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Abstract

Confusion and misunderstanding exist regarding the lack of cardiovascular and other

adverse health effects of p-synephrine and p-octopamine relative to ephedrine and

m-synephrine (phenylephrine) which are known for their effects on the cardiovascu-

lar system. These four molecules have some structural similarities. However, the

structural and stereochemical differences of p-synephrine and p-octopamine as

related to ephedrine and m-synephrine result in markedly different adrenergic recep-

tor binding characteristics as well as other mechanistic differences which are

reviewed. p-Synephrine and p-octopamine exhibit little binding to α-1, α-2, β-1 and

β-2 adrenergic receptors, nor are they known to exhibit indirect actions leading to an

increase in available levels of endogenous norepinephrine and epinephrine at com-

monly used doses. The relative absence of these mechanistic actions provides an

explanation for their lack of production of cardiovascular effects at commonly used

oral doses as compared to ephedrine and m-synephrine. As a consequence, the

effects of ephedrine and m-synephrine cannot be directly extrapolated to p-

synephrine and p-octopamine which exhibit significantly different pharmacokinetic,

and physiological/pharmacological properties. These conclusions are supported by

human, animal and in vitro studies that are discussed.
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1 | INTRODUCTION

The cardiovascular effects of ephedrine and m-synephrine (phenyl-

ephrine) are well known. Both ephedrine and m-synephrine have been

used to treat various causes of hypotension (Dusitkasem, Herndon,

Stahl, Bitticker, & Coffman, 2017). Increases in systolic blood pressure

and decreases in heart rate have been reported with oral doses of m-

synephrine over 15 mg, and approximately a 20 mmHg increase in

systolic blood pressure may occur with an oral dose of 45 mg

(Atkinson, Potts, & Anderson, 2015). Typical intravenous doses in the

range of 0.7–1.0 mg/kg of ephedrine have been used to treat hypo-

tension (Dusitkasem et al., 2017). Due to adverse effects of ephedrine

as tachycardia and palpitations at oral doses as low as 20 mg

(Hackman et al., 2006; Haller & Benowitz, 2000), the use of

ephedrine-containing dietary supplements was prohibited by the

U.S. FDA in 2004.
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Questions have been raised regarding the safety of p-synephrine

due to its structural similarities to ephedrine. Various authors have

assumed that p-synephrine exhibits the same cardiovascular effects as

ephedrine. This conclusion is not supported by approximately 30 peer

reviewed human clinical studies that have shown p-synephrine to be

without cardiovascular or other adverse effects at commonly used

doses in the range of 25–100 mg per day (Stohs, 2017; Suntar, Khan,

Patel, Celano, & Rastrelli, 2018).

It has been widely assumed but without evidence that p-

synephrine may act as a stimulant when consumed orally and thus may

exhibit cardiovascular activity (Anon, 2010; Bakhyia, Dusemund, et al.,

2017, Bakhyia, Ziegenhagen, et al., 2017; Bent, Padula, & Neuhaus,

2004; Fugh-Berman & Myers, 2004; Haaz, Williams, Fontaine, &

Allison, 2010; Health Performance Resource Center, 2015; Inchiosa Jr.,

2011; National Center for Complementary and Integrative Health,

2015; Natural Medicines Comprehensive Database, 2016; OPPS, 2016;

Penzak et al., 2001; Rasmussen & Keizers, 2015). However, none of

these reports critically reviewed the mechanistic studies or the human

clinical studies that have been conducted. The current review addresses

extant information regarding the comparative mechanisms and effects

of ephedrine, p-synephrine, m-synephrine and p-octopamine.

Chemically and structurally, p-synephrine, p-octopamine (nor-syn-

ephrine) and m-synephrine (phenylephrine) are similar to ephedrine

(Figure 1). Ephedrine is a phenylpropanolamine derivative and does

not contain a para-substituted hydroxy group. p-Synephrine and p-

octopamine are phenylethanolamine derivatives with a para-

substituted hydroxyl group. p-Octopamine is the N-demethylated

derivative of p-synephrine. As will be discussed, these two chemical

differences greatly change the stereochemistry, and alter adrenergic

receptor binding characteristics and pharmacokinetic properties.

Confusion exists in the literature because there is also m-

synephrine (phenylephrine) that possesses the hydroxyl group in the

meta-position on the benzene ring as opposed to the para-position

for p-synephrine and p-octopamine (Figure 1). m-Synephrine is a Food

and Drug Administration (FDA)-approved over-the-counter synthetic

drug ingredient used in nasal sprays and decongestants.

2 | SOURCES AND EXPOSURE

The most common commercial source of p-synephrine is Citrus

aurantium L (bitter orange). The commercial growing of bitter orange

began around Seville, Spain in the 12th century and bitter orange was

the only citrus grown in Europe for 500 years. Bitter oranges are

cultivated extensively throughout the Mediterranean, China, India,

Africa, the Middle East, the West Indies and Brazil Humans are widely

exposed to varied concentrations of p-synephrine on a daily basis from

various juices, and food and beverage (orange flavored liqueurs) prod-

ucts from bitter orange, as well as Marrs sweet oranges (Citrus sinensis),

grapefruits (Citrus paradisi), mandarins (Citrus reticulata), clementines

(Citrus clementina) and other orange-related species that contain p-

synephrine. Mandarin oranges juice may contain more than 20 mg

and as much as 40 mg p-synephrine per eight fluid oz glass (Dragull,

Breksa, & Cain, 2008; Uckoo, Jayaprakasha, Nelson, & Pati, 2011).

Various Citrus cultivars are the plant sources with the highest

known concentration of p-octopamine. For example, Meyer lemons

and other lemons as well as mandarin oranges are common sources

(Uckoo et al., 2011; Wheaton & Stewart, 1969). As a consequence,

humans are frequently exposed to p-octopamine. Juices of other Cit-

rus species including Marrs sweet oranges, grapefruits, pummelos (Cit-

rus grandis), tangerines (Citrus tangerina) and clementines contain no

detectable p-octopamine. p-Octopamine also occurs in mollusks, other

invertebrates and various other animals (Stohs, 2015). In humans, it is

produced in the brain and nerve tissues in trace amounts, and may act

as a neurotransmitter precursor and neuromodulator as well as a bio-

marker for neurological disorders (Shi et al., 2016; Stohs, 2015).

p-Synepherine m-Synepherine

p-octopamine Ephedrine 

F IGURE 1 Chemical structures of p-
synephrine, m-synephrine, p-octopamine
and ephedrine
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Ephedra (Ephedra sinica, ma huang) has been used medicinally in

China for over 5,000 years (Abourashed, El-Alfy, Khan, & Walker,

2003; Trease & Evans, 1966). Ephedrine, the primary active constitu-

ent in ephedra, is derived from the aboveground parts of the plant

and related species, but can also be chemically synthesized. Most

prominent sources of ephedra and ephedrine are from China, India

and Pakistan (Abourashed et al., 2003). The use of ephedra in dietary

supplements is banned in the United States by the FDA, although it

can be used in traditional Chinese medicine. As a drug, ephedrine is

used to treat or prevent hypotension (Dusitkasem et al., 2017), and

has been used for asthma, obesity and narcolepsy (Abourashed et al.,

2003; Trease & Evans, 1966).

As noted above, m-synephrine is derived by chemical synthesis

and does not occur naturally in Citrus or other plant genera (Arbo

et al., 2008; Avula, Upparapalli, Navarrete, & Khan, 2005; Mattoli

et al., 2005; Mercolini et al., 2010; Nelson, Putzbach, Sharpless, &

Sander, 2007; Pellati & Benvenuti, 2007; Pellati, Benvenuti, &

Melegari, 2004, 2005; Pellati, Benvenuti, Melegari, & Firenzuoli,

2002; Roman, Betz, & Hildreth, 2007; Tsujita & Takaku, 2007), which

is contrary to suppositions in various articles and reviews (Bent et al.,

2004; Haaz et al., 2010; Penzak et al., 2001; Rossato et al., 2010;

Smedema & Muller, 2008; Stephensen & Sarlay Jr., 2009).

3 | MECHANISTIC STUDIES

Cardiovascular effects of ligands are associated with direct adrenergic

receptor binding and/or through indirect effects as the release of nor-

epinephrine and epinephrine. In general, vasoconstriction occurs

when ligands bind to α-adrenergic receptors, while binding to β-1

adrenergic receptors result in myocardial contractility and increased

heart rate. Ligand binding to β-2 adrenergic receptors is associated

with bronchodilation (Inchiosa Jr., 2011). β-3 adrenoreceptors are

located in white and brown adipose tissues and muscles as well as

other tissues, and their activation results in various metabolic effects

such as increases in lipolysis, and improvements in insulin resistance,

glycemic control and lipid profiles (Coman et al., 2009).

Ephedrine exhibits multiple mechanisms of action consisting of an

indirect effect which involves the release of norepinephrine and epi-

nephrine as well as a direct effect on adrenergic receptors (Andraws,

Chawla, & Brown, 2005; Diepvens, Westerterp, & Westerterp-

Plantenga, 2007; Haller & Benowitz, 2000; Inchiosa Jr., 2011; Mund &

Frishman, 2013). Through the indirect effect of ephedrine, norepineph-

rine and epinephrine act on α-1, β-1, and β-2 adrenergic receptors to

produce cardiovascular affects, while interacting with β-3 adrenergic

receptors to promote thermogenesis (Mund & Frishman, 2013).

Ephedrine also acts directly on all these adrenergic receptors to pro-

duce thermogenesis and cardiovascular effects (Andraws et al., 2005;

Diepvens et al., 2007; Haller & Benowitz, 2000; Inchiosa Jr., 2011).

The ability of ephedrine to act as an adrenergic agonist was stud-

ied in rat lung cell membranes (Jiang, Liu, Wang, Zhan, & Shu, 1987).

Ephedrine binding was approximately 20-fold greater than its enantio-

meric form pseudoephedrine to adrenergic receptors. No distinction

was made between β-1 and β-2 receptors (Jiang et al., 1987). The abili-

ties of ephedrine and pseudoephedrine to bind to β-2 adrenergic recep-

tors have also been studied (Li et al., 2014). The authors concluded that

the differences in the association constants accounted for the differ-

ences in the pharmacological potencies of the two compounds.

The immunochemical identification of β-3 adrenergic receptors in

various tissues of obese human subjects treated with ephedrine was

determined by De Matteis et al. (2002). Ephedrine administration

increased the expression of β-3 adrenergic receptors in obese sub-

jects, with the detection of these receptors in adipocytes and ventric-

ular myocardium as well as smooth muscle of the gall bladder, colon,

ileum and prostate. The authors also concluded that the “expression

in ventricular myocardium is consistent with the evidence that the β-3

adrenergic receptor mediates a negative inotropic effect on this tis-

sue”. These results are consistent with the well-known ability of the

ability of ephedrine to suppress appetite and facilitate weight man-

agement and weight loss (Hackman et al., 2006).

The role of thioredoxin-1 expression in the effects of ephedrine

was studied in rat pheochromocytoma PC-12 cells in culture, provid-

ing insight into the cellular and molecular mechanisms of action.

Thioredoxin-1 is a redox regulating protein with various biological

activities including the regulation of DNA binding transcription factor

and consequent neuroprotection. This study also demonstrated that

ephedrine induced thioredoxin-1 expression through a β-2 adrenergic

receptor/cyclic AMP/protein kinase/dopamine- and cyclic AMP-

regulated phosphoprotein signaling pathway, but did not involve β-1

adrenergic receptor binding (Jia, Zeng, Li, Ma, & Bai, 2013).

Brown et al. (1988) observed that [R-(−)] stereoisomers (l-forms)

of both p-synephrine and p-octopamine were approximately

1,000-fold less active in binding to rat aorta α-1 adrenergic receptors

and α-2 adrenergic receptors from rabbit saphenous vein than norepi-

nephrine. m-Synephrine (phenylephrine) binding was 150-fold and six-

fold less, respectively, to these two receptors than norepinephrine.

The [S-(+)] stereoisomers (d-forms) of p-octopamine and p-synephrine

exhibited over 100-fold lower binding actives than the [R-(−)] stereo-

isomers (l-forms) to α-1 and α-2 adrenergic receptors.

Ma, Bavadekar, Schaneberg, Khan, and Feller (2010) concluded

that p-synephrine acts as an antagonist rather than an agonist with

respect to human α-2a- and α-2c adrenergic receptors. Furthermore,

p-synephrine was approximately 50-fold less potent in activating

human α-1a adrenergic receptors. Several studies have concluded that

the hydroxyl group in the para position of the ring as occurs in p-

synephrine decreases adrenergic receptor binding and the subsequent

cardiovascular effects (Ma et al., 2010; Mukherjee, Caron, Mullikin, &

Lefkowitz, 1976). Jordan, Thonoor, and Williams (1987) concluded

that p-synephrine bound to the β-1 and β-2 adrenergic receptor about

10,000-fold or less actively than norepinephrine in guinea pig atria

and trachea.

Carpene' et al. (1999) examined the lipolytic activity of a number

of potential β-3 adrenergic receptor agonists including p-synephrine,

p-octopamine and noradrenaline (norepinephrine) in white fat cells

from hamsters, rats, dogs, humans and guinea pigs. p-Octopamine was

the most selective for β-3 adrenergic receptors, stimulating lipolysis in
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rat, hamster and dog adipocytes. p-Octopamine was the only amine

the authors studied that fully stimulated lipolysis in rat, hamster and

dog fat cells, but was ineffective in human and guinea pig fat cells. p-

Synephrine was partially active in stimulating lipolysis in all species

while tyramine, dopamine, and β-phenylethylamine exhibited no activ-

ity. The authors concluded that p-octopamine was the most selective

agonist for β-3 adrenergic receptors. These studies demonstrated

marked differences in adrenergic receptor binding among the various

biogenic amines that were assessed.

In a subsequent study, the lipolytic activity of p-synephrine, p-

octopamine, tyramine and N-methyltyramine were compared in rat

and human adipocytes based on β-3 adrenergic receptor binding

(Mercader, Wanecq, Chen, & Carpene, 2011). In rat fat cells, at a con-

centration of 10 μg/ml both p-synephrine and p-octopamine exhibited

approximately 60% of the lipolytic activity of 1 nM/ml of isoprenaline

while tyramine and N-methyltyramine exhibited no effect or were

weakly antagonistic. In human adipocytes, 10 μg/ml of both p-syn-

ephrine and p-octopamine exhibited approximately 10% of the lipo-

lytic activity of 1 μM/ml of isoprenaline. Various studies indicate that

N-methyltyramine acts as an α-adrenergic receptor antagonist while

promoting appetite and inhibiting lipolysis, effects counter to those of

ephedrine, p-synephrine and p-octopamine (Stohs & Hartman, 2015).

An extension of previous studies affirmed that the adrenergic

receptor binding of p-synephrine and p-octopamine in rodents was at

least 10-fold greater than in humans while tyramine and N-

methyltyramine exhibited no binding activity (Carpene', Testar, & Car-

pene', 2014). In fact, half-maximal lipolysis stimulation was achieved

with a 100-fold lower dose of p-octopamine in mouse adipocytes as

compared to human adipocytes. These results indicate that mice may

be much more responsive to p-octopamine than p-synephrine and

support previous observations that effects produced in rodents at

specific doses cannot be directly extrapolated to humans (Mercader

et al., 2011). In this study, high concentrations p-synephrine and p-

octopamine were shown to activate glucose transport in human fat

cells.

Several studies have examined the effects of p-synephrine on car-

bohydrate metabolism in perfused rat liver (de Oliveira, Comar, de Sa-

Nakanishi, Peralta, & Bracht, 2014; Peixoto et al., 2012). p-Synephrine

increased glycogenolysis, glycolysis, oxygen uptake, glucose output

and perfusion pressure. These effects were shown to be at least in

part mediated by α- and β-adrenergic signaling, while requiring the

simultaneous participation of both cAMP and Ca2+ (de Oliveira et al.,

2014). The authors concluded that most of the actions of p-

synephrine were catabolic.

Neuromedin U2 receptor (NMUR2) is present in the hypothalamic

regions of the brain and is involved in the regulation of energy bal-

ance, food intake, nociception and stress (Zheng, Guo, Wang, & Deng,

2014). As was demonstrated in NMUR2 negative and short hairpin

RNA knockdown HEK293 cell lines, p-synephrine binds to this recep-

tor with high efficacy and potency. The ability of p-synephrine to sup-

press appetite and enhance eating control has been affirmed in

humans (Kaats, Leckie, Mrvichin, & Stohs, 2017) and animals (Arbo

et al., 2009). How well p-synephrine can cross the blood brain barrier

to achieve functional concentrations and bind to NMUR2 has not

been specifically determined, nor have studies been reported regard-

ing the ability of ephedrine, m-synephrine and p-octopamine to across

the blood brain barrier. However, ephedrine can be detected in rat

brain following its administration (Song et al., 2014) and the neurologi-

cal effects of ephedrine are well known, thus demonstrating that it is

able to cross the blood brain barrier.

In an in vitro study, the effect of p-synephrine on glucose con-

sumption and its mechanism of action were determined in L6 skeletal

muscle cells in culture (Hong et al., 2012). p-Synephrine dose-

dependently increased basal glucose consumption by over 50%

relative to controls, and had no effect on cell viability. The increased

glucose consumption by p-synephrine involved Glut4-dependent

glucose uptake that in turn was dependent upon p-synephrine stimu-

lation of AMP-activated protein kinase phosphorylation.

The effects of p-synephrine on lipid accumulation and glucose

production have been assessed in H411E rat liver cells (Cui, Lee,

Lee, & Park, 2014). p-Synephrine dose-dependently decreased glucose

production, and α- and β-adrenergic receptor antagonists did not alter

this effect. These results indicated that the effects of p-synephrine on

gluconeogenesis did not require involvement of adrenergic receptors.

Several studies have demonstrated the anti-inflammatory activity

of p-synephrine. p-Synephrine suppressed lipopolysaccharide-induced

acute lung injury in mice by reducing the number of inflammatory cells

in the lungs, decreasing the levels of reactive species, enhancing

superoxide dismutase activity, decreasing tumor necrosis alpha and

interleukin-6 (IL-6), and increasing IL-10 (Wu et al., 2014). In normal

human fibroblasts and NIH/3 T3 mouse fibroblasts in culture, p-

synephrine inhibited IL-4-induced eotaxin-1 expression through the

inhibition of signal transducer and activator of transcription (STAT6)

phosphorylation which acts as a signal transducer immediately down-

stream from IL-4 (Roh et al., 2014). Eotaxin-1 is a potent chemo-

attractant and mediator for eosinophils which are associated with

inflammation. STAT6 is critical in activating cytokine gene expression

and cytokine signaling in immune and target tissue cells. p-Synephrine

also inhibited eosinophil recruitment induced by eotaxin-1 over-

expression. m-Synephrine had little effect on eotaxin-1 induction and

therefore little anti-inflammatory activity. These results indicated that

p-synephrine exerts anti-inflammatory effects at least in part by

inhibiting eotaxin-1 expression (Roh et al., 2014). Arbo et al. (2009)

reported that in mouse livers p-synephrine exhibited antioxidant and

tissue protective activities by enhancing reduced glutathione content,

decreasing glutathione peroxidase activity and increasing catalase

activity.

In a study involving isolated adipocytes from rats, Yen, Li, Hsu,

Lee, and Cheng (1998) showed that concentrations of 0.01–0.10 nmol

p-octopamine activated β-3 adrenergic receptors to lower glucose

uptake into adipocytes and increase cAMP. The involvement of β-3

adrenergic receptors was confirmed by using a β-3 adrenergic receptor

specific antibody, a specific agonist of β-3 adrenergic receptors

(BRL37344), and the β-adrenergic antagonists pindolol and propranolol.

In a study in isolated rat fat cells, the lipolytic activity of p-

octopamine and tyramine were shown to be approximately 100-fold
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less than norepinephrine (Nakano, Ishii, Cole, & Oliver, 1969). p-

Octopamine failed to exhibit β-adrenergic activity in rats as deter-

mined by initiation of thirst and increase in tail skin temperature

(Fregly, Kelleher, & Williams, 1979). The relative α-adrenergic activity

of p-octopamine was 2,000-fold less than norepinephrine (Fregly

et al., 1979). In a study involving contractile response of rat vascular

smooth muscle, the potencies of p-octopamine and m-synephrine rel-

ative to norepinephrine were determined to be 400-fold less active

and about one-third as active, respectively, clearly demonstrating the

greater adrenergic activity of m-synephrine than p-octopamine (Ress,

Rahmani, Fregly, Field, & Williams, 1980).

A group of G protein-coupled receptors known as trace amine-

associated receptors (TAAR) have been identified in recent years in

various human and animal tissues, and serve as neuromodulators

(Berry, Gainetdinov, Hoener, & Shahid, 2017; Borowsky et al., 2001;

Bunzow et al., 2001; Gainetdinov, Hoener, & Berry, 2018; Khan &

Nawaz, 2016; Pei, Asif-Malik, & Canales, 2016; Rutigliano,

Accorroni, & Zucchi, 2018). Because they are present in much smaller

amounts than the predominant neurotransmitters, the amines which

interact with these receptors are referred to as “trace amines”. The

most prominent biogenic amines which interact with TAAR include p-

octopamine, tyramine, tryptamine and β-phenylethylamine (Pei et al.,

2016; Rutigliano et al., 2018), although N-methyltyramine, p-

synephrine and 3-iodothyronamine have also been included as trace

amines (Khan & Nawaz, 2016). Ephedrine is not considered a trace

amine and is not found in the human nervous system. Whether it

interacts with TAARs is not known.

Humans possess six functional isoforms (subtypes) of TAAR,

namely, TAAR1, TAAR2, TAAR5, TAAR6, TAAR8 and TAAR9

(Gainetdinov et al., 2018). Of these isoforms, TAAR1 has been the

most extensively studied and may be the most important (Pei et al.,

2016; Rutigliano et al., 2018). TAAR1 has been shown to be a neuro-

modulator of dopaminergic, serotonergic and glutamatergic neuro-

transmission, and thus has profound physiological, pathophysiological

and pharmacological implications (Gainetdinov et al., 2018; Pei et al.,

2016; Rutigliano et al., 2018).

The TAARs constitute another mechanism whereby p-synephrine

and p-octopamine as well as N-methyltyramine and tyramine may

exert various physiological and pharmacological effects either by act-

ing as neurotransmitter precursors or neuromodulators, and serve as

biomarkers. For example, the circulating levels of p-synephrine are

increased in Parkinson's disease patients while norepinephrine levels

are decreased as compared to normal healthy individuals (D'Andrea

et al., 2019).

The potential mechanism of action of trace amines and the possi-

ble role of TAARs has been studied in porcine coronary and mesen-

teric arteries (Koh, Chess-Williams, & Lohning, 2019). The authors

concluded that contractile responses in coronary artery involved

activity of α1-adrenergic receptors and TAARs other than TAAR-1. In

contrast, the contractile responses of trace amino acids on the mesen-

teric artery appeared to involve indirect sympathomimetic activities

and direct action on α1-adrenergic receptors. Concentrations of 10−3

and 10−4 M of p-synephrine, p-octopamine and tyramine used in this

study were up to 15–20 fold greater than blood levels of approxi-

mately 10 ng/ml as determined by high performance liquid chroma-

tography following a typical 50 mg dose of p-synephrine (Shara,

Stohs, & Mukattash, 2016), and therefore, non-physiological. No car-

diovascular or other adverse effects have been observed in over

30 controlled human studies involving typical oral doses of p-

synephrine in the range of 25–100 mg (Stohs, 2017).

The above described in vitro studies indicate that p-synephrine

and p-octopamine exhibit effects involving a variety of mechanisms in

addition to selective binding to some adrenergic receptors with lim-

ited involvement of α- and β-1 and β-2 adrenergic receptors.

4 | DISCUSSION AND CONCLUSIONS

The above studies indicate that p-synephrine and p-octopamine cannot

be equated with m-synephrine or ephedrine and the effects of ephed-

rine cannot be extrapolated to p-synephrine or p-octopamine due to

structural and stereochemical differences which greatly alter receptor

binding characteristics, pharmacokinetic properties and the pharmaco-

logical/physiological effects produced. At the doses commonly used, p-

synephrine and p-octopamine do not produce adverse effects such as

an increase in heart rate or blood pressure that are characteristic of

ephedrine and possibly m-synephrine (Ratamess et al., 2018; Shara,

Stohs, & Smadi, 2017; Stohs, 2017; Suntar et al., 2018).

The structural differences result in marked differences in

pharmacokinetic properties. For example, first pass extraction of p-

synephrine is greater than p-octopamine following oral administration

(Da Silva-Pereira et al., 2016). The half-life of ephedrine following oral

administration in humans is approximately 6–7 hr (Csajka, Haller,

Benowitz, & Verotta, 2005; Pickup, May, SSendagire, & Paterson,

1976), while the half-lives of p-synephrine (Hengtmann & Aulepp,

1978; Haller et al., 2005, 2008) and m-synephrine (Golette, 2018;

Golette & Zimmerman, 2015) are 2–3 hr and 1–2 hr, respectively. No

studies on p-octopamine half-life were found.

Sympathomimetic agents vary broadly in their abilities to activate

adrenergic receptors, and therefore it should not be assumed that sub-

stances with some structural similarity will have similar effects

(Westfall & Westfall, 2014). Human and animal studies have shown

that adverse effects on blood pressure and heart rate are not associ-

ated with p-synephrine at commonly used doses (Ratamess et al., 2018;

Shara et al., 2017; Stohs, 2017; Suntar et al., 2018) The lack of cardio-

vascular effects in association with p-synephrine and p-octopamine are

due to the fact that both p-synephrine and p-octopamine bind much

more poorly to α-1, α-2, β-1 and β-2 adrenergic receptors than other

adrenergic agonists as ephedrine, norepinephrine and m-synephrine,

and also exhibits poor indirect effects (Stohs, 2017; Stohs & Badmaev,

2016; Stohs, Preuss, & Shara, 2011). In addition, as described above,

there are other differences in the mechanisms of action of p-syn-

ephrine, ephedrine and m-synephrine. The effects of p-octopamine are

similar to p-synephrine (Marles, 2011).

Various studies have shown that p-synephrine binds to β-3 adren-

ergic receptors, resulting in an increase in the body's ability to
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breakdown fats (Carpene' et al., 1999; Carpene' et al., 2014; Mercader

et al., 2011). Binding to β-3 adrenergic receptors does not influence

heart rate or blood pressure, although it may be speculated that car-

diovascular down-regulation due to β-3 adrenergic receptor binding

may result in small decreases in diastolic blood pressure, which has

been demonstrated (Ratamess et al., 2018; Shara et al., 2016).

Because p-synephrine exhibits little or no binding to α-1, α-2, β-1 and

β-2 adrenergic receptors, cardiovascular effects as an increase in heart

rate and blood pressure are not experienced at commonly used doses

of p-synephrine, unlike a number of other phenylethylamine and

phenylpropylamine derivatives including ephedrine.

Because p-synephrine and p-octopamine bind at least 10 times

more readily to α-1, α-2, β-1 and β-2 adrenergic receptors from

rodents than humans (Carpene' et al., 1999; Carpene’ et al., 2014;

Mercader et al., 2011), the small but clinically insignificant cardiovas-

cular effects seen in rodents at high doses (Hansen et al., 2012, 2013;

Hansen, Juliar, White, & Pellicore, 2011) cannot be extrapolated to

humans. As a consequence, based on these receptor binding studies,

cardiovascular effects are not predicted or expected to occur in

humans.

It is of interest that the U.S. FDA has placed p-octopamine, N-

methyltyramine and hordenine on its list of ingredients that do not

appear “to be lawful ingredients in dietary supplements” (FDA, 2019).

The reason for this designation is not clear, particularly in light of the

fact that safety does not appear to be an issue. Bitter orange extracts

standardized to p-synephrine may contain small amounts of the minor

protoalkaloids p-octopamine, N-methyltyramine, tyramine and

hordenine typically in amounts of approximately 0–1, 2–3, 0–1 and

0–1%, respectively, of the total protoalkaloidal content (Stohs, 2015).

Thus, the sum of these minor alkaloids represents less than 6% of the

total protoalkaloidal content of extracts. Furthermore, as previously

noted, p-octopamine occurs widely in citrus specie with the most

common source being lemons (Citrus limon) Uckoo et al., 2011). As a

consequence, humans are widely exposed to p-octopamine with no

known adverse effects.

The presence of N-methyltyramine and hordenine in germinated

barley is well known, and they have been shown to occur in various

beers in the ranges of 0.6–4.6 and 1.0–6.3 mg/L, respectively

(Sommer et al., 2019). Therefore, these two protoalkaloids are very

widely consumed throughout the world with no known adverse

effects. Hordenine showed no changes in heart rate, respiratory rate,

body temperature or behavior when given orally at a dose of 2 mg/kg

to horses (a dose of 1,000 mg for an average 500 kg horse). There-

fore, no effect would be projected in a human that consumed several

mg of N-methyltyramine and hordenine from a typical dose of an

average beer or a standardized bitter orange extract.

N-Methyltyramine is rapidly absorbed and undergoes N-

demethylation to tyramine followed by rapid oxidative deamination.

N-Methyltyramine and tyramine have no effect or are both weak

adrenergic antagonists (inhibitors) with respect to fat metabolism and

as compared to p-synephrine and p-octopamine which exhibit adren-

ergic agonist activity (Mercader et al., 2011). The indirect sympatho-

mimetic effects of tyramine have been well demonstrated in animal

and in vitro studies (Khwanchuea, Mulvany, & Jansakul, 2008; Koh

et al., 2019). However, no adverse effects have been observed after

dietary exposure to 600 mg tyramine in normal healthy individuals

(EFSA, 2011). Tyramine has an LD50 in rats greater than 2000 mg/kg

(Til, Falk, Prinsen, & Willems, 1997), indicating a low acute toxicity.

How exogenously administered p-octopamine and p-synephrine

influence TAARs is not clear. Because both undergo very rapid and

extensive hepatic first pass extraction and metabolism (da Silva-

Pereira et al., 2016), it is very possible that small amounts of orally

ingested p-synephrine and p-octopamine reach neurological tissues

and TAARs. The rapid extraction and metabolism may also account

for the lack of observed adverse effects.

In summary, small structural and stereochemical differences

between p-synephrine, p-octopamine, m-synephrine and ephedrine as

well as epinephrine and norepinephrine result in markedly different

receptor binding and physiological/pharmacological properties. There-

fore, the effects associated with one of these compounds cannot be

extrapolated to others.
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