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MOTIVATION Optogenetics is a powerful tool for investigating memory circuit function in vivo. However,
themethod of delivering optical pulses tomanipulate neurons andmemory replay has been largely confined
to square pulses. A few studies have demonstrated the impact of pulse shape and amplitude on neural
response, but a lack of systematic characterization has limited the innovative use of pulse shape in exper-
imental design. Our study aims to provide a computational approach for assessing waveform options in
advance of in vivo experimentation.
SUMMARY
Optogenetic manipulation of hippocampal circuitry is an important tool for investigating learning in vivo.
Numerous approaches to pulse design have been employed to elicit desirable circuit and behavioral out-
comes. Here, we systematically test the outcome of different single-pulse waveforms in a rate-based model
of hippocampal memory function at the level of mnemonic replay extension and de novo synaptic weight for-
mation in CA3 and CA1. Lower-power waveforms with long forward or forward and backward ramps yield
more natural sequence replay dynamics and induce synaptic plasticity that allows for more natural memory
replay timing, in contrast to square or backward ramps. These differences between waveform shape and
amplitude are preserved with the addition of noise in membrane potential, light scattering, and protein
expression, improving the potential validity of predictions for in vivo work. These results inform future opto-
genetic experimental design choices in the field of learning and memory.
INTRODUCTION

The development of optogenetic techniques allowing milli-

second timescale manipulation of neural dynamics in genetically

targeted populations has fundamentally advanced the field of

systems neuroscience (Boyden et al., 2005; for a review, see

Fenno et al., 2011). These tools are now readily available and

well tested, even under the variability inherent to in vivo condi-

tions from sources such as protein expression levels and light

scattering by tissue (Zhang et al., 2006; Zhao et al., 2008; Gradi-

naru et al., 2008). However, the optogenetic research community

has yet to fully characterize the impact of stimulation parameter

choice in order to optimize experimental circuit manipulations.

Understanding the significance of pulse selection on circuit

behavior will inform future optogenetic experiments and perhaps

eventually therapeutic strategies (Okonogi and Sasaki, 2021).

The use of varying optogenetic pulse designs in the hippo-

campus (HPC) has shed new light on learning, memory, spatial

navigation, and prospective planning. Continuous, long-dura-
Cell R
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tion square pulses in the HPC inhibit behavioral expressions

of memory (Denny et al., 2014) and disrupt spatial working

memory relying on HPC-prefrontal cortex transmission (Spell-

man et al., 2015). Closed-loop optogenetic inhibition of CA1

at different phases of the theta rhythm alters spatial working

memory, supporting theories of HPC encoding and retrieval dy-

namics (Siegle and Wilson, 2014). However, only one recent

in vivo study sought to directly assess the impact of optoge-

netic waveform design on HPC-mediated behavior. The 8 Hz

sinusoidal stimulation of ventral HPC terminals in prefrontal

cortex drives avoidance behavior in mice, but not 2, 4, or

20 Hz sines or square pulses of any frequency (Padilla-Coreano

et al., 2019). These studies highlight a clear need to better char-

acterize waveform design options, a question to which compu-

tational modeling is suited.

The CA3 subregion of the HPC has been used extensively as a

model for learning and pattern recollection processes due to its

sparse recurrent excitatory feedback architecture (McNaughton

and Morris, 1987; Treves and Rolls, 1994; Hasselmo et al., 1995;
eports Methods 2, 100208, May 23, 2022 ª 2022 The Author(s). 1
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Malerba et al., 2017; Malerba and Bazhenov, 2019). This

anatomical structure is hypothesized to allow rapid encoding

of distinct memories and stable recall through sharp-wave rip-

ples (SPW-Rs). SPW-Rs are high-frequency oscillations initiated

from combined activity in CA3 pyramidal neurons projecting to

the CA1 subregion of the HPC that appear to contribute to recall

and consolidation of recent memories as well as forward plan-

ning (Buzsaki, 1986; Girardeau et al., 2009; Ego-Stengel andWil-

son, 2010; Pfeiffer and Foster, 2013; Roux et al., 2017; for a

review, see Buzsaki, 2015). Ensembles of CA1 pyramidal neu-

rons show consistent sequential reactivation during SPW-Rs

that recapitulate recently experienced spatial trajectories in

maze environments in a phenomenon termed ‘‘replay’’ (Lee

and Wilson, 2002; Foster and Wilson, 2006). CA3 ensemble ac-

tivity is similarly capable of ordinal spike sequences (Karlsson

and Frank, 2009; Carr et al., 2012), and recent evidence suggests

this may bias sequence direction of CA1 replays (Wang et al.,

2020; Ishikawa and Ikegaya, 2020). Therefore, understanding

the impact of optogenetic pulse design on circuit dynamics of

HPC learning and memory will improve experimental design for

future in vivo studies of memory.

The conversion of optical pulses to neuronal spiking in vivo is

non-linear. CA3 and CA1 pyramidal cells exhibit spike fre-

quency adaptation during prolonged input of sufficient strength

(Madison and Nicoll, 1984; Lancaster and Nicoll, 1987; Scharf-

man 1993; Buckmaster et al., 1993; Hemond et al., 2008). The

use of optogenetics to excite cells also results in adaptation in

the opsin response (Boyden et al., 2005), although this form of

adaptation has not been extensively studied. In voltage clamp,

adaptation of the inward current induced by opsin activation

has first-order dynamics with a time constant similar to the

adaptation of firing rate caused by current injection. These con-

siderations inform predictions of membrane activity during op-

tical pulses.

We investigated the importance of optogenetic pulse param-

eters using rate-based computational models of ordinal

sequence generation in hippocampal CA3 and CA1. To

constrain the potential search space, we focused on single

pulses of varying shape, hereafter termed waveform class

(WFC). We elected to test square, single-ramp, and double-

ramp pulses based on prior in vivo studies investigating ripple

generation, ripple prolongation, and place-field manipulation,

respectively (Stark et al., 2015; Fernandez-Ruiz et al., 2019;

McKenzie et al., 2021). To account for spike frequency adapta-

tion, all models presented here included an adaptation param-

eter that decreased membrane responsivity to prolonged input.

Various contributions of noise and optogenetic response het-

erogeneity were also tested. Last, we investigated the influence

of waveform shape on novel sequence learning in CA3 inspired

by studies of artificial place-field induction (Diamantaki et al.,

2016, 2018; Bittner et al., 2017). We found that different wave-

forms had variable impacts on circuit behavior, depending on

the mnemonic feature investigated in each model. In particular,

forward ramps were particularly suited to extending ongoing

sequences, while square pulses disrupted these dynamics.

Our results support the need for careful consideration of opto-

genetic pulse shape, amplitude, and duration to optimize

desired circuit manipulations in vivo.
2 Cell Reports Methods 2, 100208, May 23, 2022
RESULTS

Forward ramps prolong CA3 replay while preserving
temporal sequence
Prior studies have employed non-square pulses to evoke or pro-

long mnemonic behavior at the circuit level (Padilla-Coreano

et al., 2019; Fernandez-Ruiz et al., 2019). To directly investigate

the impact of waveform shape on an ensemble-scale phenome-

non, we modeled a network capable of generating consistent

temporal sequences, or replays, similar to those seen during

SPW-Rs (Foster and Wilson, 2006). Pyramidal CA3 neurons

were connected with a forward bias, allowing activity of earlier

nodes to propagate forward, but not in reverse (Figure 1A). The

stimulation of pyramidal cell units included a calcium-mediated

potassium current, IK(AHP), that resulted in activity rate adapta-

tion, as has been noted in pyramidal cells of theHPC (Figure S1A;

MadisonandNicoll, 1984; Lancaster andNicoll, 1987;Scharfman

1993; Buckmaster et al., 1993; Hasselmo et al., 1995; Hemond

et al., 2008) and other cortical structures (Barkai and Hasselmo,

1994). Adaptation to non-square waveforms matching those

used in subsequent manipulations of replay was also simulated

(Figures S1B and S1C). To model in vivo optogenetic prolonga-

tion of SPW-R activity, a square, 20 ms cue pulse (‘‘cue’’) to the

first pyramidal node of the network was delivered to elicit a short

series of replay activations. Table 1 summarizes the parameter

set that was chosen such that fewer than half of the nodes

reached activity threshold under the cue pulse alone (Figure 1B).

The replay sequence was perturbed 150 ms after the cue

offset by a single pulse of external input delivered across all py-

ramidal neurons, modeling optogenetic manipulations common

to closed-loop in vivo studies. Many combinations of input dura-

tions andwaveform shapes yielded a full sequence retrieval of 15

nodes (Figure 1F). The specific 150ms post-cue delay was found

to elicit the longest replay sequences with minimal disruption

across a number of input durations (Figure S2). Two general

types of waveform shapes were tested: squares (0% ramp) or

ramped (Figure 1C). Ramps were further divided between for-

ward (FR; Figures 1Ci and 1Civ), double (DR; Figures 1Cii and

1Cv), and backward ramps (BR; Figures 1Ciii and 1Cvi). Finally,

two different amplitudes were tested for each waveform, iso-

max-amplitude (IMA; Figures 1Bi–1Biii) and iso-power (IP;

Figures 1Biv–1Bvi), relative to the template square pulse.

The parameters of waveform duration and ramp percentage

were varied systematically across each of the waveform classes

of square, FR, BR, and DR and IMA and IP pulses (Figure 1C).

Figure 1D (top) shows an example of a square pulse (0% ramp)

capable of prolonging the replay sequence by bringing all later

nodes above the threshold. Ramp waveforms were also capable

of prolonging the replay sequence in full (Figures 1Di–1Dvi).

When delivering ‘‘optogenetic’’ pulses across the network to

prolong replay activity, early threshold-crossing nodes were

not reactivated due to feedback inhibition from the recruited in-

terneurons (Figure S3). A full search of the parameter space

along the axes of waveform duration (0–250 ms) and ramp per-

centage (0%–100% ramp) was made for each waveform class

(Figure 1E).

To determine the efficacy of different waveforms at prolonging

replay, the average sequence length generated under each
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Figure 1. Forward ramps prolong CA3 replay while preserving temporal sequence

(A) Left: network connectivity diagram of the CA3 ripple extension model. For clarity, only recurrent connections from the first node are diagrammed. See STAR

Methods for full description and Table 1 for parameters. Right: summary of the synaptic weight matrix,Wij, which employs a limited forward bias such that activity

is able to propagate to nearby forward nodes. Weight strength decays linearly on the diagonal to reflect weaker involvement of more distal sequence nodes.

(B) Control replay event evoked by 20 ms square cue pulse (black) without an additional waveform. Blue through magenta lines indicate successive pyramidal

node activations. Black triangles indicate threshold crossing points.

(C) Example optogenetic inputs with 50% ramp percentage delivered to the network, each starting with the same 20ms cue pulse (yellow). (i) FR IMA, (ii) DR IMA,

(iii) BR IMA, (iv) FR IP, (v) DR IP, (vi) BR IP.

(D) Example simulations using 100 ms pulses and 50% ramped waveforms to prolong ongoing ripple activity. Red through yellow lines represent successive

pyramidal node activations. Black triangles indicate threshold crossing points after the onset of the secondary optogenetic pulse (gray shade). Each waveform

corresponds to the example pulse delivered in (C).

(E) Parameter space characterization of ramp percentage and input duration of different WFC. Each panel corresponds to the WFC pictured in (C). Heatmaps

represent degree of temporal disruption (effect size) of the interthreshold-interval (IThI) away from the IThI of the control sequence.

(F–I) Quantifications of WFC impact on ripple prolongation across ramp percentages. WFC lines as follows: red, FR; dark blue, DR; light blue, BR; solid, IMA;

dashed, IP. Gray bands indicate 95% confidence intervals around mean of a 1,000-sample shuffle in (F) and (I).

(F) Mean replay sequence length (number of suprathreshold nodes) obtained from a shuffle of the simulations in (E).

(G) Minimum temporal disruption.

(H) Shortest pulse duration achieving the minimum temporal disruption displayed in (G).

(I) Mean temporal disruption.

Abbreviations: FR, forward ramp; DR, double ramp; BR, backward ramp; IMA, iso-max amplitude; IP, iso-power; P, pyramidal node; I, interneuron node, WFC,

waveform class.

See also Figures S1–S3.
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Table 1. CA3 ripple extension model parameter summary

Parameter Meaning Value

Acue cue pulse strength 1

A afferent pulse max amplitude 0.09 or *

P pyramidal membrane potential *

W recurrent weight matrix 0.036 max

W0 feedforward excitation 0.05

I interneuron membrane potential *

H feedback inhibition 0.035

H0 recurrent inhibition 0.003

h passive decay rate 0.01

qP pyramidal linear threshold 4

qI interneuron linear threshold 4

qA activation threshold 10

T simulation duration (ms) 1,000

C Ca2+-current strength *

m K+-current strength 0.01

g voltage-dependent

Ca2+-current strength

0.001

u weight matrix ceiling 0.001

qC calcium linear threshold 4

Ek reversal potential of K+ �10

Related to Figures 1, 2, and S1–S6. An asterisk indicates a parameter that

varied during the simulation, such as the instantaneous estimation of the

neuron’s membrane potential. For the auto-recurrent weight matrix, W,

the value indicated is the highest strength for auto-recurrent excitation.

Forward connection to the next node was half as strong and one-quarter

as strong as the second following node. All other connections were 0 (see

Figure 1A). The values for C, m, g, u, qC, and Ek were used as the adapta-

tion parameters in all models (see Equation 3).

Resource
ll

OPEN ACCESS
waveform shape and ramp degree was found using a shuffling

procedure (Figure 1F; n = 1,000 samples). On average, all pulses

prolonged the sequence by recruiting additional neurons beyond

the seven active nodes recruited by the cue pulse alone (Fig-

ure 1B). Most pulses fully extended the sequence to the 15

node maximum. There was a small improvement in sequence

length using IP waveforms compared with matching IMA ramps

(Figure 1F [dashes versus solids]). The DR and BR (dark and light

blue) outperformed the FR waveforms by producing slightly

longer sequences on average.

Replay sequences are important for memory consolidation

and expression (Girardeau et al., 2009; Ego-Stengel and Wilson,

2010; Roux et al., 2017). We hypothesized that reproducible

ordinal relationships between neuronal activity are an important

component to memory recall. Therefore, the average temporal

difference between consecutive nodes reaching the activity

threshold, or interthreshold interval (IThI), was used as a metric

to quantify temporal reproducibility of the replay. For each simu-

lation, a measure of the temporal disruption (effect size, Cohen’s

d) was calculated between the IThI of the control and the IThI of

the waveform class manipulation. Lower effect size indicates

lower disruption of the natural sequence timing by the optoge-

netic pulse.
4 Cell Reports Methods 2, 100208, May 23, 2022
Waveform shape, pulse duration, and ramp degree all had an

impact on the level of temporal disruption away from control (Fig-

ure 1E). Below a certain input duration, no pulse was capable of

prolonging the replay activity (lowest input duration rows in Fig-

ure 1E). Darker bands indicate optogenetic pulse duration/ramp

percentage combinations that yielded minimal sequence timing

disruption. Figure 1G summarizes the smallest temporal disrup-

tion at each ramp degree for each waveform class. A non-signif-

icant trend for higher ramp percentage and lower minimum

disruption was found for each IMA pulse shape (Figure 1G [solid

lines]). Among the IP pulses, there was a small, negative correla-

tion between ramp degree andminimum disruption under the FR

(red dashed: r = �0.58, p = 0.006), a positive correlation under

the DR (red dashed: r = 0.46, p < 0.038), and no correlation under

the BR. These results (Figure 1G) indicate that parameters could

be found across ramp degrees and input durations that sup-

ported extended sequences similar to the control activation

timing, with only a minor effect of some waveform shapes on

this outcome.

The pulse duration yielding this lowest temporal disruption

was also calculated (Figure 1H). Among the IMA pulses, all had

a positive correlation between ramp percentage and pulse

length of minimum disruption (FR, r = 0.83; DR, r = 0.91; BR,

r = 0.82; p < 0.001 for all), indicating that longer pulses were

necessary to achieve better temporal sequence prolongation.

IP ramp waveforms maintained this trend for forward and back-

ward ramps (FR, r = 0.86, p < 0.001; BR, r = 0.62, p = 0.002) and

identical lowest pulse duration for the DR condition (Figure 1H

[dashed]). These results suggest that longer duration ramping

pulses are required to achieve more natural sequence

prolongation.

To test the average capacity for each pulse shape and ramp

percentage to prolong replay behavior with minimal IThI distur-

bance, an effect size curve was calculated. The average of a

random shuffle with replacement across input durations was

taken for each ramp percentage (Figure 1I; n = 1,000 samples).

IMA ramps (Figure 1I [solid]) tended toward lower average

sequence disturbance (lower effect size) than their IP counter-

parts (Figure 1I [dashed]), especially at higher ramp percent-

age. FR waveforms also tended to preserve sequence dy-

namics better than DR waveforms. Both FRs and DRs

disturbed the sequence timing far less than BR waveforms.

These timing disturbance trends are consistent with the visual-

ization of the search space in Figure 1D, which demonstrates

dark, ‘‘wedge-like’’ regions of low perturbation in the IMA

waveform class panels (i–iii), especially the FR and DR shapes.

Similar patterns of timing disruption as a function of waveform

shape and ramp degree were found for the interneuron popula-

tions (Figure S3).

These manipulations of replay-like sequence activation in a

CA3-circuit model demonstrate the impact of optogenetic

pulse shape on the temporal reliability of ensemble-scale phe-

nomena. All waveform classes could dramatically extend the

sequence beyond the control. IP waveforms of any shape

tended to disrupt sequence timing except at very short input

durations (Figure 1E). Highly ramped waveforms with lower

amplitude have larger duration windows to achieve natural

replay timing (Figure 1E).
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Differential effect of waveform shape on CA3 replay
extension remains despite heterogeneity of optogenetic
stimulation
One of the greatest strengths of optogenetics is its utility in vivo,

but real experimental conditions are characterized by heteroge-

neity, which leads to variability of neural responses.We therefore

sought to challenge the above model by implementing several

potential sources of variability or ‘‘noise,’’ including light scat-

tering by tissue, opsin protein expression efficiency, and variable

membrane state of the neurons (Figure 2A).

First, the position of the pyramidal units in the replay exten-

sion model was randomly determined in a 3D CA3 pyramidal

layer (STAR Methods; Hussein and George, 2009; Jinno and

Kosaka, 2010; Öz and Saybasxılı, 2017). The distance from a

simulated laser source above the layer determined whether

each node received sufficient light or whether light scattering

imposed a distance penalty on the optogenetic drive to indi-

vidual neurons. Without other noise sources, similar outcomes

between ramp degree and mean temporal disruption and

replay sequence length were found in these simulations for

all waveform classes, assuming a source output of 10 mW

(Figure S4D; Redondo et al., 2014; Chen et al., 2019). Lower

source outputs produced similar outcomes in most waveform

classes.

Modern opsins have been designed to optimize high expres-

sion efficiency without overexpression, which can lead to dele-

terious intracellular aggregations (Gradinaru et al., 2008; Zhao

et al., 2008). Even so, some variability in optimal protein expres-

sion, dependent on factors such as the promoter, must be

assumed (Zhang et al., 2006). We therefore calculated an

expression efficiency for each neuron based on a random

normal distribution (see STAR Methods). In the absence of

other noise sources, protein expression variability yielded

shorter replay sequences and higher temporal disruption as a

function of protein expression variance, although the overall

correlations to ramp degree were preserved for all waveform

classes (Figure S5D).

Another source of variability, fluctuations in the membrane

voltage, was modeled by the addition of white noise inputs of

varying amplitude. This noise could depolarize or hyperpolarize

the membrane voltage of a node prior to the replay cue and

throughout the replay, allowing examination of replay extension

stability under noisy membrane conditions. Without other vari-

ability sources, replay extension by various optogenetic

waveform classes was affected by membrane voltage noise as

a function of the white noise amplitude (Figure S6). At low noise

amplitude, minor increases in the temporal perturbation were

observed for all waveform classes, while at very high amplitude,

the effect of waveform class and ramp degree on sequence reli-

ability was abolished (Figure S6D). Replay sequence length was

largely unchanged by noise amplitude.

Combining these sources of response variability, we tested

the same optogenetic waveform classes on replay extension in

the CA3 model under more experimentally relevant conditions.

Despite the addition of light attenuation through tissue, variability

in protein expression efficiency, and membrane activity fluctua-

tions, the control replays and outcomes of replay extension ap-

peared minimally affected under most simulations (Figure 2B). A
full characterization of the search space of ramp degree and

input pulse duration was conducted for each waveform class

(examples of FR IMA and IP waveforms; Figures 2C and 2D).

The addition of noise yielded a correlation between ramp degree

and minimum temporal disruption in the FR IMA (r = �0.48, p =

0.027) and DR IP (r = 0.44, p = 0.045) shapes, but no other signif-

icant correlations. However, the mean of the shuffled temporal

disruptions revealed similar dissociations between waveform

classes across ramp degrees as in the noiseless model (Fig-

ure 2E versus Figure 1I). Lower-amplitude IMA waveforms

caused less temporal perturbation (Figure 2E), but shorter se-

quences (Figure 2F), compared with IP waveforms of the same

shape, as a function of ramp degree. Under noisy conditions,

DR and BR IMA waveforms performed more similarly. As in the

noiseless model, FR IMA waveforms yielded minimum temporal

disruption with modest replay extension length, especially at

longer ramp degrees. Therefore, the model predictions for

different waveform classes remain broadly similar under the

tested sources of variability.

Low-amplitude forward ramps optimally prolong replay
in CA1
CA3 activity during sharp waves contains sequential information

(Karlsson and Frank, 2009; Carr et al., 2012), but the preponder-

ance of studies investigating SPW-Rs have been carried out in

the CA1 region. To confirm the impact of waveform shape on rip-

ple prolongation, we repeated the above waveform class, ramp

degree, and input duration searches in a model of region CA1 ar-

chitecture (Figure 3A; see Table 2 for parameters). Note that CA1

pyramidal cells had weak intra-areal connectivity to one another

but no auto-recursion (Deuchars and Thomson, 1996; Shepherd,

2004; Malerba and Bazhenov, 2019). A 15 node long replay was

cued by a 20 ms pulse in CA3 and propagated to CA1 by synap-

tic connections (Figure S7). Parameters were selected such that

a partial, eight-node replay was read out in the CA1 under the

cue pulse alone (Figure 3B). After a 150ms delay from cue offset,

a single waveform pulse was delivered to CA1 pyramidal cells to

prolong the sequence by enhancing the response to sequential

CA3 inputs (Figure 3C).

A parameter search on input duration and ramp degree was

performed for each waveform class (Figures 3C and 3D). Nega-

tive correlations between ramp degree and minimum temporal

disruption in CA1, indicating better timing preservation by longer

ramps, were found for all IMA waveforms (r for FR, �0.80,

p < 0.001; DR, �0.47, p = 0.031; BR, �0.49, p = 0.024), but for

only the FR IP waveform (r = �0.74, p < 0.001) A 1,000 sample

shuffle of input durations revealed the impact of waveform class

and ramp degree on CA1 replay extension. IP waveforms of all

shapes caused more temporal disruption to the optogenetically

prolonged sequence and recruited more nodes than their IMA

counterparts (Figures 3F and 3G), as found in the CA3 model.

Each of the IMA waveforms had a different degree at which the

average temporal disruption was minimized and sequence

length maximized (Figures 3F and 3G). The FR IMA waveform

optimal ramp degree occurred at 45% ramp, while the DR IMA

waveform performed best at 90%–100% ramp. The BR IMA

waveform disrupted the sequence least at 100% ramp, but mini-

mally extended the sequence beyond control at any ramp
Cell Reports Methods 2, 100208, May 23, 2022 5
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Figure 2. Differential effects of waveform shape on CA3 replay extension remain despite heterogeneity of optogenetic stimulation

(A) Illustration of different optogenetic heterogeneity components included in the simulation. (i) Randomneuron starting positions in 3D space relative to a light source

lead to suboptimal irradiance and lower gain on afferent optogenetic pulses for distal neurons. (ii) Opsin protein expression heterogeneity leads to inefficiency of

translating optogenetic pulses into membrane voltage depolarization. (iii) Example of low-amplitude white noise applied to each neuron throughout the simulation.

(B) Example replays in CA3 pyramidal neurons with noise and optogenetic response heterogeneity outlined in (A). (i) Control replay cued by a 20 ms pulse. (ii)

Replay extension by a 100 ms, 50% ramped FR IMA or (iii) FR IP pulse.

(C) Example parameter space searches of ramp percentage and input duration for the FR IMA WFC without noise (top row) and with all noise (bottom row). Left

column: heatmap color indicates temporal disruption (effect size) relative to control replay (Bi). Maximum value capped at 5 for comparison purposes. Right

column: heatmap color indicates total sequence length before and after optogenetic pulse.

(D) Same as (C) but for the FR IP WFC.

(E) Comparison of the mean temporal disruption for each WFC with all noise sources, across ramp degrees. Gray bands indicate 95% confidence interval of a

1,000-sample shuffle of input duration.

(F) Same as in (E) but for mean sequence length. Abbreviations: FR, forward ramp; DR, double ramp; BR, backward ramp; IMA, iso-max-amplitude; IP, iso-power;

WFC, waveform class.

See also Figures S4–S6.
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degree. These findings in CA1 are consistent with the observa-

tions in the CA3 model that lower-amplitude FR and DR wave-

forms best balance the trade-off of sequence reproducibility

and sequence prolongation length.
6 Cell Reports Methods 2, 100208, May 23, 2022
Low-amplitude waveforms induce novel sequence
learning capable of stable replay
Finally, inspired by recent investigations of place-field induction

(Bittner et al., 2017; Diamantaki et al., 2018; McKenzie et al.,
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(legend on next page)
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Table 2. CA1 ripple extension model parameter summary for

both CA3 and CA1 regions

Parameter Meaning Value

Acue cue pulse strength 1

A afferent pulse max amplitude 0.1 or *

Pi CA1 Pyr membrane potential *

PCA3r CA3 Pyr membrane potential *

W CA3 Pyr to Pyr weight 0.0331 max

W0 CA3 Pyr to CA3 IN weight 0.05

WZ CA3 Pyr to CA1 Pyr weight 0.02

WQ CA3 Pyr to CA1 IN weight 0.02

ZQ CA1 Pyr to CA1 IN weight 0.05

ZZ CA1 Pyr to CA1 Pyr weight 0.002

QZ CA1 IN to CA1 Pyr weight 0.045

Ik CA1 IN membrane potential *

H CA3 IN to CA3 Pyr weight 0.034

H0 IN recurrent inhibition 0.003

h passive decay rate 0.01

qP pyramidal linear threshold 4

qI interneuron linear threshold 4

q activation threshold 10

T simulation duration (ms) 1,000

Related to Figures 3 and S7. An asterisk indicates a parameter that varied

during the simulation, such as the instantaneous estimation of the neu-

ron’s membrane potential. Abbreviations: Pyr, pyramidal; IN, interneuron.
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2021) and the growing capacity of all-optical approaches to

observe and manipulate circuit function (Rickgauer et al., 2014;

Packer et al., 2015; Mardinly et al., 2018; Marshel et al., 2019),

we investigated the outcome of waveform class on inducing

novel sequence learning. A CA3 network was used as before,

but this time with no pre-formed weight matrix (Figure 4A; see

Table 3 for parameters). During the learn phase of the following

simulations a 15 element sequential optogenetic pattern was

presented once to the pyramidal cells of the network (Figure 4A

[right, yellow pulses]). Activity induced by the afferent optoge-

netic input pattern, A, drove auto-associative learning between
Figure 3. Low-amplitude forward ramps optimally prolong replay in CA

(A) Network connectivity diagram of the CA1 replay extension model. For clarity,

Methods for full description and Table 2 for parameters.

(B) Control replay event across regions CA3 and CA1 evoked by cue pulse. CA3

ramidals (cool colors) and interneurons (not shown) receive input from pre-syna

(threshold crossing times marked by black triangles).

(C) Example CA1 replay extension by various classes of optogenetic pulse deliver

are marked. Black line below each plot illustrates ramp input type and timing, no

(D) Heatmaps of parameter space searches of ramp degree and input pulse dura

Bottom: heatmap color indicates total replay sequence length of suprathreshold

(E) As in (D) but for IP waveform classes.

(F) Summary of mean temporal disruption across WFCs for CA1 replay extension

(G) Same as (F) but for mean sequence length (all suprathreshold nodes). Gray b

duration.

Abbreviations: OL, overlap; FR, forward ramp; DR, double ramp; BR, backward r

node; WFC, waveform class.

See also Figure S7.
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nearby pyramidal cells, but not more distal ones (Figure 4A, Wij

post-learn).

To study the impact of waveform shape on pattern learning,

square, FR, BR, and DR and IMA and IP pulses were used as

the input pattern elements (Figure 4C). The timing overlap (OL)

between one pattern element and the next was tested between

0% and 100% OL. Another set of simulations examined the

length of these pulses and found that 80 ms pulses yielded

new sequence learning over a range of OLs (Figure S8). After

one-trial learning, the capacity of the network to recall the pattern

was probed in the test phase using a square, 20 ms cue pulse

delivered to the first node of the network. Example test phase se-

quences using 80 ms pulses of 60% OL are presented in Fig-

ure 4D for each waveform class, including square (top), along

with the learned weight matrix that produced them (inset). Very

low pattern OL yielded minimal learning and singular node acti-

vations during the test phase across all pulse shapes.

Conversely, very high pattern OL caused oversaturation of syn-

aptic weights, leading to excessive self-excitation during the

test phase. We therefore restricted our analysis to the band of

OL percentage in which a dynamic range of learning occurred.

A number of metrics were used to analyze potential differ-

ences in sequence learning across ramp percentage and wave-

form shape. First, the average number of nodes above threshold,

or sequence length, for each ramp percentage was calculated.

Sequences of all lengths, between 1 and 15, appeared in the

test phase for all shapes, across all ramp percentages (Fig-

ure 4E). The average sequence length generated in the test

phase by a range of OLs was found using a shuffling procedure

(Figure 4G; n = 500 samples). IP ramps tended to produce longer

sequences compared with matching IMA waveforms. IMA

pulses managed to perform as well as the square pulse at all

ramp percentages in terms of sequence length. We also

observed that IP waveforms of any shape tended toward shorter

mean IThI than IMA waveforms (Figure 4H; n = 500 shuffle).

These findings of long sequence but short IThI interval raised

the possibility that those recalled sequences were temporally

compressed, as was observed in the ripple extension model.

We therefore assessed test phase replay activity against a

control sequence to gauge temporal sequence reproducibility

(Figure 4F). The control activations were generated using a
1

only recurrent connections from the central node are diagrammed. See STAR

pyramidal nodes (hot colors) generate a full, suprathreshold replay. CA1 py-

ptic CA3 pyramidals, generating a decaying replay sequence of eight nodes

ed 150 ms after CA3 replay onset. Only suprathreshold nodes after pulse onset

t to scale.

tion for IMA waveforms. Top: heatmap color indicates temporal perturbation.

nodes.

model.

ands indicate 95% confidence interval around a 1,000 sample shuffle of input

amp; IMA, iso-max-amplitude; IP, iso-power; P, pyramidal node; I, interneuron
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Figure 4. Low-amplitude waveforms induce novel sequence learning capable of stable replay

(A) Left: simplified connectivity diagram of the CA3 learning model. For clarity, only the auto-recurrent connections of the central node are pictured. See STAR

Methods for full details and Table 3 for parameters. Right: model phases and example optogenetic input patterns leading to weight change. Learn phase: the

uniform zero auto-recurrent matrix, Wij, is presented with a single pattern of temporally sequenced inputs and learns new synaptic weights. Test phase: pattern

replay is probed with a 20 ms square cue pulse.

(B) Left: control replay event evoked by cue pulse (black) using (right) a pre-formedweight matrix. Blue throughmagenta lines indicate successive pyramidal node

activations. Black triangles indicate threshold crossing points.

(C) Examples of learn phase optogenetic input patterns, Ai. Each pattern element had a total 80 ms duration, with variable shape, amplitude, and pulse OL (60%

OL pictured) with neighboring elements (red hatched box).

(D) Example test phase activity evoked by cue pulse. Red through yellow lines represent successive pyramidal activity resulting from the pattern encoded during

the learn phase (60% pulse OL), summarized in the Wij weight matrix (inset).

(E and F) Parameter space characterization across learn phase OL and ramp percentage. (E) Heatmaps of replay sequence length (number of suprathreshold

nodes) for eachWFC in (C). (F) Heatmap of temporal disruption of the interthreshold interval (IThI) away from the control sequence IThI (effect size) for eachWFC in

(C).

(G–J) Quantification of the WFC impact on pattern learning across ramp percentages. WFC lines are as follows: red, FR; dark blue, DR; light blue, BR; solid, IMA;

dashed, IP. Gray bands indicate 95% confidence intervals around mean of a 500 sample shuffle in (G), (H), and (J).

(G) Mean replay sequence length (number of suprathreshold nodes).

(H) Mean IThI (ms).

(I) Minimum temporal disruption.

(J) Mean temporal disruption.

Abbreviations: OL, overlap; FR, forward ramp; DR, double ramp; BR, backward ramp; IMA, iso-max-amplitude; IP, iso-power; P, pyramidal node; I, interneuron

node; WFC, waveform class. See also Figure S8.
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network with the same parameters as in the test phase, but using

a pre-formed weight matrix. The synaptic strength of this matrix

was chosen to enable a seven-node-long sequence activation

after cue pulse (Figure 4B). Our weight selection allowed for

combinations of ramp degree and OL that yielded high similarity

(low temporal disruption) to control replay timing across all

waveform shapes (Figure 4I). This choice was further validated
by in vivo literature indicating that themajority of SPW-Rs include

a finite number of place fields that tile less than the total potential

length of the learned spatial trajectory (e.g., the stem of a Tmaze;

Fernandez-Ruiz et al., 2019).

The IThI between serial node activations was again used to

quantify the temporal reproducibility of the test phase replay

sequence. First, the degree of IThI disruption between each
Cell Reports Methods 2, 100208, May 23, 2022 9



Table 3. CA3 learning model parameter summary

Parameter Meaning Value

Acue cue pulse strength 1

Ai learn pulse max amplitude 0.5 or *

P Pyr membrane potential *

B weight matrix ceiling 0.035

Wij auto-recurrent weight matrix 0.035 max

W0 feedforward excitation 0.05

I IN membrane potential *

H feedback inhibition 0.05

H0 recurrent inhibition 0.003

H passive decay rate 0.01

ε learning rate 0.001

cLearn acetylcholine level learn 0.1

cTest acetylcholine level test 1.0

qP Pyr linear threshold 4

qI IN linear threshold 4

qA activation threshold 10

TLearn learn phase duration 1,500

TTest test phase duration 1,500

Related to Figures 4 and S8. An asterisk indicates a parameter that varied

during the simulation, such as the instantaneous estimation of the neu-

ron’s membrane potential. The value of each connection in the auto-

recurrent weight matrix, W, was allowed to potentiate up to a ceiling

set by the parameter B during the learn phase (Figure 4A). Abbreviations:

Pyr, pyramidal; IN, interneuron.
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waveform manipulation and the control replay was calculated

(Cohen’s d effect size). The OL degrees achieving the minimum

sequence perturbation for each ramp percentage and waveform

class are summarized in Figure 4I. We observed a significant

negative correlation (Pearson’s r) between ramp percentage

and smallest sequence timing disruption in the DR IP waveform

(r = 0.57, p = 0.006) only. Finally, the average sequence timing

disruption for each ramp percentage was calculated using a

shuffle of OL percentage (Figure 4J), again restricted to OL per-

centages where dynamic response to learning input occurred. IP

waveforms tended to produce a higher average perturbation

regardless of OL percentage compared with IMA waveforms.

This finding complements our previous results in the ripple

extension model, once again emphasizing more disruption to

standard sequence timing with higher amplitude waveform

choices (Figures 4I and 4J).

Taken together, these findings support the hypothesis that

pulsed waveforms with longer ramps and lower power can

induce synaptic plasticity and allow for naturalistic recall after

single-trial learning. However, the range of pattern element OL

may be quite restricted in order to produce recognizable se-

quences during later recall.

DISCUSSION

This study employed a computational approach to investigate

the importance of optogenetic waveform parameter selection,
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or waveform class, on neural response in a hippocampal model

of memory. We employed a non-spiking, continuous rate model

of neural dynamics (Wilson and Cowan, 1972, 1973) to show

proof of principle that waveform class can have an impact on

ensemble activity within a constrained search space of wave-

form shape, amplitude, and duration. We further narrowed the

question by focusing on the use of optogenetic pulses to elicit

mnemonic sequence activity in the hippocampal CA3 and CA1

subregions. We tested our waveform design options in a model

of replay sequence extension with and without noise and in a

model of novel sequence learning. As a main result of our simu-

lations, we find that sequence extension models robustly

showed more temporally reliable sequence replay when using

forward or double ramp waveforms, in contrast to square or

backward ramp waveforms.

Hippocampal ripple extension models
In vivo replays are associated with SPW-Rs (Lee and Wilson,

2002; Foster and Wilson, 2006), a characteristic 140–220 Hz

oscillatory activity in CA1 with distinct signatures compared

with other oscillations (Buzsaki et al., 1992; Ylinen et al., 1995;

Sullivan et al., 2011). Our replay extension models employed

pre-formed, asymmetric weight matrices to produce forward-

biased sequential activity, or replay, in CA3 alone or in a dual-re-

gion CA3-CA1 simulation (Figures 1A, 1B, and 3B). This synaptic

weight structure is analogous to well-trained animals capable of

recalling prior learning to plan future forward trajectories through

an environment (Diba and Buzsaki, 2007; Carr et al., 2011;

Pfieffer and Foster 2013; for a different weight architecture,

see the discussion of the learning model). Recent research high-

lights a gradient of replay directions, which favors forward re-

plays in CA1 as animals become familiar with a route (Shin

et al., 2019; Igata et al., 2021). Delivering a cue pulse alone

yielded only a partial sequence, with later ranked neurons falling

below threshold. Delivery of a single optogenetic pulse across

the whole of CA3 (Figure 1D) or CA1 (Figure 3C) prolonged the

replay sequence by raising late-ranked nodes above threshold,

consistent with in vivo manipulations (Fernandez-Ruiz et al.,

2019). The optimal timing of the pulse relative to the event onset

was found at 150 ms (Figure S2), but this should be interpreted

only insofar as there likely is some optimal window of stimulation

delivery, given successful ripple prolongation in vivowith closed-

loop detection and stimulation delays of tens of milliseconds.

The recruitment of interneurons prevented early sequence cells

from reactivating during long optogenetic pulses (Figure S2).

Spike frequency adaptation refers to a gradual slowing of ac-

tion potential rate during firing to prolonged input, usually due to

activation of potassium currents, which may act as an important

influence on cortical processing efficiency (Wainwright 1999;

Gutierrez and Denève, 2019). Many hippocampal pyramidal

units in both CA3 and CA1 display this property of spike fre-

quency adaptation during sustained depolarization (Madison

and Nicoll, 1984; Lancaster and Nicoll, 1987; Scharfman 1993;

Buckmaster et al., 1993; Hemond et al., 2008), as do neurons

activated with optogenetics (Boyden et al., 2005). While the

spike adaptation rate is heterogeneous (Barkai and Hasselmo,

1994), in HPC it generally strengthens with a time course on

the order of about 50–100 ms (Madison and Nicoll, 1984;
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Buckmaster et al., 1993 Verma-Ahuja et al., 1995). The time

course of this neural adaptation (Barkai and Hasselmo, 1994)

is similar to the time course of the adaptation of the current

induced by opsin activation, as shown in voltage clamp record-

ings (Boyden et al., 2005), and is mirrored by the time constant

achieved in our isolated CA3 pyramidal cell model (Figure S1).

This time course of adaptation is far longer than the participation

of a single neuron in an SPW-R, and may therefore have less

impact on a transient dynamic such as a replay. Under our circuit

model conditions, we observed that even strongly activated py-

ramidal units spent less than 50 ms above the high-activity

threshold regardless of pulse duration or shape, due to the adap-

tation current and strength of feedback inhibition from interneu-

rons (Figures 1 and S3). Due to a lack of in vivo data character-

izing the nature of adaptation to optogenetic stimulation

separate from other forms of adaptation, our model lumps opsin

and spike frequency adaptation into a single, conservative time

constant.

Waveform class on ripple prolongation
In agreement with our central hypothesis that waveform shape

affects circuit behavior, some shapes prolonged ongoing ripples

better than others. In both CA3 and CA1, square pulses robustly

recruited more distal sequence elements (Figures 1D and 3C

[top]). However, the sharp onset of square optogenetic drive dis-

rupted natural sequence timing severely (Figures 1E, 3D, and 3E

[leftmost column of each]), resembling studies using square

pulses to inhibit ongoing ripples (Fernandez-Ruiz et al., 2019).

Only short-duration square pulses, around 20 ms duration, pre-

served natural sequence dynamics, more analogous to studies

using short optogenetic square pulses to identify tagged cells

without altering excitability or tuning properties (Tanaka et al.,

2018). By contrast, pulses initiated with a forward ramp (FR,

DR) better preserved sequence timing relative to square-onset

pulses (Figures 1D and 3C; examples of 50% ramp simulations).

In CA1, the temporal disruption and extended sequence length

were generally lower compared with CA3 alone. In addition,

themodeled CA3-CA1 architecture resulted in a different pattern

of waveform optimization compared with extending replay in

CA3 alone (Figures 1F and 1I versus Figures 3F and 3G). For

example, in CA3, the FR IMA waveform at 100% ramp yielded

the least temporal disruption but lowest sequence length, while

in CA1, a 45% FR IMA shape yielded the least disruption and

longest replay extension. These results must be interpreted

cautiously within the limitations of the model, but the predictions

are consistent with currently available in vivo data on SPW-R

manipulation using moderate (20%) ramp pulses to prolong

SPW-Rs in CA1 (Fernandez-Ruiz et al., 2019).

These findings suggest a higher tolerance of the circuit to

respond to gentler optogenetic input (Figures 1F and 3F). Differ-

ences in optimal ramp degree and overall sequence timing

perturbation emerged between the FR and the DR waveforms,

possibly due to lower total power delivered. We therefore hy-

pothesize that under conditions of ongoing circuit activity, gentle

excitatory ramps preserve existing dynamics better. This pre-

dicted effect of gentle ramp-up is further validated by the finding

that IP waveforms (with steeper ramps) reduced the benefit of

pulse shape on sequence timing preservation (Figures 1F and
3F, dashed lines). In CA3, strong IP pulses showed a narrow hor-

izontal band of acceptable input durations agnostic to waveform

class or ramp degree (Figures 1Diii and 1Div). We link this finding

to the overrecruitment of the simulated interneuron population

under high-power, steep-onset waveforms, which caused a

wave of inhibition to blur or disrupt the timing of the ongoing

replay. Therefore, while past experiments have used square

pulses to evoke ordinal sequences in CA1 (Stark et al., 2015),

prolonging ongoing network events with behavioral relevance

may benefit more from lower-amplitude, shallow ramped wave-

forms (Fernandez-Ruiz et al., 2019). Future in vivowork explicitly

testing SPW-R initiation versus prolongation under different

pulse shapes will be needed to validate these predictions.

Optogenetic pulse response variability
Many factors determine the outcome of optogenetic circuit ma-

nipulations in vivo. We further tested the CA3 replay extension

model by including opsin expression heterogeneity, irradiance

reduction due to light scattering through tissue, and membrane

voltage fluctuations from other sources. Testing each source of

heterogeneity alone (Figures S4–S6) indicated a tolerance of

the model for each type of noise over some levels of variability

and a breakdown of replay reliability at more extreme levels. Irra-

diance drop-off through tissue can be accounted for either by

increasing source power (which may lead to unwanted heating

artifact; Arias-Gil et al., 2016; Shin et al., 2016) or by using mul-

tiple sources to cover larger areas (Wu et al., 2015; McKenzie

et al., 2021). Much work has been done to developmore efficient

opsins that traffic preferentially to the membrane and avoid un-

der- or overexpression in vivo (for examples, see Gradinaru

et al., 2008; Zhao et al., 2008). Finally, only very high white noise

amplitudes relative to the optogenetic drive strength of the

model were sufficient to disrupt the replay extension outcomes

(Figure S6). We therefore multiplicatively combined the lower

range of variability of each type (Figure 2) in a model that bore

out overall findings similar to those of the noiseless model (Fig-

ure 1). Thus, the predictions of waveform class impact on replay

extension are more interpretable for future experimental design.

Further, this model provides a framework for testing new predic-

tions of memory readout under specific experimental constraints

and noise parameters. Modeling more specific constraints prior

to in vivo optogenetic work could improve experimental yield and

maximize efficient animal use.

CA3 learning model
Innovations in simultaneous multi-photon imaging and optoge-

netics have enabled real-time identification and single-cell-spe-

cific stimulation of neural activity (Rickgauer et al., 2014; Packer

et al., 2015; Mardinly et al., 2018; Marshel et al., 2019). These

so-called ‘‘all-optical’’ approaches have been used to induce

new sequences in visual cortex (Carrillo-Reid et al., 2016) and

manipulate CA1 place fields in vivo to bias behavior (Robinson

et al., 2020), but novel place-field sequence induction has yet to

be thoroughly investigated in the HPC. We therefore sought to

model whether waveform class would have an impact on the arti-

ficial creation of new CA3 sequences to predict the results of

future in vivo circuit manipulations in the HPC using all-optical

techniques. We delivered sequential pulses across the model
Cell Reports Methods 2, 100208, May 23, 2022 11
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network to induce synaptic weight formation. Under an auto-

associative learning rule, we found that awide variety of waveform

shapes could be used to induce sparse associations between no-

des stimulated close in time (Figure 4C). During a test phase, we

examined the sequence recall produced by one-trial learning.

The timing OL between pulses largely determined whether suffi-

cient synaptic weights would be formed to allow sequential replay

during the test phase (see Figures 4E and 4F).

The mechanisms behind novel place-field formation have only

recently come under investigation. Juxtacellular stimulation in

mice during freely moving behavior using single square pulses

in the dentate gyrus (Diamantaki et al., 2016), or trains of square

pulses in CA3 and CA1 (Diamantaki et al., 2018), can induce

novel spatial tuning in previously silent neurons. Our results are

in line with these findings, as sequential stimulation of CA3 neu-

rons induced novel synaptic weight change sufficient to support

subsequent sequence replay (see Figure 4D for examples).

Lower-amplitude IMA pulses of any waveform and ramp per-

centage induced shorter replays (Figure 4G [solid]) with lower

temporal disruption of sequence timing (Figure 4J [solid]).

Higher-amplitude IP pulses of any waveform allowed for longer

sequences (Figure 4G [dashed]) but caused more perturbation,

especially at longer ramps (Figure 4I [dashed]). This supports

the conclusion that modest-power waveforms of any shape

could be used to induce learning between previously uncon-

nected nodes. However, care should be taken in interpreting

these findings for a number of reasons, including the imprecision

of spike times to prolonged stimuli (Mainen and Sejnowski,

1995), endogenous bursting in CA3 (Hablitz and Johnston,

1981), irrespective of stimulus-tuning (Frerking et al., 2005),

and the sparsity of CA3 auto-recursion (Miles et al., 2014). This

is likely reflected in the oversaturation effect at high OL percent-

ages when too many nodes are simultaneously recruited at high

activity by optogenetic drive. Finally, the behavioral relevance for

randomly stimulated subsets of cells, as was investigated previ-

ously in V1 (Carrillo-Reid et al., 2016), may be harder to explore

further from the sensory input interface.

In CA1, induction of new place cells during behavior from silent

cells is accompanied by complex, bursting spike trains similar to

previously reported plateau potentials that reflect integration of

information in CA3 and the entorhinal cortex (Bittner et al.,

2015; Diamantaki et al., 2018). Induction of plateau potentials

by 300 ms square current injections is reported to open a

multi-second plasticity window for novel place-field formation

that satisfies the requirement of integrating sensory information

at a behavioral timescale (Frerking et al., 2005; Bittner et al.,

2017). These findings support a sensory-driven model of

place-field formation onto the tabula rasa or ‘‘blank slate’’ of

the HPC. Our CA3 learning model, which allowed for synaptic

enhancement between any co-active nodes, can be interpreted

within this framework. However, the propensity of any CA3 cell to

initiate complex spike bursts is heterogeneous (Raus Balind

et al., 2019), and the burst-potentiated inputs may be outside

the typical window of Hebbian plasticity (Bittner et al., 2017).

Intrinsic connectivity and pre-existing learning are important

factors in natural place-field formation and sequence encoding.

In the absence of external sensory cues, hippocampal networks

in CA1 naturally form recurring sequences with consistent order
12 Cell Reports Methods 2, 100208, May 23, 2022
that ‘‘chunk’’ voluntary run distance (Villette et al., 2015). During

periods of rest, small assemblies of CA1 pyramidal cells fire in

consistent patterns that predict the rank order of place-field tun-

ing on later exposure to novel mazes in a phenomenon termed

‘‘preplay’’ (Dragoi and Tonegawa, 2011, 2013). Differences in

neuronal firing, excitability, and synaptic plasticity in CA1 pyra-

midal cells contribute to a heterogeneous population that

supports long-term sequence stability and allows flexible incor-

poration of new information (Grosmark and Buzsaki et al., 2016).

Recent optogenetic studies have found that local stimulation

induced heterogeneous remapping of spatial tuning to maze lo-

cations with weak, pre-existing drive (McKenzie et al., 2021) or

transient unmasking of subthreshold place-field activity (Valero

et al., 2022). In contrast to the direct-stimulation studies above,

these findings support a hypothesis that new learning is con-

strained and mapped onto ‘‘pre-wired’’ internal sequences that

flexibly incorporate new experience. While our learning model

assumed a uniform zero weight matrix with unconstrained po-

tential for novel associations, this architecture is unlikely in vivo.

Futuremodeling work should investigate the interaction between

new sequence induction and existing network architecture.

Waveform power
The greatest commonality to waveform manipulation across the

models of the HPC circuit was the impact of waveform power. In

the ripple extension models of CA3 and CA3-CA1, IMA forward

and double ramps proved more effective at prolonging the ripple

relative to square or backward ramp stimuli. IP pulses induced

closest similarity to the control ripple at lower input durations

than IMA pulses (Figure 1H), but on average disrupted the

sequence timingmore than IMA pulses (Figure 1I). In the learning

model, IP waveforms delivered during learning allowed longer

replay-like sequences during the test phase (Figure 4G), but

simultaneously caused more disruption in node activation timing

compared with the same IMA pulses (Figure 4J). In vivo optoge-

netic design must account for the limitations of equipment and

optical setups to achieve higher laser power delivery. More

importantly, long-duration, high-amplitude pulses can result in

tissue heating (Arias-Gil et al., 2016; Shin et al., 2016), even in

the absence of opsins (Owen et al., 2019). Therefore, to optimize

circuit manipulation with minimal tissue heating, our results pre-

dict the use of short square pulses or forward ramping, lower-po-

wer waveforms with longer duration.

Prospects for modeling waveform class optimization
Much future work will be required to guide optogenetic wave-

form design optimization for in vivo experimentation. More bio-

physically plausible models could examine the impact of pulse

shape on opsins expressed preferentially in dendritic or somatic

compartments. Future models of sequence learning could also

incorporate a range of pre-existing network connectivity (from

uniform zero as in our model to highly heterogeneous connectiv-

ity prior to new learning) not only as a means of predicting pulse

impact on learning in vivo, but also to address fundamental ques-

tions surrounding the tabula rasa versus constrained network

debate.

Many of the in vivo studies employing optogenetics to elicit or

inhibit mnemonic behavior rely on pulse trains. For example,
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20 Hz square pulses have been used to activate sparse dentate

gyrus ensembles to elicit freezing (Liu et al., 2012; Ramirez et al.,

2013) or induce place avoidance and place preference, depend-

ing on the activated ensemble (Redondo et al., 2014; Chen et al.,

2019). Recent work has also investigated pulse trains of varying

frequency and waveform shape, demonstrating preferential

recruitment of hippocampal outputs on danger avoidance under

8 Hz sinusoidal, but not other frequencies or using square pulses

(Padilla-Coreano et al., 2019). Sinusoidal stimulation of the baso-

lateral amygdala differentially drove freezing (4 Hz) or non-

freezing (8 Hz) in mice depending on the context of stimulation

(Ozawa et al., 2020). These results strongly indicate that both

the frequency and the shape of pulsatile stimulation have an

impact on behavioral expression. Future modeling should there-

fore address the search spaces of frequency and waveform

shape on different circuit architectures. The work presented

here offers a useful preliminary exploration of the search space

to demonstrate proof of principle for further investigation.

Conclusion
We explored how to optimize optogenetic waveform design for

desirable mnemonic circuit activity. In our rate-based models

of memory circuit behavior we provide evidence that forward

and double ramps of moderate power are much more effective

for prolonging existing network events such as SPW-Rs and

replays in both CA3 and CA1. These findings were robust to

the inclusion of biological detail to the models, including spike-

frequency adaptation to excitation and several sources of

variability inherent to in vivo optogenetic implementations.

Developing a theoretical basis for optogenetic waveform design

choices will advance the technical capabilities of this important

tool set for research, and perhaps for clinical applications.

Limitations of the study
This work focuses solely on investigating the outcomes of single-

pulse waveforms in the learning andmemory system of the HPC.

However, the approach could easily be adapted for use in other

circuit architectures or for studying pulsatile stimulation out-

comes. The predictions are drawn from a rate-based, rather

than spiking, model of neuronal activity. Implementing this

approach with spiking models would require redefining some

of the response variables but would provide similar, systematic

insight into spike timings evoked by optical manipulation.
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METHOD DETAILS

Model justification
The CA3 subregion of HPC was chosen as a model system for examining circuit behavior under differential input waveform condi-

tions. The extensive recurrent collateral architecture has been exploited in past models of learning and recall (Wilson and Cowan,

1973; McNaughton and Morris, 1987; Hasselmo et al., 1995; Hasselmo and Wyble, 1997; Elfman et al., 2014) and more recently

for its ability to spontaneously generate sharp wave population activity (Malerba et al., 2017; Malerba & Bazhenov, 2019). It is further

known to produce sequential patterns (Karlsson and Frank, 2009; Carr et al., 2012) and coherent burst activity (Csicsvari et al., 2000)

to cue downstreamCA1 sequential neuronal reactivations in vivo (Wang et al., 2020). Therefore, the pattern recall, temporal sequence

reliability and synaptic weight modification properties of the CA3 region were used to investigate mnemonic circuit outputs under

different waveform shapes.

CA3 ripple extension model
We modeled self-sustained, excitatory activity in CA3 neurons based on previous work (Hasselmo et al., 1995) using a continuous

firing rate model (Wilson and Cowan, 1973). To examine the impact of waveform shape on a model of forward sequenced memory

activation (Diba and Buzsaki, 2007; Fernandez-Ruiz et al., 2019), we created a 30 unit network with equal excitatory and inhibitory

units (Figure 1A). The auto-recurrent weight matrix,Wij, was initialized with a forward bias such that neurons had nonzero connectivity

to themselves and linearly decreasing synaptic strength to the next two nodes, and zero connectivity in the reverse direction

(Figure 1A). Connections between inhibitory and excitatory nodes were maintained on a one-to-one basis. The membrane potential

equations for the pyramidals (P) and interneurons (I) were as follows:

dPi

dt
= Ai � hPi +

X

j

Wij½Pi � qP� � Hi½Ik � qI�+mCiðEk � PiÞ (Equation 1)
dIk
dt

= � hIk +
X

W 0
ik ½Pi � qP� � H0½Ik � qI� (Equation 2)
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WhereA represents theexcitatory afferent optogenetic input to thepyramidal cell,h is thepassivemembranedecay toward rest,W is the

weight of auto-recurrent excitation,W0 is the weight of P to I, H is the weight of I to P, H0 is the weight of auto-recurrent inhibition (I to I).

Each pyramidal is indexedby i, each interneuron is indexed by k, and the auto-recurrent input to each neuron is calculated by the sumof

the outputs of the rectified linear thresholding function, q, multiplied by theweightmatrix. Thus, a neuron received input only from those

other neuronswith activity above threshold q andwith nonzero weight connectivity. The parameters used in the isolatedCA3model are

presented in Table 1.

Cells representing more distal components of the replay sequence have lower participation in SPW-Rs (Fernandez-Ruiz et al.,

2019). To reflect this, the strength of the recurrent weight matrix, Wij, decreased linearly along the diagonal (Figure 1A, right, shift

from light yellow to darker). Thus, earlier nodes benefitted from a slightly stronger connectivity than later nodes.

Given the phenomenon of spike frequency adaptation to prolonged depolarizing stimulation in CA3 (Buckmaster et al., 1993;

Scharfman 1993; Verma-Ahuja et al., 1995; Hemond et al., 2008) and CA1 (Madison and Nicoll 1984; Lancaster and Nicoll, 1987),

we included an intracellular-calcium-concentration-dependent potassium current in the pyramidal neuron. The update to the calcium

concentration of each cell, Ci, was calculated as follows:

dCi

dt
= g½Pi � qC� � uCi (Equation 3)

Where Ek is the reversal potential of potassium, m is the strength of the Ca2+-dependent K+-current, g is the strength of the voltage

dependent Ca2+-current, u is the diffusion constant for intracellular Ca2+ and q is a threshold for the rectified linear activation

threshold of the membrane-voltage dependent Ca2+-current. The parameters used for adaptation throughout all models and regions

are listed at the bottom of Table 1 and based on previous work (Hasselmo et al., 1995). A simulation of an isolated CA3 pyramidal cell

with blocked recurrent connectivity exhibited similar adaptation to the time course of adaptation currents induced by opsin activation

in voltage clamp (Figure S1; Boyden et al., 2005). In circuit, these parameters produced units that spent less than 50 ms above the

high activity rate threshold and decayed from maximum activity rate to below threshold in under 30 ms representing a strong

decrease to inferred firing rate.

CA3 ripple extension model input waveforms
We examined the effect of ramped and square pulse stimulation on prolonging an ongoing sequence, hereafter termed ‘replay’ activity.

First, a forwardpropagatingseriesofactivationwaselicitedbydeliveryofa strong20ms-longcuepulse to thefirstnodeof thenetwork. In

a control simulation the replay was allowed to continue uninterrupted until relaxing to baseline (Figure 1B). In the waveform pulse sim-

ulations, a second waveform of varying duration and shape was delivered 150 ms after the cue offset to all excitatory neurons. In one

set of simulations, the input duration was tested between 0 ms and 250 ms (Figure 1) while in another, the pulse delay after cue from

0 ms to 500 ms was examined (Figure S2). Figure 1C demonstrates the waveform shapes delivered to the network including Forward

(FR), Backward (BR), and Double Ramp (DR). The degree of ramp, ‘Ramp Percentage’, varied linearly between 0% (square waveform)

and 100% (triangular waveform) to characterize the response of the network under different waveforms. One set of simulations used an

iso-maximum-amplitude (IMA) tomatch final rampamplitude to theSquarepulse amplitude (Padilla-Coreanoetal., 2019). Takingadvan-

tage of the in silicomodel, a second set of simulations used a highermaximumamplitude tomatch the area-under-the-curve of the tem-

plate Square pulse (Iso-Power, IP).

CA3 ripple extension model analysis
To examine the potential differences in CA3 sequence prolongation by different pulse shapes, a number of quantifications were used.

First, the sequence length (from 0 to 15 nodes) was calculated for each simulation. The mean and 95% confidence interval of

sequence length dependent on ramp degree was found using a 1000-sample shuffle with replacement of the sequence length

outcome at different pulse durations (Figure 1F). Note that many combinations of ramp percentage and input duration parameters

of the secondary pulse yielded full sequence recall.

Next, the time of each node reaching an activation thresholdwas obtained. An activation threshold of 10was chosen as the first point

where a high firing probability in each node occurred. Based on this, the Inter-Threshold-Interval (IThI) time between consecutive neu-

ronsquantifies the implied temporal sequence stability of themodeled sequence activation or ‘replay’ by themodel. For each simulation

an effect size (Cohen’SD; https://www.mathworks.com/matlabcentral/fileexchange/62957) was calculated between the waveform

manipulation IThI time and the IThI of a control (Figure 1B; no secondary pulse) condition. Smaller effect size indicated a low impact

of the optogenetic pulse on the temporal structure of the ongoing replay.

The effect of pulse shape on ripple extension behavior in the circuit was quantified as follows. First, the waveform that achieved the

lowest temporal disruption (effect size) was calculated for each case (Figure 1G). The pulse duration at which this minimal effect size

was also measured (Figure 1H). In cases with multiple lowest disruptions within the same ramp degree, the pulse with shortest input

duration was used. To determine the generalized impact of waveform shape across tested input durations, a shufflewith replacement

of effect size scores was calculated (Figure 1I). The mean effect size and a 95% confidence interval was calculated from a

1000-sample shuffle distribution for each waveform category.

The activity and timing disruption after the optogenetic pulse was analyzed in a similar fashion for the CA3 interneurons (Figure S3).
e2 Cell Reports Methods 2, 100208, May 23, 2022
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Optogenetic response variability model
To model sources of heterogeneity to the simulated optogenetic pulse, three additions to the model were made. First, the po-

sition of the fifteen pyramidal units in the replay extension model was uniformly randomly distributed in a 0.5 mm by 0.5 mm by

0.1 mm area, analogous to the dimensions of a rodent CA3 pyramidal layer (Hussein and George, 2009; Jinno and Kosaka,

2010; Öz and Saybasxılı, 2017). A point positioned in the center of the layer, 0.2 mm away, was used as the laser source of

maximum irradiance (Ramirez et al., 2013). Irradiance decay as a function of distance from source was fit to the brain tissue

using light transmission data available at https://web.stanford.edu/group/dlab/cgi-bin/graph/chart.php. Two different curves

for 8 mW and 10 mW sources were fit. A theoretical irradiance value reaching each randomly positioned pyramidal unit was

determined using this function and the 3D distance from the laser source. A gain constant between 0 and 1 was applied to

simulated nodes distal to the light source receiving less than 5 mW/mm2 (Figure S4A; Zhang et al., 2006). The gain constant

for all closer nodes receiving greater than 5 mW/mm2 was thresholded at 1 (Figure S4A). The optogenetic input pulse strength

was multiplied by this gain factor.

Second, protein expression efficiency wasmodeled to address inefficient translation of light intomembrane voltage changeswhen

opsins are under or over-expressed (Gradinaru et al., 2008; Zhao et al., 2008). For each pyramidal unit, an expression efficiency value

was drawn from the lower half of a random normal distribution center at 100% efficiency (Figure S5A). Two different variances, s0.05

or s0.1, were used to model a better or worse optimized opsin expression distribution, respectively. The randomly drawn constant of

each neuron was applied to the optogenetic drive for that neuron during simulations.

Third, a white noise of varying amplitude was applied to the membrane voltage of each neuron at every time step (Figure S6A). An

amplitude of +/ 0.1 was used to approximate low levels of noise. An amplitude of +/� 0.5 was used to approximate high levels of

noise. This resulted in neurons being more or less depolarized relative to resting potential at the time of the replay cue onset or

the optogenetic pulse onset.

Each of these 3 sources of variability were modeled alone (Figures S4–S6) or combined (Figure 2). In this case, the opsin efficiency

was multiplied by the received irradiance gain factor as a combined gain applied to the optogenetic drive for each neuron. For the

combined simulations, the higher light power (10 mW at source), lower opsin efficiency variability (s0.05) and lower voltage noise

amplitude (+/� 0.1) were used. For all parameter space search simulations, a different pseudorandom kernel was used for each in-

dividual simulation with matched kernel for control vs optogenetic pulse.

CA1 replay extension model
To test the outcome of optogenetic pulses extending ongoing replay in CA1, we implemented a CA1 model of 15 Pyramidal and 15

Interneurons connected to the CA3 model described above (Figure 3A). The CA3 pyramidal cells sent feedforward excitation with

symmetric narrow spread to CA1 interneurons and asymmetric spread to CA1 pyramidals (Figure S6). CA1 pyramidals strongly

excited CA1 interneurons which imposed strong inhibition back to the pyramidals. Finally, CA1 pyramidals were very weakly con-

nected to one another but not themselves (Deuchars and Thomson, 1996; Shepherd, 2004; Malerba & Bazhenov, 2019). The mem-

brane potential of CA1 Pyramidals and Interneurons was updated as follows:

dPi

dt
= Ai � hPi +

X

r

WZri½PCA3r � qPCA3�+
X

i

ZZij½Pi � qP� � QZi½Ii � qI� (Equation 4)
dIk
dt

= � hIk +
X

r

WQrk ½PCA3r � qPCA3�+
X

i

ZQik ½Pi � qP� � H0½Ik � qI� (Equation 5)

where WZ, WQ, ZZ, ZQ and QZ are weight matrices determining the connectivity between neurons (Figure S7) and r is the index of

the pre-synaptic CA3 pyramidal unit. The weights from CA3 to CA1 pyramidal nodes to were biased such that earlier nodes

received stronger connections. Similarly, the innervation of CA1 interneurons was weaker from CA3 for earlier CA1 interneurons.

The adaptation variables used are not included for brevity, but were identical to those in Equation 1 and applied to both CA3 and

CA1 pyramidal units.

The same optogenetic pulse waveforms were applied to the CA1model 150ms after a 20ms cue to the CA3 network. Similar shuf-

fling procedures for analysis of the impact of ramp degree on temporal disruption and sequence length were used as in the CA3

replay extension model.

CA3 learning model
Finally, a synaptic learning rulewas implemented toexamine the impact of pulse shapeon the formationof synapticweightmatrices. The

same network as in the isolatedCA3model (15 excitatory, 15 inhibitory) was employedwith two exceptions (Figure 4A). First, the weight

matrix,Wij,was instantiatedasuniformzeroes indicatingnopre-existingconnectivitybetween thenodes.Second, anacetylcholine (Ach)

term was added to modify the strength of local recurrent connections and network plasticity, consistent with prior experimental obser-

vationsandcomputationalmodels (Hasselmoetal., 1995, 1998;Hasselmo2006).Simulationsweredivided intoaLearnPhaseandaTest

Phase.
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CA3 learning model - learn phase
During the Learn Phase, an input pattern composed of 15 elements was presented as a sequence through time, one element for each

excitatory node of the network (Figure 4A, right). The equation estimating activity of pyramidals was modified to include an Acetyl-

choline (Ach) component as follows:

dPi

dt
= Ai � hPi + ð1 � jÞ

X

j

Wij½Pj � qPj� � Hi½Ii � qI� (Equation 6)

where c is the level of Ach present in the system, between 0 and 1. During the Learn Phase cwas set to 0.9 to represent strong neuro-

modulatory attenuation of local recurrent CA3 collaterals and prevent over-generalization of learning. The adaptation variables used

are not included for brevity, but matched those in Equation 1 and used the same parameters as in Table 1.

A learning rule governed the modification of synaptic weight between co-active nodes:

dW

dt
= ε ð1 � jÞðB � WÞP � PT (Equation 7)

where W is a matrix of weights with pre-synaptic columns and post-synaptic rows, ε is the learning rate for the system, the presence

of Ach (c) modulates the plasticity of the synapses, B acts as a potentiation ceiling, and P is the instantaneous activity vector of the

CA3 excitatory nodes. Table 3 summarizes the values used for each parameter in this model, modified slightly from the Ripple Exten-

sion model to enable better 1-trial pattern learning.

During the Learn Phase each pattern element was set at a fixed 80ms duration, chosen based on a set of simulations varying learn

pulse duration at different overlap values (Figure S8). As in previous simulations, the ramp degree was varied between 0% (Square)

and 100% ramped for Forward, Backward, and Double Ramp, and Iso-Max-Amplitude and Iso-Power pulses. Another set of simu-

lations manipulated the duration of pattern element overlap (OL), between 0% (no overlap of consecutive elements) and 100% over-

lap (simultaneous pulses across nodes).

CA3 learning model - test phase
During the Test Phase a square, 20 ms cue pulse was delivered to the first node to elicit replay-like sequential node activations and

assess the strength of retrieval. The final state of the weight matrix W after the Learn Phase was used as the auto-recurrent archi-

tecture representing the outcome of single-trial encoding of pattern information. The same equations and parameters as in the Learn

Phase were used, with the exception that (Ach level) was set to 0 to prevent further modifications to the weight matrix and allow full

auto-recurrent excitation (Hasselmo, 2006).

CA3 learning model analysis
To quantify the recall capacity of the network under different optogenetic waveform paradigms, the same threshold crossing metric as

in the CA3 Ripple Extension Model was used. Any nodes during the Test Phase that crossed an activity threshold of 10 were counted

toward participating in the sequence. The IThI was used as a metric of sequence replication. For each simulation varying ramp shape,

percentage and pattern overlap, an effect size (Cohen’SD) was calculated between the test phase mean IThI and a control IThI.

The control data was generated using a pre-allocated, symmetric weight matrix with a max auto-recurrent strength equal to 0.035.

Connectivity to nearest neighborswas 0.0255 (Figure 4B). All other parameterswere equal to those in the learning simulations. This con-

trolwaschosenbecause it eliciteda seven-nodesequence length, allowing for potentially longeror shorter sequences tobeachievedby

varying the learning input paradigm. This sequence length variability is consistent with in vivowork on shorter and longer sequence re-

plays (Fernandez-Ruiz et al., 2019). This control also yielded high similarity (low-effect size) relative to the learned replays across ramp

percentages (Figure 4I).

Low overlap percentage generally resulted in suprathreshold activation of only the first node, elicited by the cue pulse directly. Very

high overlap percentage generally resulted in over-saturation of the weight matrix, causing excessive node activation in the Test

Phase. We therefore restricted the following analysis to a band of overlap percentages which resulted in a dynamic range of

sequence lengths. The cutoff for excessively high activity was set at 100 for any single unit in the network.

Wequantified the effects ofwaveformshapeon sequence learninga number ofways. First, the lowest overlap percentage that elicited

the smallesteffect sizewascalculated for eachwaveformshapeovereach rampdegree.For eachWaveformClass, a 500-sample shuffle

with replacementwasperformedontheeffectsize,mean IThIandsequence lengthdata. Inorder toexamine thecontributionofwaveform

shape independent of learning sequence timing, each shuffle maintained ramp percentage identity while shuffling overlap percentage.

QUANTIFICATION AND STATISTICAL ANALYSIS

All models were simulated with custom code on a PC desktop running Windows 10 using Matlab 2019a (Mathworks Inc.).

Analyses and statistics were run using the same resources. Ramp percentage andmemorymetric correlations were performed using

Pearson’s rwith a = 0.05 and are reported in the Results text. Shuffle permutations of N = 1000-samples for replay extension models

(Figures 1, 2, and 3) and N = 500-samples for the learning model (Figure 4) are displayed with a 95% confidence interval and are

described further in each subsection of the method details.
e4 Cell Reports Methods 2, 100208, May 23, 2022
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