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Background
DNA methylation entails attachment of methyl groups to a base of DNA, especially 
cytosine in the dinucleotide CpG sites. DNA methylation regulates gene expression 
and contributes directly to disease conditions. For example, DNA methylation directly 
affects carcinogenesis [1, 2] and genomic imprinting or X chromosome inactivation 
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[3]. During mammalian development, the imprinting of one of the paternal or mater-
nal chromosomes induces differential expression of imprinted genes, and the loss of 
imprinting can cause various genetic diseases in humans [4], Beckwith–Wiedemann 
syndrome [5], and Prader–Willi syndrome [6]. Furthermore, DNA hypermethylation, 
which refers to an increased level of DNA methylation, involving CpG islands of cer-
tain genes may result in the silencing of tumor suppressor genes [7, 8]. Recent studies 
have reported that DNA hypomethylation, which involves the loss of methyl groups, 
occurs in carcinogenesis and tumor progression [9]. In addition, hypomethylation in 
repetitive regions of a genome can contribute to genomic instability, such as transpo-
son reactivation or homologous recombination [10]. While 70–90% of CpG dinucleo-
tides are methylated in normal cells of human tissues [11], most of the CpG islands 
in promoters are unmethylated [12]. Methylation of the CpG islands results in gene 
silencing and regulates gene expression during development and differentiation [13].

Many methods have been developed for DNA methylation sequencing, including 
those based on restriction enzymes [14], affinity enrichment [15, 16], and bisulfite 
conversion [17, 18]. The bisulfite conversion-based methods are commonly used to 
identify and quantify DNA methylation using several next-generation sequencing 
technologies, including whole-genome bisulfite sequencing (WGBS) [19, 20] and 
reduced representation bisulfite sequencing (RRBS) [21]. Specifically, WGBS can be 
used to identify DNA methylation of cytosines in entire genome, while RRBS can be 
used only for small segments in a genome.

DNA methylation analysis using WGBS has been performed via multiple steps, 
including read quality control, read mapping to reference genome sequences, and 
methylation calling. Computational tools such as TrimGalore! [22] and FastQC 
[23] are used to remove adaptor sequences and control read quality. WGBS reads 
are mapped to reference genome sequences using specific mapping tools, such as 
Bismark [24] and BS Seeker [25], which can generate and use converted reference 
genome sequences for accurate processing of converted unmethylated cytosine bases 
in the reads. Methylation calling tools such as Bismark [24] and Bicycle [26] com-
pute the methylation level, which represents the degree of methylation for all mapped 
cytosines. Additionally, some R packages, such as methylKit [27] and MethylSeekR 
[28] can be used to identify differentially methylated cytosines (DMCs) and hypo-
methylated regions from the methylation calls.

Despite the development of the computational tools dealing with sequencing data, 
studying DNA methylation is still a research challenge because it requires the knowl-
edge of bioinformatics. The investigators also need to select and organize appropri-
ate reference genome sequences and their annotation information because most of 
the DNA methylation analyses are performed using the reference genome. To allevi-
ate these difficulties, several pipelines have been developed to analyze methylation 
sequencing data [27, 29–32]. However, various types of DNA methylation analyses are 
not always available in those pipelines, and the available reference genomes and tools 
are restricted. For example, as shown in Table  1, most of them [26, 33–37] do not 
completely support important downstream analyses, such as the analyses of differ-
entially methylated and hypomethylated regions. Moreover, they are mostly focusing 
on analyzing human and it is difficult to be applied for other species because required 
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genome sequences and annotation information of a reference need to be prepared 
and set manually.

In this study, we present a new end-to-end pipeline of DNA methylation analysis for 
WGBS data. This pipeline, named msPIPE, consists of multiple steps: (i) pre-processing, 
(ii) alignment & methylation calling, and (iii) methylation analysis & visualization. Using 
msPIPE, users can obtain the results of various analyses in text format and publication-
quality figures. Additionally, the use of msPIPE is facilitated by Docker, which obviates 
the need for requisite packages or software. The msPIPE supports all reference genome 
assemblies available in the R package BSgenome (v1.62.0) [38]. Applications involving 

Table 1  Comparison of methylation analysis pipelines

NA not available
a All required files of a reference can be automatically prepared and set if the data exists in the UCSC Genome Browser 
database [40], and manual setting is also supported
b All required files of a reference can be automatically prepared and set if the data exists in the iGenomes database [48], and 
manual setting is also supported
c All required files of a reference can be automatically prepared and set if the reference is one of five species (human, mouse, 
zebrafish, fruit fly, and fission yeast), and manual setting is also supported
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human and mouse WGBS datasets successfully utilized the msPIPE to generate methyla-
tion profiles of human sperm and mouse rod samples, profiles of genomic context, and 
differentially methylated regions, with additional findings by the functional enrichment 
analysis. The msPIPE will facilitate our understanding of DNA methylation in the tar-
geted species and interpretation of DNA methylation-based studies.

Implementation
The msPIPE pipeline consists of pre-processing, alignment & methylation calling, and 
methylation analysis & visualization steps (Fig. 1). It generates a DNA methylation pro-
file for each sample, which is a unit of analysis defined by user. The msPIPE can be used 
to treat one or more replicates for each sample. In brief, the required reference files are 
prepared using the given UCSC assembly name of a reference, and the input bisulfite 
sequencing reads in each sample are trimmed first. The pre-processed reads are then 
mapped to the bisulfite-converted reference genome sequences, and methylation calls 
are obtained for each cytosine context. Based on the identified methylation calls for all 
replicates derived from each sample, the sample-level merged methylation coverages are 
computed to generate methylation profiles for the given samples for downstream meth-
ylation analyses. The analyses of hypomethylated and differentially methylated regions 

Fig. 1  Overview of the msPIPE workflow. Using WGBS read files and UCSC assembly name of a reference as 
input, the msPIPE automates the entire DNA methylation analysis starting from input data pre-processing 
to methylation analysis. The reference genome sequences and annotation files of input species are 
collected from the UCSC genome browser. The trimmed reads are mapped to the bisulfite-converted 
genome sequences, and methylation calls are made. Based on these methylation calls, methylation 
profiling, hypomethylated regions analysis, differential methylation analysis, and the function analysis for 
methylation-related genes are performed
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are performed using the methylation calls and profiles. For the genes related to differ-
entially methylated cytosines, functional analysis is additionally performed. Finally, the 
results of DNA methylation analyses included are visualized, and publication-quality fig-
ures are created.

The msPIPE is implemented using Python, Perl, and R. The pipeline requires other 
software programs; however, the user can easily install and use it via Docker image 
[39]. This Docker image, which contains all dependent packages and software, can be 
obtained by loading image files from the Docker Hub or building directly by using the 
Docker files provided in the Github site.

Pre‑processing step

In this step, input data for methylation analysis is prepared and required pre-process-
ing is done. This step consists of preparing the reference genome sequences, annotation 
files, and high-quality WGBS reads for analyses. For the given UCSC assembly name of 
a reference, a corresponding genome sequence file and a gene annotation file are auto-
matically downloaded from the UCSC Genome Browser database [40]. Note that users 
can also use their own genome sequences or annotation file as desired.

The msPIPE can receive multiple fastq files of single-end or paired-end reads for all 
sample replicates. All input fastq files are processed separately given that WGBS reads 
are trimmed by TrimGalore! (v0.6.0) [22] using ‘--fastqc --phred33 --gzip --length 20’ 
options and the quality of sequencing reads can be determined using FastQC (v0.11.9) 
[23]. The quality reports of trimmed reads are illustrated with a merged report by the 
MultiQC program (v1.10) [41].

The downloaded reference genome sequences are changed to bisulfite-converted 
reference genome sequences by converting C to T and G to A using Bismark (v0.20.0) 
(the bismark_genome_preparation module) [24] or BS-Seeker2 (the bs_seeker2-build.
py module) [42]. To reduce running time, the bisulfite-converted reference genome 
sequences can be reused in the next run with the same UCSC assembly name of a refer-
ence as the input.

Alignment and methylation calling

In the alignment step, pre-processed WGBS read sequences are aligned to the bisulfite-
converted reference genome sequences. For this alignment, two programs, Bismark [24] 
with ‘--score_min L,0,-0.6 -N 0 -L 20’ options and BS-Seeker2 [42] with ‘-m 0’ option, 
are supported.

In the methylation calling step, methylated genomic regions are identified by using 
the alignments of the WGBS read sequences. When Bismark is used, methylation calls 
are generated for CpG, CHG, and CHH context using the bismark_methylation_extrac-
tor module with ‘--no_overlap --comprehensive --gzip --CX --cytosine_report’ options 
based on the WGBS read mapping files generated in the previous step. Alternatively, if 
BS-Seeker2 is used, methylation calls are generated for all CX contexts using the bs_
seeker2-call_methylation.py program with ‘--sorted --rm-overlap’ option. The output 
files of BS-Seeker2 were then converted to the files with the same format as the ones of 
Bismark using in-house Python script.
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Methylation analysis and visualization

In this step, called methylated regions are used to perform downstream analyses and 
visualize their results. The methyl-C calls obtained in the previous steps with CX (CpG, 
CHG, and CHH) context are used as input for various methylation analyses and the 
creation of publication-quality figures. This step consisting of three sub-steps, methyla-
tion profiling, hypomethylated region analysis, and differential methylation analysis, as 
described below.

Methylation profiling

In this sub-step, two types of methylation profiles including methylation patterns for 
CX context and functional annotated regions are analyzed and plotted for each tar-
get sample. For this, sample-level merged methylation calls are generated by combin-
ing all methyl-C calls from all sample replicates at the same position on the reference 
genome. First, using the sample-level merged methylation calls, methylation profiles are 
obtained by calculating methylation levels for each CX context. The methylation level 
for each base position comprising methylation calls is defined by the ratio of the counts 
of methylated Cs to the total counts of both methylated and unmethylated Cs. These 
methylation profiles are plotted as a bar plot with the average methylation level, and as 
a histogram with the methylation level distribution of each CX context for each sample. 
Whole genome-scale methylation profile is plotted into the Circos plot with three dif-
ferent tracks using the R package circlize (v0.4.13) [43]. The average methylation level 
in a bin (bin size: 100 Kbp) is calculated for all chromosomes and displayed as the out-
ermost track in the genome-wide profiling Circos plot [43]. Second, five genomic con-
texts, including promoter, gene, exon, intron, and intergenic regions, are defined for the 
entire genome from a downloaded UCSC gene annotation file to determine the meth-
ylation patterns of the functional annotated regions. Specifically, a promoter is defined 
as a 1 Kbp upstream region of a gene. Exons are defined as merged regions annotated 
as an exon from all transcripts, and introns are defined by excluding the exon portions 
from the genes. For every gene, average methylation levels in a sliding window (window 
size: 500 bp and step size: 100 bp) from 1500 bp upstream to 1500 bp downstream of a 
transcription start site (TSS) are calculated. Finally, the regions excluding the transcript 
areas from the entire genome are defined as the intergenic regions. The degree of meth-
ylation distribution for each CX context and functional annotated region are visualized 
by the R package ggplot2 (v3.3.5) [26].

Hypomethylated region analysis

In this sub-step, hypomethylated regions (HMRs), which are contiguous genomic 
regions with lower methylation level than neighboring regions, are identified by using 
the R package MethylSeekR (v1.34.0) [28] by automatically selecting the BSgenome data 
package using the UCSC assembly name of a reference given as the input of msPIPE. 
Two different types of HMRs include unmethylated regions (UMRs), which are enriched 
in CpG with almost zero methylation levels, and low methylated regions (LMRs), which 
are CpG-poor regions with low methylation (around 30%). The coordinates of UMRs 
and LMRs are reported as text files and their locations are plotted into the middle and 
innermost tracks, respectively, in the Circos plot indicated in the methylation profiling 
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sub-step. In addition, the coordinates and counts of UMRs, which overlap with promot-
ers are reported as the bed format files, which facilitates identification of methylation 
patterns in the target genes.

Differential methylation and gene function analysis

When pairs of samples for pairwise comparison of methylation are set, the analysis of 
differentially methylated regions (DMRs) is performed for each comparison set in this 
sub-step. DMRs are defined as the genomic regions with different methylation level 
between two samples which can be called as case and control respectively. DMRs can 
be further divided into hypomethylated (with relatively lower level of methylation) or 
hypermethylated (with relatively higher level of methylation) regions. Specifically, when 
the methylation level of a genomic region in the case is lower than the level in the con-
trol, the genomic region in the case is defined as the hypomethylated DMR. In the 
opposite case, the genomic region in the case is defined as the hypermethylated DMR. 
The analysis of DMRs can be performed using either methylKit [27] or BSmooth [44]. 
The definition of DMRs is different in the two programs. In the case of methylKit, a 
genomic region harboring two or more differentially methylated (either hypomethylated 
or hypermethylated) Cs (DMCs) with a maximum 500 bp distance between two adja-
cent DMCs is considered as a DMR. In BSmooth, a DMR is defined as a genomic region 
which has three or more DMCs with a minimum 10% methylation difference and covers 
at least 70 CpGs (minimum length 1 Kbp). Methylation differences are reported for each 
methyl-C position with a q-value. The msPIPE can filter out the methyl-C positions with 
the q-value less than the given cutoff. Various features of generated DMCs, including the 
number and genomic locations of hypomethylated and hypermethylated Cs in promot-
ers, distance between DMCs, and distance between DMC and nearest TSS are summa-
rized. Additionally, a list of DMC (or DMR)-related genes is created by collecting genes 
whose promoter region contains the DMC (or DMR) and used for input of g:Profiler [45] 
which is a functional enrichment analysis tool.

Results and discussion
Comparison of msPIPE with similar pipelines for methylation analysis

msPIPE and similar pipelines for methylation analysis [26, 33–37, 46, 47] were compared 
in terms of installation, supported sub-steps, downstream analyses, and the difficulty 
of setting a reference (Table 1). Most of them can be easily installed by using a cross-
platform and dependency-free package manager, such as Docker and Bioconda. Three 
basic sub-steps for methylation analysis, which are quality control, alignment and meth-
ylation calling, are supported by all compared pipelines. However, in the alignment and 
methylation calling sub-steps, only msPIPE supports two optional tools, Bismark and 
BS-Seeker2, which increases the flexibility of users for trying different tools and compare 
their results for drawing better conclusion. msPIPE and wg-blimp are the only pipelines 
that can be used for the downstream analyses for both of differentially methylated and 
hypomethylated regions, and only msPIPE supports the function analysis of methyla-
tion-related genes. Nextflow methylseq and msPIPE are the only pipelines that can auto-
matically prepare and set the required genome sequences and annotation information 
of a reference based on the iGenomes [48] and UCSC Genome Browser database [40] 
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respectively. In summary, msPIPE is better than the compared nine pipelines in terms of 
supported optional tools, additional downstream analyses, and the convenience of pre-
paring reference genome data.

Application of msPIPE to human and mouse WGBS datasets

The msPIPE was applied to publicly-available human (accession number: PRJEB28044) 
[49] and mouse (accession number: PRJNA556668) WGBS datasets [50] (Additional 
file  2: Table  S1). The human dataset was generated from the pooled libraries of DNA 
obtained from the blood and sperm of six young men (18–24 years) and six old men (61–
71 years), respectively. The human genome assembly version hg38 was used as the refer-
ence genome [51]. The mouse dataset was generated from rod photoreceptors belonging 
to three young (three-month-old) and three old (24-month-old) male mice. For refer-
ence genome, the mouse genome assembly version mm10 was used [52]. The msPIPE 
was executed for the human and mouse datasets with default options except for the ‘-c 5 
-q 0.5’ option. In this application, Bismark was used for alignment & methylation calling 
and methylKit was used for DMC analysis. A list of genes with promoters carrying DMC 
was extracted, followed by functional enrichment analysis using g:Profiler [45].

Methylation profiles of human and mouse WGBS data generated by msPIPE

To assess the applicability of msPIPE, methylation analyses were performed using the 
published human and mouse WGBS datasets (see Implementation). Pre-processing, 
mapping to bisulfite-converted genome sequences, and methyl-C calling were per-
formed sequentially.

Trimming for adaptor and low-quality sequences was performed for all input WGBS 
reads. The quality of each trimmed read was computed using FastQC program. Addi-
tionally, all reports were summarized as an html file using MultiQC program. For 
example, the statistical data of read quality for all human and mouse WGBS reads after 
pre-processing were summarized together (Fig. 2a; Additional file 1: Fig. S1a).

After pre-processing, the various methylation profiles for human and mouse samples 
were generated. First, the methylation level of each C called using the Bismark package 
was calculated and summarized with genomic and CX context. For the genomic context, 
the average methylation levels of each functional region were obtained. For the human 
old sperm dataset, the average methylation level of the promoter, mostly known to be 
located in CpG islands [13], was lower than in other genomic contexts (Fig. 2b). Addi-
tionally, the distribution of methylation levels for CX contexts was calculated and plot-
ted. CHG and CHH contexts were hardly methylated in the human old sperm dataset 
(Fig. 2c–e) and were clearly detected in the mouse dataset (Additional file 1: Fig. S1b–
f). The average methylation level of CX contexts was also calculated and summarized 
together with all samples (Fig. 2f ). Hypomethylated regions for each sample were pre-
dicted, and the UMRs and LMRs were distributed in all chromosomes (Fig. 2g; Addi-
tional file 1: Fig. Sg; UMRs for blue, and LMRs for green color).

We performed the differential methylation analysis between control and case as young 
versus old for all three pairs of samples: human blood, human sperm, and mouse rod. In 
the human dataset, the total number of DMCs with a q-value of 0.5 or less was 244 in 
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blood and 34,514 in sperm samples (Additional file 2: Tables S2 and S3). Based on mouse 
data, 274 DMCs were predicted (Additional file 2: Table S4).

Differentially methylated genes associated with strong sperm mobility in humans 

identified in msPIPE outputs

In the previous study for the human WGBS dataset [49], gene ontology analysis of DMR 
related gene set was conducted using the list of genes in the 1 Mbp region upstream 
and downstream of DMR. This analysis revealed significant enrichment of the 121 
hypomethylated DMR neighboring genes in the homeobox, DNA bonds, nuclei, and 
transcription.

The results of human DMC analyses derived from msPIPE revealed additional find-
ings. Among the human sperm samples, 393 differentially methylated genes with 
one or more DMCs in the promoter were identified (Additional file 2: Table S5). The 
functional enrichment analysis of 393 differentially methylated genes [45] revealed 
enrichment of GO terms for metal ion binding (GO:0046872) and cation binding 

Fig. 2  Sample results of msPIPE using the human WGBS dataset. a The read quality and statistics of all 
processed input samples were reported to the MultiQC html file. b The average CpG methylation levels in 
each genomic context, including promoter, gene, exon, intron, and intergenic regions of the old sperm 
sample are represented by a bar plot. The methylation levels (%) of c CpG, d CHG, e CHH context in the 
old sperm sample are shown. The bin size of the histogram is 10%. f The average levels of CpG, CHG, and 
CHH methylation for each given sample. g Genome-wide CpG methylation levels as well as UMR and LMR 
distribution in the old sperm sample are presented as the Circos plot. The red bar plot on the outermost track 
represents the average methylation level for 100 Kbp bin. In the absence of data, it was represented by a 
gray shadow. The dot plots on the inner two tracks represent UMR region shown in light green and the LMR 
region in light blue. The height of the graph indicates the methylation level of each region. A zero average 
methylation of the UMR (or LMR) is indicated by a red dot
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(GO:0043169), and transcription factors for many other genes including SRY (Table 2; 
Additional file  2: Table  S6). Notably, the influx of cations through cation channels 
(CatSper) is known to play an important role in fertility and motility of sperms [53, 
54]. Highly specific and important candidate genes were identified with promoter 
methylation patterns based on DMC analysis of msPIPE.

Conclusion
We present an end-to-end WGBS analysis pipeline, msPIPE, used to perform bioinfor-
matic analyses ranging from input read pre-processing to downstream analysis. When 
the input WGBS read sequencing files and the UCSC assembly name of a reference are 
given, the user can conveniently obtain methylation profiles, publication-quality fig-
ures, differentially methylated regions, and related genes for a given comparison pair. 
In the comparison with existing nine pipelines, msPIPE was found to perform better in 
terms of supported types of analyses, supported optional tools, and a convenient way 
for the preparation of reference genome data. The msPIPE is implemented using the 
Docker image, which obviates the need to install all dependent packages and software. 
Especially, specific R packages dependent on different UCSC assembly versions of ref-
erences for all kind of species provided by the R package BSgenome are automatically 
imported along with sets for running msPIPE. Therefore, msPIPE can be used as a con-
venient and effective tool for methylation analysis of WGBS data.
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RRBS	� Reduced representation bisulfite sequencing
GO	� Gene ontology
DMC	� Differentially methylated C
TSS	� Transcription start site
HMR	� Hypomethylated region
UMR	� Unmethylated region
LMR	� Low-methylated region
DMR	� Differentially methylated region

Table 2  Functional enrichment analysis results for 393 differentially methylated genes in human 
sperm samples

*Adjusted p value was calculated by the g:SCS method in g:Profiler

Source Term name Term id Adjusted p value*

GO:MF Metal ion binding GO:0046872 8.215E−03

GO:MF Cation binding GO:0043169 1.289E−02

TF Factor: SRY; motif: TCA​ATA​MCAT​TGA​ TF:M04557 9.270E−10
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