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Abstract. Primary torsion dystonia (PTD) occurs due to a 
genetic mutation and often advances gradually. Currently, 
there is no therapy available that is able to inhibit progression. 
Neural stem cells (NSCs) are being investigated as potential 
therapies for neurodegenerative diseases, such as stroke and 
trauma. The present study evaluated the clinical effective-
ness of NSC transplantation in an 18‑year‑old male patient 
with PTD, to assess the ability of this therapy to inhibit PTD 
progression. Genetic testing of the patient revealed a mutation 
in the torsion dystonia‑1 (DYT1) gene (907‑909 delGAG). NSCs 
were bilaterally implanted in the globus pallidus of the patient 
through stereotactic surgery. Prior to surgery, the patient's 
Burke‑Fahn‑Marsden dystonia movement score (BFMDMS) 
was 21, which progressively decreased after surgery to 18, 17, 
15 and 13 at 1, 2, 3 and 4 postoperative years, respectively. 
BFMDMS was improved by 38.1% over the 4 postoperative 
years. Although computed tomography and magnetic reso-
nance imaging examinations showed no significant changes 
prior to and following surgery, postoperative brain positron 
emission tomography scans revealed increased glucose 
metabolism in the transplanted region. The clinical efficacy 
of NSC transplantation in this patient suggests its potential for 
the treatment of DYT1‑positive patients with PTD. 

Introduction

Dystonia involves the simultaneous contraction of agonist 
and antagonist muscles, resulting in involuntary sustained 
and repetitive postures, as well as directional movements (1). 
The pathogenesis of primary torsion dystonia (PTD) has 
been correlated with several genetic mutations (2). PTD often 

causes severe disabilities in patients. Traditional therapies for 
PTD include oral anti‑parkinsonism drugs (3‑5), botulinum 
neurotoxin (6), pallidotomy (7) and deep brain stimulation 
(DBS) (8). However, these therapies are often ineffective in 
preventing PTD progression, can induce substantial side 
effects, and can be cost prohibitive (for example, DBS equip-
ment). Neural stem cell (NSC) therapies have made some 
clinical progress in the areas of Parkinson's disease, cerebellar 
atrophy, stroke and other neurological diseases (9‑20). The 
clinical efficacy of this approach has provided hope for its use 
in inhibiting PTD progression.

The present study explored the effectiveness of NSC trans-
plantation through stereotactic surgical delivery in a patient 
with PTD, who exhibited partial restoration of neural function 
during follow‑up for 4 years subsequent to surgery. To the best 
of our knowledge, this is the first report of NSC transplanta-
tion used in the treatment of PTD.

Case report

Patient selection. The patient selected for this study was an 
18‑year‑old male with PTD, who was born through cesarean 
section on the expected date, did not have a family history 
of any genetic disease, and had no history of encephalitis, 
jaundice, brain tumor or trauma. He first exhibited involun-
tary spasms and torsion of the left lower limb at 5 years of 
age, without any precipitating factor. The clinical features 
gradually extended to the entire body from age 5 to 9 years. 
At 18 years, the patient was unable to write, grip, stand or 
walk. He had some difficulty in swallowing solid food, but 
did not have epileptic symptoms. The patient's intelligence 
was normal. Head computed tomography (CT; Fig. 1a) and 
magnetic resonance imaging (MRI; Fig. 2a) suggested mild 
atrophy of the brain. PTD was diagnosed on the basis of the 
aforementioned data.

Previous therapies had included antispasm treatment 
(baclofen), sedation (diazepam) and botulinum toxin injec-
tion (bilateral lower limbs). These therapies provided little 
improvement and their side effects were intolerable. In 
August 2007, the patient underwent DBS, which eased his 
symptoms to some extent; however, this therapy failed as a 
result of a serious infection in the chest incision 3 weeks later. 
After being informed of the details of the study, the patient's 
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mother provided written informed consent for the clinical 
study and surgery. The protocol and patient consent form 
were approved by the Institutional Review Board of the Navy 
General Hospital (Beijing, China) and a Performance and 
Safety Monitoring Board appointed by the National Institutes 
of Health (no. 2007AA04Z246).

Genetic testing. The patient provided 10 ml peripheral blood, 
which was collected in an ethylenediamine tetraacetic acid 
(EDTA) tube and stored at ‑20˚C. Whole‑blood DNA was 
extracted by a standard method (21). Exon 5 of the torsion 
dystonia‑1 (DYT1) gene, also known as torsin family  1 
member A (TOR1A) was amplified by the polymerase chain 
reaction (PCR) with FastStart Taq DNA Polymerase (Roche 
Diagnostics, Basel, Switzerland) and forward and reverse 
primers as follows: DYT1 forward, 5'‑CCT​GGA​ATA​CAA​
ACA​CCT​A‑3' and reverse 5'‑GGC​TGC​CAA​TCA​TGA​CTG​
TC‑3') under the following PCR conditions: 1 cycle at 94˚C for 
5 min, followed by 32 cycles of 94˚C for 1 min, 60˚C for 1 min 
and 72˚C for 1 min, and a final cycle at 72˚C for 5 min. The 
PCR product was sequenced using an ABI 3500xL Sequencer 
(Guangzhou Golden Mile Medical Testing Center Co., Ltd., 
Guangzhou, China; http://www.kingmed.com.cn).

Patient evaluation. Neurological function, complications 
and neuroimaging assessments by MRI (Signa Horizon LX, 
1.5T; GE Healthcare Life Sciences, Pittsburgh, PA, USA), 
and positron emission tomography (PET) were performed 
prior to and following surgery. A CT scan (Brilliance iCT; 
Philips Healthcare, Andover, MA, USA) was performed at 
3 postoperative days (POD). The PET scan was performed 
with 18F‑fluorodeoxyglucose (18F‑FDG; radiochemical purity 
>95%; Atomic High‑Tech Co., Ltd., Beijing, China) on a 
GE Discovery ST 16 PET/CT scanner (GE Healthcare Life 
Sciences). 

The patient's motor function was assessed by comparing 
his pre‑ and post‑operative Burke‑Fahn‑Marsden dystonia 
movement scores (BFMDMSs) (22). The improvement rate at 
4 years after surgery was calculated as follows: Improvement 
rate (%) = (preoperative score ‑ postoperative score)/preopera-
tive score x 100. The follow‑up period began in July 2008 and 
ended in October 2012.

Donor tissue and NSC cultures. Donor tissue was obtained 
from the brain of a 5‑ to 11‑week‑old fetus, which was 
spontaneously aborted from a healthy pregnant woman. The 
woman had no family history of genetic disease or intrauterine 
infection. NSC cultures for transplantation tested negative 
for human herpesvirus, cytomegalovirus, fungi and bacteria. 
Donor tissue was obtained from the fetal basal ganglia under 
sterile conditions. The tissue was cut into small pieces (1‑2 mm 
in diameter), digested for 30 min at 37˚C with pancreatin 
(1%) and digested for 10 min at 37˚C with DNase (40 µg/ml). 
The tissue was separated into a single‑cell suspension with a 
Pasteur pipette. Cell activity was measured by Trypan blue 
staining. 

Cells (1x105  cells/ml) were inoculated in amplifying 
culture liquid with β‑fibroblast growth factor (β‑FGF; 
20 ng/ml; Gibco; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA), epidermal growth factor (EGF; 20 ng/ml; Gibco) 

and B27 serum factor (neural nutritional additive) without 
blood serum. Cells were cultured in a humidified incubator at 
37˚C and 5% CO2. Culture medium was changed once every 
3.5 days. When NSCs grew into a spheroid shape (Fig. 3a), 
they were subcultured once at 5‑10x104/ml and then incubated 
for 7‑14 days. After 15 days, spheroidal cell cultures of viable 
cells were retrieved and adjusted to 4x104 cells/µl in suspen-
sion. Cells were incubated for 5 min at room temperature prior 
to transplantation. The detailed method for preparing NSCs 
has been described previously (9,10,13,21,23).

Transplantation method. The patient was anesthetized 
with intravenous midazolam (0.15  mg/kg) and propofol 
(2.0  mg/kg). Cultured NSCs were transplanted into the 
bilateral globus pallidus via a frameless stereotactic surgical 
procedure (Fig. 3b) (9). Feng et al found that local dexametha-
sone injection reduced the immune rejection and increased the 
survival of grafted cells, while preventing side effects from 
long‑term immunosuppression  (24). Thus, dexamethasone 
(0.5‑1.0 mg/0.2 ml) was injected into the target site prior to 
the implantation of NSCs. A total of 1x107 NSCs in 0.25 ml 
were deposited unilaterally into the globus pallidus. Following 
surgery, the patient was admitted to the neurosurgical inten-
sive care unit for overnight observation and was transferred to 
a conventional ward the next morning. Intravenous ceftriaxone 
sodium (2 g/day) and dexamethasone (10 mg/day) were admin-
istered for 3 POD.

Genetic analysis, imaging observations and follow‑up. 
Genetic analysis identified a mutation (907‑909 delGAG) in 
the fifth exon of DYT1 (TOR1A) in the patient (Fig. 3c). He 
exhibited good tolerance of the neurosurgical procedure and 
was discharged at 4 POD. There were no serious adverse 
events associated with cell implantation or the surgical 
procedure. The CT scan at 3 POD revealed no hemorrhage or 
edema (Fig. 2e). By 1 month after surgery, the PTD symptoms 
of the patient began to improve. The BFMDMS progressively 
increased, from 21 prior to surgery to 18, 17, 15 and 13 at 1, 2, 
3 and 4 years after surgery, respectively, with 38.1% improve-
ment by 4 years after surgery (Table I).

The CT (Fig. 1b‑e) and MRI (Fig. 2b‑d) scans showed no 
significant changes over the 4‑year follow‑up period. 18F‑FDG 
PET scans were obtained 1 day before surgery (Fig. 1f) and 
1, 2, 3 and 4 years after surgery (Fig. 1g‑j). 18F‑FDG uptake 
values in the lentiform nucleus and thalamus of the bilateral 
implant sites were increased after surgery compared with 
those in the same sites before surgery. This result suggests that 
glucose metabolism was slightly increased year by year since 
the transplantation.

Discussion

As one of the most common and serious forms of hereditary 
PTD (2), DYT1 is characterized by childhood onset of progres-
sive dystonia, which typically begins as segmental (mostly 
arm or leg) dystonia and subsequently generalizes (25). The 
pathology mainly manifests as degeneration of small nerve 
cells in the caudate nucleus and putamen of the basal ganglia, 
degeneration of the globus pallidus, and absence of cells in 
the cerebellar dentate nucleus (26). In the present study, the 
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patient's clinical manifestations were consistent with the DYT1 
phenotype, and the genetic test results confirmed that he was 
DYT1‑positive. Brain CT and MRI examinations showed brain 
atrophy. A brain PET scan showed that glucose metabolism in 
the cerebral cortex was diffusely decreased. Together, these 
findings support the aforementioned pathological degeneration 
pattern.

Over the past 20 years, extensive information has been 
uncovered about the phenotype of dystonia‑related mutations. 

In particular, advances in functional neuroimaging have 
allowed researchers to determine roles for regions of the brain 
other than the basal ganglia. Lehéricy et al cited the impor-
tance of the thalamo‑cortical and cerebello‑thalamo‑cortical 
circuits in patients with the DYT1 mutation (27). Carbon et al 
found that individuals with the DYT1 or DYT6 genotype 
displayed functional and microstructural abnormalities 
in the cortico‑striatal‑pallido‑thalamo‑cortical and cere-
bellar‑thalamo‑cortical circuits (28,29), as well as alterations 

Table I. Follow‑up results.

Time point	 BFMDMS	 Changes in symptoms

Preoperative	 21	 The patient manifested involuntary sustained muscle contractions causing
 		  twisting, repetitive movements or abnormal postures affecting the whole body.
		  The patient was unable to write, grip, stand, or walk. He also had some difficulty 
		  in swallowing solid food.
1 year after treatment	 18	 The patient was able to write and grasp objects actively with bilateral hands. 
		  Muscle tension of the left upper and bilateral lower limbs decreased. Muscle
		  spasm lessened. The left ankle showed active movement. Limb pain was relieved.
2 years after treatment	 17	 Bilateral upper limb activity improved, especially the right hand. The crossing 
		  of bilateral lower limbs was less obvious than before. Limb pain was relieved 
		  even more.
3 years after treatment	 15	 Significant improvement in activities of the upper limbs and improved crossing
		  of the lower limbs bilaterally were observed. The reduction of limb pain was
		  more substantial and the frequency of pain also declined.
4 years after treatment	 13	 Muscle tension of the left limb clearly declined. The patient was able to grasp 
		  objects with his right hand and had no difficulty in swallowing solid food.
 
BFMDMS, Burke‑Fahn‑Marsden dystonia movement score.

Figure 1. Computed tomography (CT) and positon emission tomography (PET) scans. (A) Preoperative CT showing atrophy of the brain. (B‑E) CT showed 
no significant changes compared with the preoperative CT at 1, 2, 3, and 4 years postoperatively, respectively. (F) Preoperative 18F‑fluorodeoxyglucose (FDG) 
PET scan shows that uptake of FDG in the entire brain cortex was diffusely decreased and uptake of FDG of the nucleus was relatively higher than that of 
other areas. The standardized uptake value (SUV) average/maximum of the lentiform nucleus and thalamus are 4.3/5.8 and 3.3/4.5, respectively, at 1 day 
preoperatively. (G‑J) 18F‑FDG PET scans 1, 2, 3, and 4 years, respectively, after neural stem cell transplantation treatment show an increase in the uptake 
of 18F‑FDG in the lentiform nucleus and thalamus of the implant sites bilaterally (red cross) compared with the same sites before implantation. The SUV* 
average/maximum of the lentiform nucleus and thalamus are 5.0/6.2 and 4.0/4.8, 5.5/6.4 and 4.4/5.0, 5.8/6.7 and 4.6/5.2, and 6.0/6.8 and 4.8/5.2 at 1, 2, 3, and 
4 years postoperatively, respectively. This result suggests that glucose metabolism was slightly higher after the transplantation than before. The red cross 
indicates the right implant site. The SUV is a semi‑quantitative indicator for measuring the uptake value of 18F‑FDG tracer in tissue.
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in the pre‑supplementary motor area, parietal association 
area, cerebellum, brainstem and ventral thalamus. The authors 
proposed an association between the metabolic abnormalities 
in DYT1 and DYT6 carriers and the connectivity of motor 
pathways. Trost et al identified DYT1‑like metabolic topo-
graphical changes in patients with dystonia mutations other 
than DYT1 (30).

Traditional therapy in PTD includes various drugs, intra-
cerebral nucleus lesions and DBS (3‑6,8). Although DBS is 
favorable to some extent, it is unable to inhibit PTD progres-
sion. Recent progress in NSC research has enabled the use 
of NSC transplantation for PTD treatment. Under certain 
conditions, NSCs can proliferate, migrate and differentiate 
into location‑specific nerve cells to replace locally damaged 
cells (31‑33). Through these processes, NSCs repair abnormal 
neural pathways, secrete neurotrophic factors and protect 
damaged neurons. Thus, NSC transplantation may be able to 
replenish cells lost due to aging, injury or disease (23,34‑36). 
As NSCs have low immunogenicity (37‑39), immunological 

rejection following transplantation is very mild, providing 
advantageous conditions for NSC survival. NSC trans-
plantation has been used to treat adults with Parkinson's 
disease  (9,10,17,20), cerebellar atrophy  (11) and stroke 
sequelae (12‑16,18,19). The utility of NSCs in these conditions 
provides the rationale for their use in the treatment of PTD. 
Researchers mobilized endogenous NSCs from the subven-
tricular zone to replace dopaminergic cells in the substantia 
nigra, which restored striatal dopamine levels and improved 
motor symptoms in patients with Parkinson's disease (40).

To the best of our knowledge, this is the first study to 
use NSC transplantation for the treatment of a patient with 
DYT1‑positive PTD. The patient exhibited deterioration of 
the brain tissue, as evidenced by brain atrophy on preopera-
tive CT and MRI scans and by a decline in cerebral glucose 
metabolism on PET scans. Over a 4‑year follow‑up period, 
the patient showed no complications as a result of NSC trans-
plantation. He exhibited a continuous decline in BFMDMS, 
which improved by 38.1% within 4 years of the procedure. 

Figure 3. (A) Immunofluorescence features of neural stem cell spheres (nestin stained; magnification, x100). (B) Frameless stereotactic surgery. The patient is 
at the left of the image and the frameless stereotactic equipment is at the right. (C) The torsion dystonia‑1 (DYT1) gene, also known as torsin family 1 member A 
(TOR1A) of the patient with primary torsion dystonia. The fifth exon of the patient's DYT1 gene had a mutation (907‑909 del GAG, indicated by the red arrow), 
and thus the patient was DYT1‑positive.

Figure 2. T2‑weighted magnetic resonance imaging (MRI). (A) Preoperative MRI showing atrophy of the brain. (B‑D) At 1, 3 and 4 years postoperatively, MRI 
showed no significant changes compared with the preoperative MRI. (E) At 3 days postoperatively, computed tomography showed no hemorrhage or edema.
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The patient's condition began to improve within 1 month and 
stabilized 6 months after NSC treatment. The glucose uptake 
increased at the transplantation sites, indicating that the NSCs 
possibly played roles in the replacement of cells and the repair 
of neural pathways. Yamada et al indicated that inflamma-
tion caused by exogenous tissues may increase 18F‑FDG 
uptake (41). However, NSCs with low immunogenicity (37) 
may cause little inflammation. Thus, the increased 18F‑FDG 
uptake may be of little concern in terms of the inflammation 
caused by the transplanted NSCs.

Based on the pathogenesis of PTD, gene therapy (for 
example, gene silencing and gene replacement therapy) has 
been attempted in the past. Suppressing mutant torsin A expres-
sion with RNA interference was shown to restore the function 
of wild‑type torsin A in a neural model of DYT1‑positive 
PTD (42).

In the present study, NSC transplantation was accom-
plished using a frameless stereotactic surgical technique. 
Stereotactic surgery is a well‑established and reliable tech-
nology that has been widely used in the neurosurgery clinic 
for many years (43). The use of stereotactic surgery assured 
that the positioning was accurate with minimal trauma. The 
NSCs were transplanted directly into the vicinity of the basal 
ganglia. The patient did not exhibit hemorrhaging after the 
NSC treatment.

NSC transplantation in PTD patients is currently in the 
early clinical exploration phase, and several problems remain 
to be solved before it can become a standard clinical therapy. 
First, NSC tumorigenicity continues to be a major concern, and 
several studies have analyzed the possibility of tumor genera-
tion (44‑47). The patient in the present study did not develop 
any nervous system tumors during the 4‑year follow‑up, but 
the evaluation of the safety of NSC therapy requires a longer 
observation time. Secondly, the immunological rejection 
of NSCs is a relevant concern. The majority of researchers 
consider that immunological rejection rarely occurs due to 
the integrity of the blood‑brain barrier and the mild immuno-
genicity of NSCs (13,33,34,38,47). The patient in the current 
study did not receive long‑term immunosuppression therapy 
and did not develop immunological rejection after NSC trans-
plantation.

NSC transplantation of a DYT1‑positive PTD patient 
showed some clinical efficacy over a 4‑year follow‑up period. 
Nevertheless, it is necessary to assess the therapy in more 
patients and follow them up for a longer time, to confirm the 
results and determine the mechanism of NSC differentiation.
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