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Abstract: Trajectory inference (TI) or pseudotime analysis has dramatically extended the analytical
framework of single-cell RNA-seq data, allowing regulatory genes contributing to cell differenti-
ation and those involved in various dynamic cellular processes to be identified. However, most
TI analysis procedures deal with individual genes independently while overlooking the regula-
tory relations between genes. Integrating information from gene regulatory networks (GRNs) at
different pseudotime points may lead to more interpretable TI results. To this end, we introduce
scInTime—an unsupervised machine learning framework coupling inferred trajectory with single-cell
GRNs (scGRNs) to identify master regulatory genes. We validated the performance of our method
by analyzing multiple scRNA-seq data sets. In each of the cases, top-ranking genes predicted by
scInTime supported their functional relevance with corresponding signaling pathways, in line with
the results of available functional studies. Overall results demonstrated that scInTime is a powerful
tool to exploit pseudotime-series scGRNs, allowing for a clear interpretation of TI results toward
more significant biological insights.

Keywords: single-cell RNA sequencing; master regulator; trajectory inference; pseudotime analysis;
gene regulatory network; time-resolved data

1. Introduction

Single-cell RNA sequencing (scRNA-seq) has revolutionized modern biology by al-
lowing researchers to explore cellular dynamic processes at unprecedented resolution.
Indeed, scRNA-seq data may be viewed as a snapshot of the transcriptome of thousands of
individual cells in a population. Each cell is at a distinct stage of the dynamic differenti-
ation process. These dynamic processes can be studied computationally using trajectory
inference (TI) approaches, also known as pseudotime analyses. Cells are ordered along a
computationally-defined trajectory based on their expression profile similarity [1]. These
algorithms assign each cell a pseudotime, a numeric number in arbitrary units that denotes
a cell’s position during the dynamic process of interest. When a sample contains cells
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spanning a broad spectrum of differentiation stages, such as from a progenitor to many
differentiated cellular states, computation-based TI can help gain transcriptomic insights
into these complex processes. Thanks to these breakthroughs, researchers may now in-
vestigate intricate differentiation patterns and infer dynamic processes without collecting
time-resolved data.

Despite these remarkable advances, most existing TI methods process each gene
independently to assert a gene’s association with pseudotime, overlooking the regulatory
relationships between genes, which may vary at different time points. We suggest that
the information from gene regulatory networks (GRNs) should not be ignored when TI
methods are used to identify master regulators that play a role in cell differentiation.
Instead, single-cell GRNs (scGRNs), which hold crucial information for understanding
how coordinated transcriptional patterns are associated with dynamic events, should
be considered. In the existing framework of TI, differential expression (DE) analysis of
individual genes is frequently adopted to compare cells with different pseudotime along
the inferred trajectory. The continuous expression resolution provided by TI methods
and the pseudo temporal ordering of cells along lineages is not sufficiently used in such
discontinuous DE approaches.

Several approaches have been described to improve trajectory-based DE analysis by
modeling gene expression as a smooth function of pseudotime along lineages. Mono-
cle [2] and TSCAN [3] use a generalized linear model to determine whether a gene has
time-dependent expression and then statistically test the significance of the regression
coefficient. Other methods, such as Monocle 2 [4] and GPfates [5], allow users to test
whether differences in gene expression are associated with particular branching or bifurca-
tion events on the trajectory. TradeSeq [6] is another trajectory-based differential expression
analysis that can help analyze the DE pattern between lineages. These trajectory-based
approaches outperform discrete cluster-based or time-series DE analysis methods by utiliz-
ing continuous expression resolution along the trajectory. However, these methods solely
assess the expression changes of a single gene along the trajectory, ignoring the impact
of the gene regulatory network structure change. For this reason, the development of
new strategies to identify biological processes changing along the trajectory and allow a
straightforward interpretation of functional gene sets is critical for a better understanding
of cellular developmental processes.

We introduce scInTime, an unsupervised machine learning framework incorporat-
ing scGRNs and user-provided pseudotime, to identify master regulators. scInTime is a
versatile framework that may be used with any TI approach. There are four major steps
in scInTime. (1) Trajectory inference: We first estimate the pseudotime for each cell by
using a pseudotime analysis tool, such as Monocle [2]. (2) scGRN construction: For cells of
different pseudotime groups, we build GRNs using principal component (PC) regression.
(3) Generation of the regression coefficient matrix: With the pseudotime-series GRNs,
we perform a linear regression to regress the interaction level for each pair of genes as a
function of pseudotime. The regression coefficients are used to measure the trend of change
of interaction strength of gene pairs across different stages of pseudotime. By collecting
the regression coefficients of all pairs of genes, we obtain a regression coefficient matrix
that reflects the global profile of gene regulations. (4) Analysis of the regression coefficients
matrix: To aid in identifying regulatory genes, we employ a dimensional reduction method,
such as tSNE, to embed genes into a lower-dimensional space to cluster genes according to
their features in the regression coefficient matrix.

We validate our framework by analyzing three published scRNA-seq data sets. All
data sets are time-resolved, which means they contain cells collected from different time
points experimentally, so the “ground truth” of cell differentiation stages is known. With
these time-resolved data sets, our results based on pseudotime are compared and validated.
Data set 1 is from the differentiating neurons of the zebrafish hindbrain [7]. Data set 2 is
from the human SCC6 cell line treated with cetuximab and PBS (control) [8]. Data set 3 is
from differentiating mouse cardiomyocytes across fifteen real timepoints [9]. In all three
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cases, we set out to examine whether the top-ranking gene candidates reported by scInTime
will be aligned well with those obtained from functional studies, in which corresponding
master regulators are reported. If they do, then these case studies will highlight the
interpretability of scInTime’s results, which may lead to meaningful explanations on how
a certain pseudotime trajectory is shaped by the gene expression programs driven by the
identified regulators and thus enhance the interpretation of TI results.

2. Materials and Methods
2.1. Data Sets

We obtained three published scRNA-seq data sets and used them to demonstrate the
power of the scInTime framework. Data set 1: Zebrafish hindbrain data from the study
of [7]. The data set was downloaded from the Broad Institute Single Cell Portal under the
project SCP667. This is an aggregated data set, including three different developmental
stages of zebrafish embryos, namely 16, 24, and 44 h post-fertilization (hpf). Six cell types
were annotated: progenitor cells, dorsal progenitor (DP) cells, ventral-medial progenitor
(VMP) cells, differentiating progenitor cells, immature neurons, and hindbrain neurons.
Data set 2: Head and neck squamous cell carcinoma (HNSCC) data from the study of [8].
The data set can be found on the GEO database using accession GSE137524. Data set
3: Cardiomyocyte data set from the study of [9]. The data were downloaded from the
GEO database using accession GSE164591. Data from cardiomyocytes collected at the time
ranging from embryonic day (e)14 to postnatal day (p)84 were used in the analysis. For all
data sets, cells with fewer than 1000 UMI counts or more than 10 percent mitochondrial
reads (mt-DNA%) were excluded from the downstream analyses. Data normalization,
scaling, principal component analysis, and visualization were carried out using the Seurat
package v.4.0.2 [10].

2.2. Pseudotime Determination for Cells

Monocle 3 [11] was used to perform pseudotime analysis. The input data were normal-
ized using the preprocess_cds function. The align_cds function was then used to eliminate
batch effects from the zebrafish hindbrain data and the mouse cardiomyocytes data, both
of which contain numerous sampling timepoints (num_dim = 50, alignment group =
“library” or “stage”). After that, UMAP [12] dimensional reduction (reduce_dimension:
umap.min_dist = 0.2) and cell clustering (cluster_cells function) were applied to the data.
A principal graph was learned from previously reduced dimensions and was visualized
through the UMAP using the learn_graph function, representing the trajectory through
development. The graph was, in turn, used to order cells through the developmental
program (order_cells function) as pseudotime using cells expressing selected markers as
the trajectory root cells. The selective markers to differentiate the root cells are described in
the main text above. We used the Correlation of Connectome and Transcriptome (CCAT)
method [13] to estimate the differentiation potency for each cell.

2.3. Time-Series scGRN Construction and Generate the Regression Coefficient Matrix

After performing quality control and Pearson residuals normalization [14] for the raw
data, we ordered cells and separated them into 10 groups using the pseudotime obtained
in the previous step. The overlap between groups was allowed in this case to ensure that
each group had at least 500 cells. We also calculated the average pseudotime for each group
of cells and normalized them into (0,1) and denoted them as ti, where i = 1, 2, . . . , 10 .
To build the network for each group of cells, we utilized PC regression, an approach we
adopted previously in developing scTenifoldNet [15].

Let Xi ∈ Rp×n be the i-th subgroup scRNA-seq data matrix that reflects gene expres-
sion levels for p genes in n cells. We then construct a GRN with an adjacency matrix Wi for
each Xi using PC regression. Each time, we pick one gene as the response gene and use all
the other genes as explanatory variables. We first apply a PC analysis to the explanatory
variables, then regress the response variable on d leading PCs (d << n). Next, we transform
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the regression coefficients of d leading PCs into the coefficients of original explanatory
variables, which reflect the interaction strengths between the i-th gene and the other genes.
By processing the above PC regression for p times using different genes as the response,
we finally combine the coefficients of p regression models into a p× p adjacency matrix
Wi, where the (i, j) entry records the regression coefficient of the i-th gene on the j-th gene.
Thus, Wi collects the strength of interactions between each pair of genes.

The next step is to perform linear regression on the normalized pseudotime t = (t1, . . . , t10)
by setting the adjacency matrix W as the response variable. More specifically, given any
pairs of genes (i, j), let (W1

ij, W2
ij, . . . , W10

ij ), the strengths of the interaction between the
i-th gene and the j-th gene in the 10 subgroups, be the response. Let the corresponding
pseudotime (t1, t2, . . . , t10) be the regressor; then, perform the simple linear regression.
Denote the slope estimator as βij. By combining the slope estimators of the regressions
of all pairs of genes, we obtain the regression coefficients matrix β ∈ Rp×p with the (i, j)
entry is βij.

2.4. Code Availability

We provided code and data repositories to support this study. The main repository
contains R code for reproducing figures and analyses presented in the paper and can be
found at https://github.com/cailab-tamu/scInTime (accessed on 4 February 2022).

3. Results
3.1. The scInTime Architecture
3.1.1. Construct Pseudotime-Series Gene Regulatory Networks

To identify the cell stage according to their pseudotime and biological transition states,
cells were ordered according to their pseudotime (e.g., estimated using Monocle 3) or their
differentiation potency (e.g., estimated using CCAT) and then divided into multiple (e.g., 10)
pseudotime-series subgroups corresponding to cells’ biological transition states (Figure 1A,
up). Thereby, cells were assumed to be sorted according to their biological transition states,
which could come from cellular processes, such as cell differentiation or cell reprogramming
in response to a stimulus. After assigning pseudotime to cells and dividing cells into
subgroups, we constructed scGRN for each subgroup using PC regression [15] (Figure 1A,
bottom). PC regression is computationally efficient when compared to other GRN inference
algorithms, such as GENIE3 [16]. In addition, PC regression constructs gene regulatory
network that are weighted and directed, whereas GENIE3 only returns the associations
between genes. In each scGRN, interacting genes were connected with the weight of each
linker reflecting how strongly each pair of genes interacted.

https://github.com/cailab-tamu/scInTime
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progressive transcriptomic profile of the given cellular process. (B) Step 2: Fit a linear regression 
model to the 10 scGRNs. We fit a linear regression model for the 10 coefficients on the state index 
for each pair of genes. If this pair of genes’ regulation strength increases along the 10 stages, the 
regression coefficient will be positive and vice versa. (C) Step 3: Generate the regression coefficient 
matrix. All the regression coefficients are collected into a single regression coefficients matrix, rep-
resenting the global profile of all pairs of gene-gene regulation changes across the given cellular 
process. (D) Dimensionality reduction and visualization of the regression coefficients matrix. We 
used tSNE embedding to reduce dimensionality on the regression coefficients matrix and visualize 
it. Each dot in the tSNE plot represents a gene embedded in the 2D plot based on its global profile 
in the regression coefficients matrix. The k-means clustering algorithm divides the genes in the re-
gression coefficients matrix into 50 clusters. Enrichr analysis is performed on selected gene clusters. 
The genes are rank ordered according to their Mahalanobis distance to the embedding center. Then, 
the GSEA analysis is performed on the ranked gene list. 

3.1.2. Regression Analysis 
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Figure 1. The analytical framework of scInTime. (A) Step 1: Order cells and construct networks.
The cells are arranged and divided into 10 subgroups according to the pseudotime inferred using
a pseudotime analysis tool, such as Monocle 3. Each group stands for a different transition state.
Next, an scGRN is constructed for each group of cells. Each scGRN depicts gene-gene regulatory
relationships at the given pseudotime point. A total of 10 scGRNs are constructed, each comprising
the progressive transcriptomic profile of the given cellular process. (B) Step 2: Fit a linear regression
model to the 10 scGRNs. We fit a linear regression model for the 10 coefficients on the state index for
each pair of genes. If this pair of genes’ regulation strength increases along the 10 stages, the regression
coefficient will be positive and vice versa. (C) Step 3: Generate the regression coefficient matrix.
All the regression coefficients are collected into a single regression coefficients matrix, representing
the global profile of all pairs of gene-gene regulation changes across the given cellular process.
(D) Dimensionality reduction and visualization of the regression coefficients matrix. We used tSNE
embedding to reduce dimensionality on the regression coefficients matrix and visualize it. Each
dot in the tSNE plot represents a gene embedded in the 2D plot based on its global profile in the
regression coefficients matrix. The k-means clustering algorithm divides the genes in the regression
coefficients matrix into 50 clusters. Enrichr analysis is performed on selected gene clusters. The genes
are rank ordered according to their Mahalanobis distance to the embedding center. Then, the GSEA
analysis is performed on the ranked gene list.

3.1.2. Regression Analysis

Regression analysis was then performed to concatenate all the gene regulatory in-
formation from the 10 scGRNs into one single regression coefficient matrix. We fitted a
linear regression model for the 10 regulation coefficients for each pair of genes to obtain a
regression coefficient. Each regression coefficient stands for the change in the interaction
strength between the gene pair as a function of pseudotime.
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3.1.3. Build Regression Coefficients Matrix

We then collected the regression coefficient of each pair of genes to generate a single
regression coefficients matrix (Figure 1C). If the regulation strength between gene i and
gene j became stronger along the pseudotime, the regression coefficient value β(i, j) would
be positive. Conversely, if the regulation strength between the gene pairs became weaker
along the pseudotime, the β(i, j) would be negative.

3.1.4. Analysis of Regression Coefficients Matrix

To visualize relationships between genes with features in the regression coefficients
matrix, we used the dimension reduction method tSNE to embed genes into a 2D scatter
plot (Figure 1D). Each dot in the tSNE plot represented an embedded gene whose position
was determined by the gene’s profile in the regression coefficient matrix. Then, we used
k-means clustering and Mahalanobis distance measurement to analyze the regression
coefficients matrix.

We used the k-means clustering algorithm to divide the genes into 50 clusters (Figure 2F)
to explore and compare the genes’ features on the tSNE embedding. Next, Enrichr [17] was
used to perform the gene set enrichment analysis for each group of genes (Figure 1D, up).
This systematic screen revealed many known and unexpected biological pathways associ-
ated with the genes in each cluster (Figure 2G,H). In addition, one feature was noteworthy:
each gene’s relative position in the tSNE embedding plot was correlated with the gene’s
feature in the regression coefficients matrix. More specifically, the clusters located in the
peripheral region of the tSNE plot tended to contain genes with more biologically mean-
ingful functions, and the enrichment results were more statistically significant (Figure 2H).
We also found that the most highly variable genes (HVGs) calculated using the Seurat
package [10] were mainly located in the peripheral region of the tSNE plot (Figure S1A).
Less variable genes, by contrast, were more likely to be situated in the center of the plot.
Because each regression coefficient value in the regression coefficient matrix stands for
the changes of each gene’s regulation strength across the pseudotime, a possible reason
was that genes with a dynamical regulatory relationship with other genes would have a
greater absolute regression coefficient value. As a result, these genes would be pushed
to the peripheral region of the tSNE embedding. Other genes with little or no regulatory
relationship across the pseudotime, by contrast, would have a small absolute regression
coefficient value and stay at the center of the tSNE plot.

For the Mahalanobis distance measurement, we ranked all the genes in the tSNE
embedding by their Mahalanobis distance to the center of the plot (Figure 1D, up), then
tested if the location of each cluster on the tSNE embedding was associated with any
biologically meaningful functions, thus resulting in a ranked gene list. We then applied
gene set enrichment analysis (GSEA) to reveal the biological processes enriched in this
ranked gene list (Figure 1D, bottom). Indeed, genes with relevant functions were likely to
be toward the top of the gene list, suggesting that the genes at the peripheral region of the
tSNE plot might recapitulate the most important regulators related to the cellular process
in question.
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Figure 2. scInTime analysis with time-resolved scRNA-seq data from zebrafish hindbrain reveals
gene expression programs in neurogenesis. (A) Visualization of cells using UMAP embeddings
plot. The cells are collected at 16 hpf, 24 hpf, and 44 hpf and color-coded accordingly. (B) UMAP
visualization of cells colored according to their pseudotime estimation (left panel) and differentiation
potency (right panel). The pseudotime is estimated using Monocle 3. The level of differentiation
potency is estimated using the CCAT algorithm. (C) Expression level (log-transformed UMIs) of three
representative genes, expressed highly at three different stages of development. (D) Boxplot of cells
in different developmental stages and their pseudotime estimates. (E) Boxplot of cells in different
developmental stages and their differentiation potency. (F) Clustering of genes in the tSNE plot. The
5863 genes are clustered into 50 clusters using the k-means algorithm. Genes in the same cluster
have a similar profile in the regression coefficient matrix. (G) The position of four clusters #13, #14,
#15, and #16 in the tSNE plot. Clusters #13 and #14 are in the peripheral region of the 2D tSNE plot;
clusters #15 and #16 are in the central region. (H) Results of enrichment analysis for the four clusters
in (G). N.S., not significant. (I) GSEA enrichment plot for Pou5f1-dependent transcriptional network.
(J) tSNE visualization of genes (n = 5863) embedded in a 2D plot based on each gene’s profile in the
regression coefficient matrix. In the plot, each dot represents a gene. The leading-edge genes for the
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Pou5f1-dependent transcriptional network given in GSEA analysis are highlighted red. (K) A
pseudotime-series heatmap showing the change of regulatory strength between genes as a function of
time. The genes shown are the leading-edge genes in the Pou5f1-dependent transcriptional network,
as in (I,J). (L) Positions of 30 genes with the highest regulatory strength with dlb in the tSNE plot. The
genes labeled with black stars are from the model showed in (O), as in (N). (M) The expression level
of three selected genes (dla, dlb, and her4.4) as a function of pseudotime shows a strong covarying
relationship among them. None of these genes’ expressions show a monotonic relationship with
pseudotime. (N) Heatmap of regression coefficients between dlb and each of its top 30 regulated
genes across 10 pseudotime intervals. The genes labeled with black stars are from the model showed
in (O), as in (L,O) Model of gene regulation: Products of genes dta and dtb activate genes in the
delta-notch signaling pathway and then her4, which is involved in a negatively regulatory feedback
loop suppressing dlb expression.

3.2. Applications to Time-Resolved scRNA-seq Data
3.2.1. Application 1: Zebrafish Hindbrain

To investigate the applicability of the pipeline, we first performed scInTime analysis
on a published data set from the zebrafish hindbrain to identify the essential regulatory
genes associated with the neurogenesis process [7]. This data set consists of 4112 single
cells spanning three developmental stages of neuronal differentiation (Figure 2A): 16 hpf
(the beginning of neurogenesis), 24 hpf (early stages of development), and 44 hpf (pattern
of neurogenic zones fully established). We used Monocle 3 to assign each cell a pseudotime
according to their position in the differentiation trajectory (Figure 2B, left). We also used the
CCAT package to estimates the cells’ differentiation potency as a complementary approach
to Monocle 3 (Figure 2B, right). Not surprisingly, we found that the progenitor cells
from 16 hpf, dorsal progenitors from 24 hpf, and ventral-medial progenitors from 24 hpf
have relatively lower pseudotime and high differentiation potency. The differentiating
progenitors from 44 hpf, immature neurons, and hindbrain neurons, on the contrary, have
relatively high pseudotime and low differentiation potency (Figure 2D,E). We also showed
the expression level of three marker genes expressed during neurogenesis (Figure 2C).
The mki67 is the proliferation and immature neuron marker, sox3 is the intermediate
differentiation state marker, and elavl3 is a neuronal marker.

Next, the cells (n = 4112) were divided into 10 subgroups according to their pseudotime.
Each subgroup contained approximately 400 cells (Group 1: 1:400; Group 2: 401:800; and
so on). We filtered out the genes expressed by fewer than a certain number of cells (e.g.,
5% of all the cells) and kept 5863 genes for the downstream analysis. After the scGRNs
construction and regression, we obtained a 5863-by-5863 regression coefficient matrix. We
then performed dimensionality reduction using the tSNE (Figure S1A). We calculated the
HVGs (n = 2000) in this data set using the Seurat package and highlighted the HVGs in
the tSNE embedding (Figure S1A). The HVGs locate favorably to the peripheral region on
the tSNE plot. We also used another dimensionality reduction method, PHATE [18], to
create a new embedding on the regression coefficient matrix. We highlighted the HVGs
in the PHATE embedding (Figure S1B) and found that the HVGs were primarily located
in the most distinct endpoints. In contrast, most non-HVGs were situated in the middle
of each PHATE branch, suggesting that the HVGs shared strong concordance with the
most distinct genes detected by PHATE. These results showed that both tSNE and PHATE
tend to put data points (in our case, genes) with characteristic features (in our case, more
variable expression) at peripheral embedding regions. This embedding pattern of genes
inspired us to use tSNE and PHATE to embed genes from the regression coefficient matrix.

Therefore, with the regression coefficient matrix, we embedded genes with tSNE and
then clustered them into 50 clusters based on their tSNE embedding (Figure 2F). In the
PHATE embedding, we randomly selected multiple clusters from the tSNE embedding and
highlighted the genes from each cluster (Figure S1C). We observed that genes in the same
tSNE cluster are either centered together at the middle of the PHATE embedding or located
at the same branch, indicating that tSNE and PHATE performed similarly in identifying
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distinct gene sets. Furthermore, in the regression coefficient matrix, genes found close
to each other on the tSNE embedding share a similar global regulatory relationship with
other genes.

Having confirmed that the lower dimensional tSNE embedding can reveal the un-
derlying structure of the regression coefficient matrix, we next investigated the collective
functions in different tSNE clusters of genes. To address this, we applied the Enrichr to
perform enrichment analysis for genes in selected clusters (Figure 2G,H). We found that
clusters #31 and #7, which are located at the peripheral region of the tSNE plot, are en-
riched in neurogenesis associated pathways, such as neural crest differentiation, hedgehog
signaling pathway, cell cycle, and Polo-like kinase 1 (PLK1) pathway. The clusters located
at the center of the tSNE plot, e.g., clusters #26 and #37, have no statistically significant
pathway enriched.

We identified 272 pathways with false discovery rate (FDR) < 0.05 after ranking-
ordering all the genes based on their Mahalanobis distance to the center of the tSNE plot
and performing the GSEA (Table S1, Figure 2I–K), including regeneration of zebrafish
CNS, adult neurogenesis, delta-Notch signaling, lateral inhibition in zebrafish spinal cord
development, and so on. These enriched gene sets revealed crucial genes and pathways
associated with zebrafish neurogenesis and hindbrain patterning. Figure 2I,J show the
enrichment score and the tSNE embedding of the leading-edge genes from the zebrafish
Pou5f1-dependent transcriptional networks in temporal control of the early development
pathway. The heatmap from Figure 2K reveals the involvement of two sets of genes during
the early (her3 [19]; sox19a [20]; sox19b [21]; sox21a) and late (tal1; tfap2a [7]) processes of
neural development.

scInTime can discover developmental master regulators and their regulation relation-
ships regardless of their expression level (Figure 2L–O). For example, newly specified
neurons express Delta genes (i.e., dla and dlb) to promote Notch activity in neighboring
neuron precursors to maintain a proliferative stem cell population [22]. The transcription
factor her4 is a downstream effector of Notch-Delta signaling [23]. Activation of notch1
leads to strong activation of her4. Moreover, her4 is involved in a negatively regulatory
feedback loop to suppress dlb expression [24]. Since dlb is highly expressed in neuronal
cells, we choose dlb to study its regulation across the pseudotime. Figure 2L shows the
tSNE embedding of the top 30 regulators of the dlb, with the greatest absolute regression
coefficient values. Figure 2M shows the dynamic expression level of the three genes, dla,
dlb and her4.4. We showed the regulation changes between dlb and its top 30 regulators in
10 pseudotime stages (Figure 2N). We observed a gene regulation model involving dla, dlb,
and her4.4, in which dla and dlb activate her4.4 through the Notch-delta signaling pathway.
Her4.4, on the contrary, can inhibit the expression of dla and dlb. It is worth noting that only
dla and dlb were identified as DE genes using Monocle 3, whereas her4.4 was not identified
as differentially expressed gene. Thus, scInTime can extend beyond traditional DE analysis
by discovering developmental regulators and inferring their gene regulatory relationships
across the pseudotime regardless of their expression level.

3.2.2. Application 2: HNSCC Cell Line

Patients with head and neck squamous cell carcinoma (HNSCC) benefit from cetux-
imab treatment which targets the epidermal growth factor receptor (EGFR). However,
resistance to cetuximab occurs clinically early on. To overcome this unique resistance mech-
anism, researchers must learn more about the critical gene regulators and their regulation
relationships during cetuximab treatment.

To determine whether scInTime can provide insights into the potential drivers of the
trajectory during the cetuximab resistance development, we analyzed SCC6 cells from
another published data set [8]. This data set contains the SCC6 cell line and was treated with
cetuximab or PBS (untreated controls) for five consecutive days. After removing low-quality
cells and applying principal component analysis to visualize the data, we confirmed two
clusters of cells: cetuximab-treated (n = 2703) and PBS-treated (n = 2626) cells (Figure 3A).
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To trace the cells’ response to cetuximab treatment, we combined the two groups of cells as
a whole and used Monocle 3 to construct a trajectory involving all the cells (n = 5369). The
trajectory starts from the PBS-treated sample and ends at the cetuximab-treated sample.
Each cell was assigned a pseudotime accordingly (Figure 2C). t-test showed a significant
difference in the pseudotime between the two groups (Figure 2C), suggesting that the
cells have progressed to a different state with altered transcriptome to overcome the EGFR
inhibition. We also found four marker genes with divergent expression patterns prompted
by cetuximab: AREG and CXCL8 were down-regulated by cetuximab, whereas MMP2 and
VIM, two epithelial-to-mesenchymal transition (EMT) markers, were upregulated. These
results align well with earlier studies [25,26], suggesting that the cetuximab might have
promoted EMT in the SCC6 cell line.

The cells were divided into 10 subgroups as described previously. After the scGRNs
construction and regression, we obtained a 10,378-by-10,378 regression coefficient matrix.
The tSNE was used to embed the genes and k-means clustering was used to cluster the
genes into 50 clusters (Figure 3E). Enrichr analysis revealed several biological functions of
the peripheral clusters #37 and #1, including TGF-beta regulation of extracellular matrix,
EGFR1 pathway, RANKL signaling pathway, delta Np63 pathway, and cell-extracellular
matrix interactions. In contrast, the center clusters #15 and #32 have no biological pathways
significantly enriched (Figure 3F,G).

GSEA analysis of the resulting ranked gene list also revealed a series of biological
functions that are altered during cetuximab treatment. One example is the Beta-3 integrin
cell surface interactions pathway (Figure 3H–J). Integrins are the most common cellular
adhesion receptors and are implicated in nearly every stage of cancer development [27].
In pancreatic cancer cells, overexpression of integrin β1 activates the FAK/tyrosine ki-
nase/Akt pathway, resulting in EGFR-independent cell proliferation and, as a result, the
ability to overcome EGFR suppression by cetuximab [28].

GSEA analysis of the ranked gene list also revealed other adaptive mechanisms
induced by cetuximab treatment (Table S2), including RANKL regulation of apoptosis
and immune response, delta Np63 pathway, and AP-1 transcription factor network. In
gastric cancer cells, the RANKL/RANK pathway can abrogate cetuximab sensitivity by
phosphorylation of EGFR, AKT, and ERK [29], whereas ∆Np63α expression can increase
EGFR mRNA, total EGFR protein, and phospho-EGFR (Y1086), thus contributing to tumor
cell proliferation [30,31]. TGF induction of AP-1 proteins was also highly potentiated
by P63 and EGFR. [32]. The pathways identified by scInTime analysis confirmed the
cooperative pro-oncogenic functions of EGFR, AP-1, p63, and TGFβ, suggesting an early
onset of cetuximab resistance driven by these adaptive mechanisms.

scInTime successfully recapitulated the crucial regulators in the NF-kB signaling
pathway, which is known to be responsible for resistance to cetuximab therapy [33] and reg-
ulates EMT genes [32]. The NF-κB signaling pathway is tightly regulated by an inhibitory
molecule, namely IκBα/β/γ (IκB). Upstream activation like the TGF-β signaling path-
way can release the NF-κB dimer from IκB, thus activating the downstream target genes
like vimentin (VIM) [34] and fibronectin (FN1) [35] to promote the EMT process. Profilin
(PFN1), in contrast, can inhibit NF-κB activation by inhibiting IKK phosphorylation [36].
Another inhibitory gene, metallothionein 2A (MT2A), can inhibit the NF-κB pathway by
upregulating IκB-α and down-regulating p-IκB-α [37,38]. Vimentin can unidirectionally
(down)-regulate caveolin-1 (CAV1) [39]. In scInTime analysis, we not only identified the
genes associated with TGF-beta regulation of extracellular matrix pathway in peripheral
clusters in the tSNE embedding (Figure 3F,G) but also revealed a gene regulation model
during this EMT process by analyzing the top 30 regulators of the EMT marker gene, VIM
(Figure 3K–N). In this model, the VIM gene is negatively associated with PFN1, MT2A, and
CAV, and positively related with FN1, aligning well with the previous studies mentioned
above. Note that although the fit_models function in the Monocle 3 package detected all
five genes in this model as genes that change as a function of pseudotime (Figure 3M),
Monocle 3 did not consider the corresponding regulatory relationship among those genes.
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Figure 3. scInTime analysis with scRNA-seq data from HNSCC cell line reveals gene expression
programs in cetuximab resistance development. (A) Visualization of cells using tSNE embeddings
plot. The cell line received cetuximab (treated) or PBS (untreated), and after five consecutive days, the
cells were collected for scRNA-seq and color-coded accordingly. (B) Two-dimensional representation
of the data using tSNE. The trajectory inferred by Monocle 3 is displayed. (C) Boxplot of cells in
different treatment groups and their pseudotime estimates. (D) Expression level (log-transformed
UMIs) of four representative genes, expressed differentially at two different treatments. (E) Clustering
of genes in the tSNE plot. In the plot, each dot represents a gene. The 10,378 genes are clustered
into 50 clusters using the k-means algorithm. Genes in the same cluster have a similar profile in the



Genes 2022, 13, 371 12 of 17

regression coefficient matrix. (F) Positions of four clusters, #37, #1, #15, and #32, in the tSNE plot.
Clusters #37 and #1 are in the peripheral region of the 2-D tSNE plot; clusters #15 and #32 are in the
central region. (G) Results of enrichment analysis for the four clusters in (G). N.S., not significant.
(H) GSEA enrichment plot for Beta-3 integrin cell surface interactions. (I) tSNE visualization of
genes (n = 10,378) embedded in a 2D plot based on each gene’s profile in the regression coefficient
matrix. The leading-edge genes for Beta-3 integrin cell surface interactions given in GSEA analysis
are highlighted red. (J) A pseudotime-series heatmap showing the change of regulatory strength
between genes as a function of time. Genes shown are the leading-edge genes in Beta-3 integrin cell
surface interactions, as in (I). (K) Position of 30 genes with highest regulatory strength with VIM
in the tSNE plot. The genes labeled with black stars are from the model showed in (N), as in (L).
(L) Heatmap of regression coefficient values (levels of regulatory strength) between dlb and each of
its top 30 regulated genes across 10 pseudotime intervals. The genes labeled with black stars are from
the model showed in (N), as in (K). (M) The expression level of three selected genes (CAV1, MT2A,
and PFN1) as a function of pseudotime, showing a strong covarying relationship among them. None
of these genes’ expressions show a monotonic relationship with pseudotime. (N) The model of the
regulations among the selected genes. The activation of the NF-κB signaling pathway will upregulate
the transcription of VIM. VIM unidirectionally down-regulates CAV1. PFN1 and MT2A inhibit VIM
expression by inhibiting the activation of the NF-κB signaling pathway.

3.2.3. Application 3: Mouse Cardiomyocytes

To further evaluate scInTime’s ability to identify the critical genes associated with
stem cells and differentiation, we analyzed another published time-resolved data set from
mouse cardiomyocytes (CMs). This data set contains a total of 1596 left ventricular free
wall CMs spanning 15 timepoints ranging from embryonic day (e)14 to postnatal day (p)84
(Figure 4A). To understand the gradual transcriptomic changes over the CM maturation
process, we first performed trajectory inference using Monocle 3 and stemness estimation
using CCAT (Figure 4B,C). We also plotted the Monocle 3-computed pseudotimes, and
CCAT estimated differentiation potency at each biological timepoint, which validated the
progressively increasing pseudotime (Figure 4E, top) and decreasing CCAT score (Figure 4E,
bottom) over biological time. Additionally, feature plot of the four marker genes (Figure 4D)
also uncovered the sarcomeric isoform switching from fetal myosin heavy chain 7 (Myh7)
to adult Myh6 as well as the switching from slow skeletal troponin I (Tnni1) to cardiac
troponin I (Tnni3) in mature CMs, matching earlier reports about rodents’ CM maturation
process [40–43].

After the scGRNs construction and regression, we obtained a 6969-by-6969 regres-
sion coefficient matrix for downstream analysis. We first embedded the genes in the
regression coefficient matrix using tSNE; then, we clustered the genes into 50 clusters
(Figure 4F). We observed a similar pattern described above: the marginal clusters showed
more statistically significant pathways associated with the CM maturation process com-
pared with the central clusters (e.g., terms related to cardiac structure, contractile function,
electrophysiology, and metabolism). For example, the genes in clusters #44 and #40 are
enriched in the electron transport chain, cardiac muscle contraction, tricarboxylic acid cycle,
fatty acid beta-oxidation, and glycolysis and gluconeogenesis (Figure 4G,H). In contrast,
central clusters, e.g., clusters #25 and #6, do not have CM maturation-related pathways
significantly enriched.

Having assessed the functions on individual clusters, we next asked whether the genes
prioritized by scInTime can recapitulate pathways associated with CM maturation. We
rank-ordered the genes in the tSNE embedding by their Mahalanobis distance to the center
of the tSNE embedding. We observed several gene sets related to the CM’s morphogenesis
and maturation significantly enriched in this rank-ordered gene list (Table S3), including
the actin cytoskeleton regulation, the calcium regulation in the cardiac cell, and the PPAR
signaling pathway. These pathways are associated with the functional features for more
mature CMs. In addition, we discovered an enhanced regulation pattern in the pyruvate
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metabolism pathway, a marker for mitochondrial oxidative metabolism, across the pseu-
dotime. This suggests that baseline mitochondrial respiration and respiratory capacity in
CMs increased immediately after birth, consistent with previous observations on the “fetal
switch” from glycolysis to oxidative glucose metabolism during CM maturation [44–46].
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Figure 4. scInTime analysis with time-resolved scRNA-seq data from mouse CMs reveals gene
expression programs in CM maturation. (A) Visualization of cells using tSNE embeddings plot. The
cells are collected at 15 time points and color-coded accordingly. (B) tSNE visualization of cells colored
according to their pseudotime estimation. The pseudotime is estimated using Monocle 3. (C) tSNE
visualization of cells colored according to their differentiation potency. The differentiation potency is
estimated using CCAT. (D) Expression level (log-transformed UMIs) of four representative genes,
expressed differentially at different time points. (E) Boxplot of cells in different developmental
stages (time points), colored by their pseudotime (up) and differentiation potency (bottom).
(F) Clustering of genes in the tSNE plot. In the plot, each dot represents a gene. The 6969 genes are
clustered into 50 clusters using the k-means algorithm. Genes in the same cluster have a similar
profile in the regression coefficient matrix. (G) Positions of four clusters: #44, #40, #6, and #25, in
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the tSNE plot. Clusters #44 and #40 are located in the peripheral region of the 2D tSNE plot; clusters
#6 and #25 are located in the central region. (H) Results of enrichment analysis for the four clusters in
(F). N.S., not significant; N.A., not applicable. (I) GSEA enrichment plot for Pyruvate metabolism.
(J) tSNE visualization of genes (n = 6969) embedded in a 2D plot based on each gene’s profile in
the regression coefficient matrix. The leading-edge genes for pyruvate metabolism given in GSEA
analysis are highlighted in red. (K) A pseudotime-series heatmap showing the change of regulatory
strength between genes as a function of time. The genes shown are the leading-edge genes in Pyruvate
metabolism, as in (I,J). (L) Positions of the 30 genes with the highest regulatory strength with Ppara
in the tSNE plot. The genes labeled with black stars are from the model showed in (O), as in (M).
(M) Heatmap of regression coefficient values (levels of regulatory strength) between Ppara and each of
its top 30 regulated genes across 10 pseudotime intervals. The genes labeled with black stars are from
the model showed in (O), as in (L). (N) The expression level of three selected genes (Acaa2, Acadvl,
and Ndufa10) as a function of pseudotime. (O) The model of the regulations among the selected
genes. Ppara, as an important regulator of fatty acid metabolism, activates fatty acid metabolism
genes, including Acadvl and Acaa2, and genes related to mitochondrial energy metabolism (Ndufa).
Ppara agonists can inhibit Cox genes expression.

Peroxisome proliferator-activated receptors (PPARs) signaling regulates numerous
genes in mitochondria biogenesis and cellular metabolism [47]. Ppara is a PPAR family
transcription factor found in various tissues, including hepatocytes and CMs, where fatty
acids are mostly catabolized [48,49]. Ppara controls fatty acid metabolism and activates
genes involved in fatty acid metabolism, such as Acadvl and Acaa2, as well as mitochondrial
energy metabolism genes (Ndufa). In addition, several Ppara agonists, such as Wy-14643 [50,
51] and LYSO-7 [51], can inhibit Cox genes expression [52], implying a negatively regulation
mechanism between these two genes. To gain mechanistic insights into the regulators
governing postnatal CM maturation, we looked at the top 30 genes that have the strongest
regulatory relationships with Ppara. Using scInTime analysis, we recovered several fatty
acid metabolism genes and several cox genes mentioned above. Furthermore, we discovered
a gene regulatory model incorporating these genes, in which Ppara upregulates Acadvl,
Acaa2, and Ndufa while down-regulating Cox genes, such as the Cox6c gene.

4. Discussion

This work proposes scInTime, an unsupervised machine learning framework for study-
ing cell differentiation, incorporating scGRNs and pseudotime information. This flexible
framework allows researchers to identify master regulators and underlying regulatory
programs that shape the trajectory inferred by a TI method. Unlike other methods that
perform differential expression analyses with cells with different pseudotime along the
trajectory, scInTime incorporates scGRNs with dynamic interaction levels between gene
pairs to detect the gene regulation relationships that evolve over pseudotime.

The flexibility provided by scInTime is crucial, as various TI methods based on different
strategies may produce different trajectories even for the same given scRNA-seq data
set. scInTime can be utilized as an effective “third-party” tool, independent from any TI
methods, to provide in-depth downstream analysis, complementing existing TI methods
and extending the function of those TI methods.

We demonstrated scInTime’s ability to find master regulators in three different cellular
developmental systems with these considerations. By evaluating these published data sets,
we showcased the interpretability of the scInTime framework. As said, we demonstrated
that scInTime could be used as the last step in any downstream analysis of time-course
studies. To the best of our knowledge, scInTime is the first tool with such a GRN-based
TI interpretation framework. We therefore anticipate that scInTime as a powerful and
flexible computational method, extending the function of TI inference, will contribute to
the detection of mater regulators of cell differentiation in various cellular systems studied
in the future.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13020371/s1, Figure S1: Visualization of the regression
coefficient matrix on tSNE and PHATE embedding. (A) tSNE embedding of the regression coefficient
matrix (2000 HVGs are highlighted in red). (B) PHATE embedding of the regression coefficient matrix
(the 2000 HVGs are highlighted in red). (C) Visualization of four selected clusters on the PHATE
embedding. Genes of each cluster are highlighted in red. Table S1: Results of GSEA analysis of the
ranked gene list from scInTime analysis of the zebrafish hindbrain data. Table S2: Results of GSEA
analysis of the ranked gene list from scInTime analysis of the HNSCC data. Table S3: Results of GSEA
analysis of the ranked gene list from scInTime analysis of the mouse CM data.
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