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Automated Measurements of Body 
Composition in Abdominal CT Scans 
Using Artificial Intelligence Can Predict 
Mortality in Patients With Cirrhosis
Winnie Y. Zou ,1* Binu E. Enchakalody,2* Peng Zhang,2 Nidhi Shah,2 Sameer D. Saini,3-5 Nicholas C. Wang,2 Stewart C. Wang,2 
and Grace L. Su 3,4

Body composition measures derived from already available electronic medical records (computed tomography [CT] 
scans) can have significant value, but automation of measurements is needed for clinical implementation. We sought 
to use artificial intelligence to develop an automated method to measure body composition and test the algorithm on 
a clinical cohort to predict mortality. We constructed a deep learning algorithm using Google’s DeepLabv3+ on a co-
hort of de- identified CT scans (n  =  12,067). To test for the accuracy and clinical usefulness of the algorithm, we used 
a unique cohort of prospectively followed patients with cirrhosis (n  =  238) who had CT scans performed. To assess 
model performance, we used the confusion matrix and calculated the mean accuracy of 0.977  ±  0.02 (0.975  ±  0.018 for 
the training and test sets, respectively). To assess for spatial overlap, we measured the mean intersection over union 
and mean boundary contour scores and found excellent overlap between the manual and automated methods with 
mean scores of 0.954  ±  0.030, 0.987  ±  0.009, and 0.948  ±  0.039 (0.983  ±  0.013 for the training and test set, respec-
tively). Using these automated measurements, we found that body composition features were predictive of mortality in 
patients with cirrhosis. On multivariate analysis, the addition of body composition measures significantly improved pre-
diction of mortality for patients with cirrhosis over Model for End- Stage Liver Disease alone (P  <  0.001). Conclusion: 
The measurement of body composition can be automated using artificial intelligence and add significant value for 
incidental CTs performed for other clinical indications. This is proof of concept that this methodology could allow for 
wider implementation into the clinical arena. (Hepatology Communications 2021;5:1901-1910).

There is emerging interest in the use of artificial 
intelligence in health care, but the implemen-
tation into clinical practice is only just begin-

ning.(1) Although diagnostic codes and laboratory 
values represent important data sources, radiological 

imaging such as body computed tomography (CT), 
which can provide phenotypic information, has yet to 
be fully leveraged.

Within body CT scans are measurements of 
body composition and nutritional status, which have 

Abbreviations: BMI, body mass index; CI, conf idence interval; CT, computed tomography; HR, hazard ratio; HU, Hounsf ield unit; MELD, 
Model for End- Stage Liver Disease; NAFLD, nonalcoholic fatty liver disease; NRI, net reclassif ication improvement.
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significant predictive value in multiple disease states 
including chronic liver disease.(2- 5) The original 
Child- Turcotte- Pugh score to assess for mortality in 
patients with cirrhosis included assessment for nutri-
tional status; however, this was removed and substi-
tuted with laboratory values because there was not a 
method to quantitatively measure nutritional status. 
In recent years, visceral fat as measured by CT scans 
has become the gold standard and known driver for 
metabolic syndrome and nonalcoholic fatty liver dis-
ease (NAFLD).(6- 8) The relative quantity and qual-
ity of visceral fat are associated with prognosis and 
cardiovascular outcome.(6) Additionally, there is now 
increasing recognition that muscle mass and qual-
ity are important determinants of outcome.(9,10) In 
NAFLD, muscle mass and quality identify patients 
at risk for development of liver fibrosis and cirrho-
sis. Once cirrhosis has developed, muscle loss can 
become a surrogate for body composition and poor 
nutritional status in patients with cirrhosis, and is 
associated with worse prognosis.(11,12) To be useful 
for clinical care, however, muscle loss needed to be 
clearly defined and be quantifiable. In patients with 
liver disease, advanced imaging such as CT and mag-
netic resonance imaging measurements of muscle 
mass are the most accurate and accepted modality for 
reliable measurement, as changes in fluid status, bone 
density, and ascites make the use of other measure-
ment technologies unreliable.(13) Similar to muscle 
size and density, fat and bone density measurements 
are also key predictive factors that can be extracted 
from routinely collected abdominal CT scans to more 
precisely predict outcome and provide added value for 
clinical decision making.(3,14- 18) However, the stan-
dard methods for measuring body composition in CT 
scans involve tedious manual delineation,(19) which is 

time- consuming and imprecise due to interobserver 
and intra- observer variabilities.(17) It is also unrealis-
tic for implementation into clinical care. Future use of 
body composition features within the electronic med-
ical records for enhanced clinical application would 
require more automation to improve accuracy and 
reproducibility of measurements.

We hypothesize that artificial intelligence technol-
ogy, which has revolutionized many aspects of modern 
life, can now automate measurements of body compo-
sition from CT scans obtained for clinical purposes 
in a cohort of patients with cirrhosis. Our aim is to 
demonstrate that these automated measurements can 
provide significant clinical value and be useful for 
patient stratification.

Patients and Methods
patient tRaining anD testing 
CoHoRts

Training Data Set: The training cohort consists of 
12,067 CT scans from 10,354 de- identified patients 
in the Morphomics database at the University of 
Michigan, where a standard axial slice was available 
with “ground truth” manual segmentation of the skin, 
fascia, and skeletal muscle boundaries at the inferior 
lumbar spine vertebra, L3. The CT scans in our cohort 
were acquired using GE LightSpeed (GE, Boston, 
MA), Siemens Discovery (Erlangen, Germany, and 
Toshiba Acquilion (Tokyo, Japan) scanners. The tube 
voltage was set at 120 kV for all scans, while the tube 
current ranged between 100 mA and 500 mA based 
on body mass. Both training and test sets used a com-
bination of enhanced and unenhanced CTs, which 
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we have previously shown to be equivalent in cross- 
sectional area measurements.(20)

Clinical Validation Data Set: Model performance 
and its clinical relevance were investigated using 
CT scans from a cohort of patients with cirrhosis 
(n = 238) from the University of Michigan hepatology 
clinics. Patients prospectively enrolled in a chronic 
disease monitoring system (Avitracks; Avicenna 
Medical Systems, Ann Arbor, MI) with a diagnosis 
of cirrhosis (confirmed by a board certified hepatol-
ogist)(21) from March 1, 2010, to July 30, 2015, were 
used for this study if they had a CT scan with the L3 
slice within 365 days. At the time of enrollment, we 
excluded patients who had hepatocellular carcinoma 
or those referred for liver transplantation. All demo-
graphic and clinical details were extracted from chart 
review; baseline data were obtained within 6 months 
of the CT, and death was confirmed with the national 
death index. None of the CT scans from the clinical 
validation data set were included in the training data 
set.

gRounD- tRutH segmentation
The scans in the training and test sets were first 

processed using a semi- automated, high- throughput 
methodology (Analytic Morphomics) as previously 
described by our group.(22- 25) Briefly, de- identified 
DICOM (Digital Imaging and Communications in 
Medicine) files associated with each CT were loaded 
into the Analytic Morphomics spatial database. This 
was followed by processing each scan with a series 
of algorithms developed in MATLAB (MathWorks, 
Natick, MA), to landmark aspects of spinal verte-
bral bodies as well as their image axis coordinates. 
These coordinates were then used to load the axial 
image most inferior to L3. Manual segmentation of 
boundary geometries of skin, fascia, spine, and skele-
tal muscle was performed by a trained research ana-
lyst who also performed manual quality control and 
edited resultant boundaries by using custom- designed 
graphical user interfaces. Depending on the condition, 
this process lasted 5- 20 minutes per scan. All research 
analysts underwent standard training and testing 
before initiating any work. Multiple trained research 
analysts were used for this initial process and worked 
on what cohort was random. The manually generated 
masks were then inspected and adjusted by two qual-
ity control analysts to further improve measurement 

consistency. The results were considered our “ground 
truth.” In internal testing of our quality assurance pro-
cess, the concordance of results from repeated mea-
sures on the same set of scans was greater than 0.99. 
Body feature composition measures, such as mus-
cle and fat areas and density and bone density, were 
then derived from the corrected boundary geometry 
using density- based thresholding and morphological 
operations.

semantiC segmentation 
moDel DeVelopment

Image data were preprocessed by windowing 
between −800 and 700 Hounsfield unit (HU). The 
scale of each image was then normalized between the 
range of 0 and 1. The proposed model uses Google’s 
DeepLabv3+(27) architecture. Briefly, the DeepLabv3 
model used depth- separable convolutions, atrous spa-
tial pyramid pooling, which allowed a larger field of 
vision and the pixel- level accuracy required for this 
task. This model used the Xception(26,27) convolu-
tional neural network, which was pretrained using the 
ImageNet database (http://www.image - net.org) to 
classify over 1000 object categories. The DeepLabv3+ 
with Xception network consists of 205 layers includ-
ing encoder decoders, dilated convolutions, and skip 
connections. To match the input image to the size 
and channel requirements of this architecture, the 
single- channel, grayscale image was replicated to cre-
ate a 3- channel RGB (red, green, blue) image size of 
400 × 400 × 3. Every pixel within each image was 
grouped into one of five classes: skin, fascia, muscle, 
spine, and background. The classes are balanced with 
“background” having the highest number of observa-
tions and “spine” having the least. Training data were 
augmented with additional synthetic data by x- axis 
and y- axis rotation, translation, and scale. The model 
uses an Adam optimizer with an initial learning rate 
of 0.00001, mini- batch size of 8, and the maximum 
number of epochs was set to 8. The order of the data 
was randomly shuffled after each epoch. The loss 
function was assessed by a pixel classification layer 
that uses categorical cross- entropy loss.

statistiCal analysis
The quality of the semantic segmentation results 

was evaluated using the following region- based and 

http://www.image-net.org
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contour- based score metrics(28) for each class: accu-
racy, intersection over union, boundary F1(28) con-
tour matching score, and Dice similarity coefficient. 
These metrics have values ranging from 0 to 1, where 
0 indicates there is no similarity and 1 indicates abso-
lute similarity. Intraclass correlation coefficient (ICC) 
for the entire cohort was calculated using the “single 
fixed raters” analysis (ICC[3, 1]) in Shrout and Fleiss 
convention.(29)

To assess the body composition features of those 
with NAFLD (n = 78) versus those with chronic liver 
disease from other etiologies (n = 160), Student t test 
was conducted. Prognostic models of transplant- free 
survival were developed using Cox proportional haz-
ard regression analysis. Mortality was indexed from 
the date of the initial CT and censored at the last 
documented clinical visit or liver transplantation. Only 
one CT was used per patient. Five Morphomic vari-
ables (total muscle area index, visceral fat area and 
density, and subcutaneous fat area and density) were 
selected a priori as the initial input of the multivari-
ate analysis based on clinical judgment of significance. 
The final predictive model was then developed using 
forward/backward selection under the Cox regression 
framework with Model for End- Stage Liver Disease 
(MELD) and Morphomic variables in considerations, 
which optimizes the Akaike information criterion.(30) 
The statistical comparison was conducted between 
this final predictive model and the MELD model 
that serves as reference model. The performance of 
the models was assessed with C- statistics using the 

method described by Harrell et al(31). We also assessed 
whether the addition of Morphomic features improved 
prediction accuracy by using a modification of the 
continuous net reclassification improvement (NRI) 
methodology that allowed for the censored data analy-
sis.(32) The continuous NRI does not require risk strat-
ification into categories compared with the traditional 
category- based NRI. We chose to use the continuous 
NRI because, to our knowledge, there is no consensus 
categorization of mortality risk in patients with liver 
diseases. The continuous NRI was obtained using the 
Hmisc package for the R statistical program.(33)

Results
Deep leaRning moDel oF 
BoDy Composition

Using incidental abdominal CT scans at the L3 
level, we created masks for the skin, fascia, muscle wall, 
and spine (Fig. 1A). These manually delineated masks 
provided the ground truth to train a deep learning 
model, which were used for measurements of subcu-
taneous fat, visceral fat, skeletal muscle, and bone (Fig. 
1B). The intersection and difference overlap between 
the model’s prediction and ground truth appeared to 
be comparable (Fig. 1C,D). The performance was fur-
ther assessed by comparing the model’s predictions to 
its ground truth for the training set (n = 12,067) and 
hold- out, clinical test set (n = 238).

Fig. 1. (A,B) Representative manually delineated ground truth and model prediction using artificial intelligence of body composition 
using abdominal CT scan at L3 level. (C,D) Representative intersection and difference between ground truth and model prediction.
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We found that the model performed at a mean 
accuracy of 0.977  ±  0.02 and 0.975  ±  0.018 for the 
training and test sets, respectively (Table 1). To assess 
for spatial overlap, we measured the mean intersection 
over union and mean boundary contour scores and 
found excellent spatial overlap with mean scores of 
0.954 ± 0.030 and 0.987 ± 0.009, and 0.948 ± 0.039 
and 0.983  ±  0.013, for the training and test sets, 
respectively (Table 1). Additionally, we saw excep-
tional similarity between ground truth and predic-
tion by the high Dice score coefficient in the test set 
(0.970 ± 0.021; Table 1).

Baseline CoHoRt 
CHaRaCteRistiCs

To assess the clinical relevance and applicability 
of our deep learning model, we analyzed our study 
cohort of 238 patients with cirrhosis (Tables 2- 5). 
The cohort’s baseline characteristics are detailed in 
Table 2. In brief, our patients were 58 (51, 65) years 
of age, on average, with 56.72% being male. Overall, 
88.24% were White, with 4.62% being Black and 
2.10% being Asian and Pacific Islander. The aver-
age body mass index (BMI) was 29.0 (24.9, 33.8). 
In terms of the etiology of their cirrhosis, 21.43% 
were secondary to alcohol, 28.57% were secondary to 
hepatitis C infection, and 32.77% were secondary to 
NAFLD. Of those with alcoholic hepatitis, 68.63% 
were male; of those with hepatitis C, 66.18% were 
male; of those with NAFLD, 47.44% were male. The 
median MELD score was 10 (8, 13), and 47.90% 
were Child- Pugh class A. Overall, 165 (69.3%) had 
at least one characteristic of decompensation (vari-
ceal bleed, ascites, or hepatic encephalopathy). The 

median follow- up time was 1,891 days. At the end of 
follow- up, 22 (9.2%) developed hepatocellular carci-
noma, 105 (44%) patients died, and 1 (0.4%) had liver 
transplantation. Of the patients who died, 91 of 105 
(86.7%) had decompensated cirrhosis before death.

taBle 1. peRFoRmanCe aCCuRaCy oF Deep leaRning moDel in tRaining anD test sets

Class

Training Set (n = 12,067) Test Set (n = 238)

Dice Score 
CoefficientAccuracy

Intersection 
Over Union BF Score Accuracy

Intersection 
Over Union BF Score

Background 0.997 0.994 0.997 0.996 0.993 0.996 0.9964

Skin 0.979 0.954 0.991 0.975 0.953 0.990 0.9697

Fascia 0.958 0.920 0.980 0.949 0.899 0.975 0.9450

Muscle 0.985 0.973 0.975 0.987 0.975 0.963 0.9864

Spine 0.966 0.930 0.990 0.966 0.917 0.990 0.9557

Mean ± SD 0.977 ± 0.015 0.954 ± 0.030 0.987 ± 0.009 0.975 ± 0.018 0.948 ± 0.039 0.983 ± 0.014 0.970 ± 0.021

Note: Model performance is assessed using accuracy, intersection over union, boundary contour score, and Dice score coefficient.
Abbreviation: BF, boundary contour.

taBle 2. Baseline CHaRaCteRistiCs oF tHe 
total CoHoRt

Characteristic Median (Q25, Q75) (n = 238)

Age 58 (51, 65)

Male (%) 56.72

Race (%)

White 88.24

Black 4.62

Asian and Pacific Islander 2.10

Other or unknown 5.04

BMI 29.0 (24.9, 33.8)

Etiology (%) with % male

Alcoholic cirrhosis 21.43 (68.63% male)

HCV 28.57 (66.18% male)

NAFLD 32.77 (47.44% male)

Other 17.23 (43.90% male)

MELD 10 (8, 13)

Child- Pugh class (%)

A 47.90

B 38.24

C 13.87

Variceal bleed (%) 61.27

Encephalopathy (%) 28.15

Ascites (%) 50.42

Platelets 105 (75,148)

Albumin 3.5 (3, 4)

Bilirubin 1.2 (0.7, 2.1)

INR 1.2 (1.1, 1.3)

Creatine 0.8 (0.7, 1.0)

Abbreviation: INR, international normalized ratio.
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VisCeRal anD suBCutaneous 
Fat aReas in tHose WitH 
naFlD aRe signiFiCantly 
inCReaseD

It is well- established that patients with chronic 
liver disease secondary to NAFLD often present 
clinically with metabolic syndrome and higher per-
centage of body fat.(34- 37) Using our deep learning 
model, we obtained automated body composition 

measures on the incidental abdominal CT scans at L3 
and compared them in patients with NAFLD versus 
those with chronic liver disease from other etiologies 
(Table 3). Within our cohort of patients with cirrhosis, 
78 of 238 (33%) had a primary diagnosis of NAFLD 
as the cause of their liver disease. Not surprisingly, 
these patients were more likely to be obese, with a 
mean BMI of 34 ± 1.3 versus 28.5 ± 0.5 (P < 0.0001). 
Visceral fat area was significantly increased in those 
with liver disease from NAFLD (210.8 ± 129.8 cm2) 
as compared to those with non- NAFLD etiologies 
(133.7 ± 92.4 cm2; P < 0.001). Subcutaneous fat area 
was also significantly higher in those with NAFLD 
versus non- NAFLD cirrhosis (255.6  ±  14.7  cm2 vs. 
211.1 ± 9.8 cm2; P = 0.005). Although patients with 
cirrhosis have higher fat areas, this was not associated 
with an increase in total muscle area or increased bone 
density. Furthermore, there was decreased muscle and 
visceral fat attenuation (HU) in patients with NAFLD 
cirrhosis (33.5  ±  9.1 vs. 37.3  ±  9.3 HU; P  =  0.003; 
−88.0 ± 10.8 vs. −84.7 ± 9.6 HU; P = 0.025), sugges-
tive of lower muscle quality or myosteatosis.

BoDy Composition is 
pReDiCtiVe oF moRtality in 
patients WitH CiRRHosis

Recognizing the importance of body composition 
as an important determinant of mortality in patients 
with cirrhosis,(16) we used our deep learning model 
to extract features from clinical CT scans to predict 
mortality. In the univariate Cox proportional haz-
ards regression analysis, we found that there were 
many components of body composition that were 
significantly associated with mortality (Table 4). For 
example, muscle mass and muscle attenuation were 

taBle 3. CompaRing BoDy Composition FeatuRes oF tHose WitH naFlD (n = 78) VeRsus tHose 
WitH CHRoniC liVeR Disease FRom otHeR etiologies (n = 160)

Body Composition NAFLD (n = 78, mean ± SEM) Non- NAFLD Etiologies (n = 160, mean ± SEM) P Value

Total muscle index* 49.5 ± 9.9 47.9 ± 9.5 0.23

Total muscle density (HU) 33.5 ± 9.1 37.3 ± 9.3 0.003

Visceral fat area (cm2) 210.8 ± 129.8 133.7 ± 92.4 <0.001

Visceral fat density (HU) −88.0 ± 10.8 −84.7 ± 9.6 0.025

Subcutaneous fat area (cm2) 255.6 ± 14.7 211.1 ± 9.8 0.005

Subcutaneous fat density (HU) −98.7 ± 12.0 −96.8 ± 12.0 0.24

Bone mineral density (HU) 145.2 ± 49.8 142.9 ± 52.6 0.74

*Total muscle index = total muscle area/height2.

taBle 4. uniVaRiate CoX RegRession to 
assess pReDiCtoRs oF moRtality in patients 

WitH CiRRHosis (n = 238)

Variable Cox Univariate HR (95% CI) P Value

Total muscle area 0.987 (0.981, 0.994) <0.0001

Total muscle index* 0.955 (0.944, 0.988) 0.0002

Total muscle density 0.952 (0.932, 0.972) <0.0001

Visceral fat area 0.998 (0.996, 0.999) 0.02

Visceral fat density 1.043 (1.022, 1.051) <0.0001

Subcutaneous fat area 0.998 (0.996, 0.999) 0.02

Subcutaneous fat density 1.035 (1.019, 1.051) <0.0001

Bone mineral density 1.001 (0.999, 1.002) 0.57

*Index = area/height2.

taBle 5. paRsimonious multiVaRiaBle 
analysis FoR moRtality RisK pReDiCtion in 

patients WitH CiRRHosis

C- statistic P Value

MELD 0.66 (0.55- 0.78) REF

MELD + Morphomics* 0.71 (0.61- 0.82) <0.0001

*Total muscle index, visceral fat area and density, and subcutane-
ous fat area and density were included as variables for the initial 
Morphomics model; the final Morphomics model includes total 
muscle area index and subcutaneous fat density.
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significant determinants of mortality in patients with 
cirrhosis with a hazard ratio (HR) of 0.98 per cm2 of 
total skeletal muscle area (P < 0.0001) and remained 
significant when adjusted for height with a HR of 
0.96 for skeletal muscle index (P  =  0.002). Muscle 
attenuation as measured by skeletal muscle HU 
showed a HR of 0.95 with higher attenuation asso-
ciated with greater survival (P  <  0.0001). Increased 
visceral and subcutaneous fat areas were somewhat 
associated with improved survival (HR  =  0.99 and 
0.99; P = 0.02) and did not remain significant when 
adjusted by height. But interestingly, increased visceral 
and subcutaneous fat densities were significantly asso-
ciated with increased mortality (HR = 1.03 and 1.04: 
P < 0.0001).

As body composition features differ by sex in cir-
rhosis, we further stratified our results by gender 
(Supporting Table S1). In the female- only cohort, 
skeletal muscle area and index were not associated 
with survival. Skeletal muscle attenuation was some-
what associated with greater survival (HR  =  0.99; 
P  = 0.04). Increased visceral fat area was again asso-
ciated with improved survival (HR = 0.99; P = 0.04), 

but subcutaneous fat area was not. Increased visceral 
and subcutaneous fat densities both showed a HR of 
1.05, therefore again associated with increased mor-
tality (P = 0.0005 and <0.0001).

To determine whether these body composition fea-
tures can be used to improve the performance of the 
MELD score, we used backward and forward selec-
tion to develop the best predictive model (Table 5). 
A priori, five clinically relevant body Morphomic fea-
tures were used as initial input variables: total muscle 
area index, visceral fat area and density, and subcuta-
neous fat area and density. The best model selected 
included MELD, total muscle area index, and subcu-
taneous fat density, producing c- statistics of 0.71 (con-
fidence interval [CI] = 0.61- 0.82) compared with 0.66 
(CI = 0.55- 0.78) using MELD alone. The NRI score 
showed an enhanced predictability of mortality using 
the new model when compared with MELD alone 
(P < 0.0001). Using this model and the median score 
as the cutoff, high- risk and low- risk patients (with 
median survival of 2.93  years vs. 7.01  years, respec-
tively) can be easily differentiated using Kaplan- Meier 
analysis (P < 0.0001; Fig. 2).

Fig. 2. Kaplan- Meier analysis comparing patients with high versus low risks in MELD + Morphomics model.
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Discussion
CT scans are routinely used in clinical practice 

for diagnostic purposes, but within the image files 
are important measures of body composition includ-
ing muscle, fat, and bone, which can provide valu-
able information regarding patient phenotypes. These 
body composition features are key predictive factors 
that affect clinical outcome and have significant 
value for clinical decision making.(3,14- 18) However, 
standard methods for measuring body composition 
include visual examination and time- consuming man-
ual delineation,(19) which are not amenable for clinical 
implementation. In this study, we show that objective 
measures of body composition can be derived from 
incidental CT scans ordered for clinical purposes, 
and, more importantly, this process can be fully auto-
mated using deep- learning methods. We demonstrate 
that our convolutional neural networks are able to 
accurately identify the key areas for measurement and 
show high correlation with manual measurements.

Using the automated measurements, we demon-
strate how body composition features differ between 
those patients with cirrhosis with NAFLD as the 
primary diagnosis compared to those from other 
etiologies. Although BMI predictably was higher 
in patients with NAFLD, examination of the body 
composition showed that this increase in BMI was 
not proportionally reflected in all body components. 
Visceral and subcutaneous fat areas were significantly 
increased, but not muscle mass indexed to height or 
bone density. In fact, we saw a decreased bone density 
in those with NAFLD when compared to those with 
cirrhosis from other etiologies, although this decrease 
was not significant, likely secondary to our small 
cohort. These changes may reflect the pathophysiol-
ogy of NAFLD and further compounded by the low 
attenuation of the muscle density in our cohort of 
patients with NALFD, which may be related to fat 
infiltration and/or myosteatosis.(38) Having the abil-
ity to measure these features automatically and easily 
in CT scans that were performed for other purposes 
could have potential benefit for patients. One can 
envision that patients given this information could 
have tangible targets for behavior modifications and 
other interventions.

We also found that muscle mass remains a sig-
nificant predictor of clinical outcome in patients 
with cirrhosis. In addition, muscle attenuation was 

predictive of survival with lower attenuation (likely 
lower quality muscle) and associated with worse sur-
vival. Interestingly, increased visceral and subcutaneous 
fat areas in this population were protective and likely 
reflect the overall nutritional status that has also been 
seen in other cohorts.(39) Increased fat density, on the 
other hand, similar to our prior studies, was associ-
ated with worse survival.(40) We hypothesize that this 
may represent early portal hypertension versus other 
changes with the fat compartments. An increase in 
water content within the fat compartments increases 
overall HU units, as water molecules within this com-
partment are denser than fat.(40) Alternatively, a dif-
ference in the type of adipocytes could also change 
the density or HU within the fat compartment.(41) 
Regardless of the cause, there is a clear association 
of higher fat HU with worse survival. This associa-
tion of increased fat density and mortality has also 
been demonstrated in a recent study published on a 
cohort of patients with hepatocellular carcinoma.(15) 
Compared with the entire cohort, increased mus-
cle attenuation and visceral fat remain significantly 
associated with survival in a female- only cohort. This 
again demonstrates the impact of the overall nutri-
tional status on mortality in cirrhosis. The association 
of increased fat density on mortality remains striking 
in the female- only cohort.

Given these findings, we sought to determine 
whether these body composition features derived from 
standard CT scans could provide incremental value to 
the commonly used MELD model, which relies on 
laboratory values alone. Within the electronic medi-
cal system, implementation of laboratory- based values 
can easily be performed, but this does not preclude 
inclusion of other modalities such as imaging stud-
ies. Using features automatically extracted from clin-
ical CT scans, we found that the addition of body 
composition features to MELD provided incremental 
discriminatory ability. Using artificial intelligence to 
automate the body composition measurements, we 
have demonstrated the first step for potential use of 
this technology in the electronic medical record sys-
tem, allowing for a path to implementation in clinical 
care delivery.

It is notable that our cohort is derived from a gen-
eral hepatology clinic, which excluded patients who 
have been referred for transplant. We think that work 
on this cohort, which is reflective of a nontransplant 
population with cirrhosis, is of significant value, 
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as it represents results from a broader population 
perspective.

Although our training cohort was one of the 
largest examined, our study cohort was limited by 
the relatively small sample size within one academic 
health center. Future studies are necessary to vali-
date the utility of our automated algorithm in a 
larger population.

The measurement of body composition can be 
fully automated using artificial intelligence, and it 
had excellent performance in a cohort of patients 
with cirrhosis. Incorporation of these automated 
measurements can add significant value for inciden-
tal CTs. This is proof of principal that this method-
ology could allow for wider implementation into the 
clinical arena, including the potential for mortality 
prediction in cirrhosis and behavioral modification 
in NAFLD.
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