the qRT–PCR data, since the estimate concentrations of this gene differed little among the tumours (P < 0.0001, data not shown). In (B), the cell
line data served as a reference sample. The log-ratios in (B) were calculated relative to the intensities measured for the cell lines. All intensities were first normalized,
using standard lowess normalization. There was also a significant correlation between these data and the qRT-PCR data (r ¼ 0.77, p < 0.0001) which seemed mainly
to be due to the highly expressed CSTA. Analysis of individual genes showed a significant correlation only for HK2 (r ¼ 0.58, P ¼ 0.05). Many genes with highly
different concentration estimates (A) had similar standard log-ratio expressions (B). The concentrations can be compared directly between tumours and genes,
whereas the log-ratios can be compared only between tumours for the same gene since their values depend on the transcript level of the reference sample.
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Biological variability between the 12 cervix tumours is
described by the spread of the estimated concentrations.
These could differ with a factor 10–100 between tumours
(Figure 5), consistent with a large heterogeneity in the molecu-
lar composition even among tumours of the same histological

type (23). In Supplementary Figure 3A we present low abund-
ant transcripts. There was comparable heterogeneity on log-
scale for genes with low and high concentration. Background
corrected data are displayed in Supplementary Figures 2 and
3B. The high precision in our estimates enabled us to identify

Table 1. Genes of high transcript concentration in cervix cancer

HUGO Gene
symbol

Cervix tumour
mean (·109)

Lower limit
conf. int. (·109)

Upper limit
conf. int. (·109)

Probability
in top 20

Reporter
ID number

Gene ontology
information

Genes of high transcript concentration in cervix cancer
TMSB4X 9.05 7.71 9.33 1 868368 Growth
HLA-A 7.83 5.54 8.16 1 853906 Immune response
S100A8 7.02 4.61 7.43 1 562729 Immune response
HLA-C 6.76 4.90 7.07 1 810142 Immune response
KRT5 5.68 3.56 5.97 1 592540 Unknown
KRT19 5.22 3.12 5.68 1 810131 Unknown
S100A2 5.02 2.47 5.57 0.98 810813 Unknown
FABP5 4.85 2.47 5.73 0.99 281039 Growth
IGLC2 4.45 3.98 4.63 1 66560 Immune response
RPS16 4.27 3.40 4.44 1 853151 Metabolism
701677 3.62 1.74 4.36 0.89 Unknown
RPS27A 3.47 2.50 3.67 0.99 877827 Unknown
IGHG1 3.38 2.04 3.60 0.94 289337 Unknown
S100A10 3.11 1.92 3.28 0.89 756595 Unknown
753862 2.97 1.92 3.15 0.88 Immune response
LAMR1 2.91 1.97 3.14 0.89 884644 Cell communication

Signal transduction
ITGA3 2.89 1.57 3.54 0.76 755402 Cell communication

Signal transduction
207029 2.83 1.97 3.02 0.86 Unknown
TRAM2 2.73 1.56 4.00 0.77 207550 Growth
CPA4 2.36 1.22 3.05 0.48 359285 Growth

Metabolism

Mean transcript concentration (number of transcripts permg total RNA) based on 12 tumours, lower and upper limit of the 95% confidence interval and the probability
to be among the 20 genes with highest transcript concentration are listed. Background was very low and intensities were hence not corrected for this. Genes or ESTs
without symbol are indicated by their probe identification number.
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Figure 4. Posterior probability density of transcript concentrations (number of transcripts per mg total RNA) for cancer cell lines (black) and cervix cancer (red). The
data of 10 157 genes and ESTs were included, and the calculations were based on a pool of 10 cell lines and 12 cervix tumours. The median value of each distribution is
shown as a vertical line and was slightly higher for the cell lines than for cervix cancer. Both distributions were skewed towards higher values, and less abundant
transcripts were more frequent than high abundant ones.
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significant differences in the transcript concentration of many
genes between individual tumours that were consistent with
differences in qRT-PCR data, as demonstrated for the MYC
gene in Figure 6. The biological heterogeneity was also reflec-
ted by differences in the median concentration of all tran-
scripts, ranging from 6.00 · 106 to 2.31 · 107 transcripts
per mg total RNA in the 12 tumours (data not shown).

Our method allows us to compare the transcript concentra-
tion of different genes within a single sample. The accuracy
was high enough for detection of significant differences within
individual tumours, differences that were consistent with
qRT-PCR data. This is exemplified in Figure 7, showing

the transcript distribution of the cell cycle control genes
CCND1 and CDK4, both involved in regulation of the G1

phase of the cell cycle. Similar analyses were also performed
on groups of genes for the cell lines and tumour population.
The genes involved in communication, growth and signal
transduction were selected from gene ontology databases
using the GoMiner software (24), and the transcript distribu-
tions were compared among the ontology groups (Figure 8).
The distributions were skewed towards higher values for all
groups of genes and only minor differences in the form and
median values were observed. The skewed form and broad
concentration range are therefore general characteristics that
are valid also for relatively large subgroups of genes involved
in a specific biological process. We found, however, that the
relative frequency of highly concentrated transcripts was
larger in the selected groups than in the entire set of genes.

DISCUSSION

We have developed a method for estimating precisely the
transcript concentration of individual genes directly from spot-
ted microarray intensity data. The method allows to compare
concentrations of different transcripts within and between
single tumours, which opens for new insight into transcript
dosage and pathway regulation. In contrast, standard ratio
estimation only allows comparison of the same transcript
between two tumour samples.

The method is generally applicable, since the information
about each microarray experiment required to achieve satis-
factorily accurate estimates is easily available, though cur-
rently rarely made public. We encourage experimenters to
make all data describing the experimental procedure available,

Figure 5. Transcript concentration (number of transcripts permg total RNA) for
10 genes in cervix cancer with highest estimated mean concentration. Each
point represents the estimated value of a single tumour, showing large differ-
ences in transcript concentration among the tumours. The within gene range
(max–min) varies from 10 (TMSB4X; C4A) to 100 (S100A2; MAG).

Log10 of number of transcripts per microgram total RNA
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Figure 6. Posterior probability density of the transcript concentration (number of transcripts permg total RNA) for the oncogene MYC in two different cervix tumours.
The mode of this density is the estimated concentration as listed at http://www.nr.no/pages/samba/area_emr_smbi_transcount. There was a significant difference
in the concentration between the tumours (P < 0.001, Kolmogorov–Smirnov test). The qRT-PCR data (relative to TBP) were 0.24 for MM14 and 0.023 for MM18,
in agreement with our estimates.
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submitting both channels separately, scanning parameters
and measures of probe quantity to public repositories for
microarray data like Arrayexpress (http://www.ebi.ac.uk/
arrayexpress/), GEO and Cibex (http://cibex.nig.ac.jp/index.
jsp). Since spotted microarrays are a widespread technology,
our method will then facilitate the introduction of novel
approaches to the study of the transcriptome.

Our method is based on four main ideas: we incorporate an
extended number of covariates compared with other models
(7); we treat unequal number of replicates per gene; we use the
binomial process, which better depicts experimental dynamics
and allows for estimation of the critical parameters b0, bg and
aCy3/aCy5; and we avoid normalization and imputation of
missing values and build a bottom-to-top coherent stochastic
model, fully propagating uncertainty. These elements were
crucial for achieving reliable estimates of transcript concen-
trations. In datasets based on known transcript concentrations
we demonstrated a high accuracy of our estimates, especially
at intermediate concentrations. Our results were better than in
Dudley et al. (14), which reported a significant discrepancy
between estimated and true concentrations both at intermedi-
ate and lower levels. The accuracy was in fact comparable with
that achieved from methods based on in situ synthesized arrays
(16,17), despite this technology uses standardized manufac-
turing and hybridization, so that probe specific biases are
highly reproducible and predictable (25). Moreover, in data-
sets based on cervix tumours and cancer cell lines we found
concentrations ranging from 105 to 1010 transcripts per mg total
RNA. Assuming an RNA content of �1 mg per 105 cells (26),
this corresponds to a range of 1–105 transcripts per cell. Pre-
viously published data of transcript numbers in humans are
scarce. Zhang et al. (27) reported numbers ranging from 1 to

5300 per cell in human cancers, as determined by SAGE.
However, higher numbers, up to 30 000 transcripts per cell,
have been reported for genes in the mouse liver (13,28), mak-
ing the number of 105, estimated for the highly abundant genes
in our study, plausible. The skewed form of the transcript
distributions observed in our work is also in agreement
with earlier reports (27), and may be caused by underestima-
tion at low concentrations, since the corresponding weak spots
on the array are more frequently excluded than the bright ones.
Comparison of our estimates and standard log-ratios with
qRT-PCR data for a limited number of genes suggested that
our estimates were more reliable than the ratios in reflecting
the transcript levels. Discrepancies between microarray and
PCR data have been reported with worries in previous studies
(29). Our approach overcomes some of these difficulties,
extracting information from microarray data that are more
compatible with PCR results. Note that standard qRT-PCR
itself does not provide accurate absolute expression levels
(30). The accuracy of our method was high enough to detect
significant differences in the transcript concentration within
individual tumours as well as between tumours, differences
that were consistent with qRT-PCR data. Our estimates there-
fore reliably revealed true transcript concentrations with
satisfactory precision.

There are limitations of our methodology. Cross-
hybridization and unspecific binding are not taken into
account, and possible splice-variants for some of the genes
or degree of homology between probe sequence and RefSeq
sequence have not been considered. Currently, no analysis
tools for microarray data are addressing these aspects.
Other covariates could easily be included in our model
when available, such as target length and labelling efficiency,
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Figure 7. Posterior probability density of the transcript concentration (number of transcripts permg total RNA) for the cell cycle control genes CCND1 and CDK4 in a
cervix tumour. Both genes are involved in the G1 phase of the cell cycle. The mode of this density is the estimated concentration as listed at http://www.nr.no/pages/
samba/area_emr_smbi_transcount. There was a significant difference in the concentration between the genes (P < 0.001, Kolmogorov-Smirnov test). The qRT-PCR
data (relative to TBP) were 0.013 for CCND1 and 4.12 for CDK4, in agreement with our estimates.
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probably leading to higher accuracy in the estimates. Of
importance is also the slow convergence of the currently
implemented MCMC algorithm. Results can require up to a
few days of computation time. Our software may require
some ad hoc implementation, specific to new datasets and
covariates.

A major advantage of our model is that it can be directly
applied on one or multi-colour experiments and on data from
spotted oligoarrays, using base composition of the probes
as covariates rather than the probe length. Moreover, the

hierarchical structure enables integration of biological infor-
mation about the samples, such as patient survival data, and
known interactions between genes, in a coherent Bayesian
setting. If the mRNA weight is not available, and significant
variability in the proportion of mRNA in total RNA is sus-
pected, or if the hybridization factor is not available, it is
possible to scale each sample so that the sum of estimated
transcripts are equal. Direct comparison of such scaled con-
centrations is still possible between and within samples, but
the interpretation as absolute concentrations is lost.
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Figure 8. Posterior probability densities of transcript concentrations (number of transcripts per mg total RNA) of genes known to be involved in communication
(green), growth (orange) and signal transduction (blue) for cancer cell lines (A) and cervix cancer (B). The calculations were based on a pool of 10 cancer cell lines and
12 cervix tumours. The number of genes in each functional group is indicated. Some genes were shared by the groups. The distribution of all 10 157 genes and ESTs is
also shown (black). All distributions were skewed to the right and had similar median values.
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Our method possesses several further beneficial features. No
normalization and imputation of missing values is needed. Our
model performs automatically unsupervised normalization,
very similarly to ANOVA based methods (11), since the
main factors are present in Equation 1; we incorporate expli-
citly more sources of variability, including scanning. Current
normalization methods are often platform-dependent and
based on hypotheses on the gene expressions difficult to
test. Misuse of normalization is rather common in practice
(31). The need for balanced designs, also for linear mixed
effect models (11), often leads to discarding genes or requires
imputation of missing values. Current methods for imputation
fail if the missing mechanism is not at random or if the level of
missing exceeds 20% (32). Our method does not impute miss-
ing values but can directly handle unbalanced datasets.

Another characteristic of our method is that few constraints
are imposed on the experimental design. The reference design
is common because it allows in-house re-utilization of results.
However, it requires stable reference samples, it leads to low
statistical power, while the reference is uselessly measured
many times (33). Our method allows for re-utilization of res-
ults without the need of a reference. Thus it opens for new
possibilities of meta-analyses (34). Such analyses are currently
built on top of statistical tests to detect differential expressions
(35,36). Since the result of these tests may depend on experi-
mental protocol and microarray platform, bias may lead to
wrong conclusions. With our method, data from different
studies can be combined at the basic level of transcript con-
centrations, regardless of whether studies use amplified or
non-amplified starting material, cDNA or oligonucleotide
platforms. By making more experimental information public
available, such as spot intensities and standard deviations of
each channel, scanner settings and measures of probe quantity
and sequence length, all microarray data can be re-used in new
investigations, leading to a better exploitation of the data and
more precise results. In particular, our method may contribute
to new insight into the regulation of pathways and be useful in
the development of improved therapeutic strategies in which
knowledge of the absolute concentrations is directly utilized.

SUPPLEMENTARY DATA

Supplementary data is available at NAR online.
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