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Abstract

Following recent advances in high-throughput mass spectrometry (MS)–based proteomics, the numbers of identified
phosphoproteins and their phosphosites have greatly increased in a wide variety of organisms. Although a critical role of
phosphorylation is control of protein signaling, our understanding of the phosphoproteome remains limited. Here, we
report unexpected, large-scale connections revealed between the phosphoproteome and protein interactome by
integrative data-mining of yeast multi-omics data. First, new phosphoproteome data on yeast cells were obtained by MS-
based proteomics and unified with publicly available yeast phosphoproteome data. This revealed that nearly 60% of ,6,000
yeast genes encode phosphoproteins. We mapped these unified phosphoproteome data on a yeast protein–protein
interaction (PPI) network with other yeast multi-omics datasets containing information about proteome abundance,
proteome disorders, literature-derived signaling reactomes, and in vitro substratomes of kinases. In the phospho-PPI,
phosphoproteins had more interacting partners than nonphosphoproteins, implying that a large fraction of intracellular
protein interaction patterns (including those of protein complex formation) is affected by reversible and alternative
phosphorylation reactions. Although highly abundant or unstructured proteins have a high chance of both interacting with
other proteins and being phosphorylated within cells, the difference between the number counts of interacting partners of
phosphoproteins and nonphosphoproteins was significant independently of protein abundance and disorder level.
Moreover, analysis of the phospho-PPI and yeast signaling reactome data suggested that co-phosphorylation of interacting
proteins by single kinases is common within cells. These multi-omics analyses illuminate how wide-ranging intracellular
phosphorylation events and the diversity of physical protein interactions are largely affected by each other.
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Introduction

Protein phosphorylation is a reversible, ubiquitous, and funda-

mentally post-translational modification (PTM) that regulates a

variety of biological processes; one of its critical roles is the control of

protein signaling [1–3]. Recent advances in mass-spectrometry

(MS)–based technologies and phosphopeptide enrichment methods

have enabled the use of high-throughput in vivo phosphosite

mapping [4–7] to identify thousands of phosphoproteins. To date,

around 10,000 phosphosites of serine, threonine, or tyrosine

residues have been identified in each of many organisms, including

human [8–12], mouse [13] and yeast [14–16]. Many public

databases, such as PHOSIDA [17], Phospho.ELM [18], and

UniProt [19], have been developed or expanded to catalog such

phosphoproteome data. Accordingly, the numbers of phosphopro-

teins that have been identified in various organisms now greatly

exceed the numbers known to have roles in protein signaling. This

has raised the question of whether this intracellular phosphoryla-

tion, which occurs on such a large scale, has other major roles.

In modern biology, the use of high-throughput screening methods

has enabled rapid progress in the disclosure of protein–protein

interaction (PPI) networks in many organisms [20–27]. Topological

features common to PPI networks (e.g., scale-free and small-world

properties) are of prime importance in interpreting intracellular

protein behavior and the evolutionary aspects of PPIs [28–31]. PTM

changes the physical characteristics of proteins. It is therefore

probable that reversible PTM has large effects on the dynamic states

of intracellular protein-binding patterns and complex formation, and

that it controls not only signal transduction but also many other

cellular pathways. However, the impact of PTM on the whole picture

of the PPI network has not yet been described.

Here, we describe the intracellular global relationships between

protein phosphorylation and physical PPI, as derived from the

results of integrative and systematic data-mining of Saccharomyces

cerevisiae multi-omics data (Fig. 1). New phosphoproteome data on

S. cerevisiae were initially obtained by MS–based analysis and

unified with data on previously identified phosphoproteomes. We

superimposed the unified phosphoproteome data onto a S. cerevisiae

PPI network with other multi-omics data on S. cerevisiae. From the

results, we infer that the tremendous numbers of phosphorylations

within a cell have a large impact on PPI diversity, and that

intracellular phosphorylation patterns are affected partly by

simultaneous phosphorylation of physically bound proteins that

is triggered by the action of single kinases.
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Results/Discussion

New yeast phosphoproteome data
On the basis of liquid chromatography (LC)-MS analysis, we

initially identified 1,993 S. cerevisiae phosphoproteins containing

6,510 phosphosites. Information on the identified phosphopeptides

has been stored in PepBase (http://pepbase.iab.keio.ac.jp). We

unified these new phosphoproteome data with the publicly

available phosphoproteome datasets of Holt et al. [16] and

UniProt [19] and obtained a total of 3,477 phosphoproteins

containing 25,997 phosphosites (Fig. 2; Supplementary Table S1).

The pS/pT/pY ratios of this study, the study of Holt et al., and

UniProt were 72%/23%/5%, 72%/23%/5%, and 80%/18%/

2%, respectively. Among the unified phosphoproteome data, 343

phosphoproteins and 2,778 phosphosites were not found in the

data of Holt et al. or UniProt. Comparison with S. cerevisiae

genomic information [32] revealed that 58.5% of the 5,815 known

and predicted genes were phosphoprotein-encoding genes (Sup-

plementary Table S2). Although the use of current high-

throughput technologies cannot disclose the entire phosphopro-

teome picture of a cell, these results imply that most intracellular

proteins can be phosphorylated under the appropriate environ-

mental conditions.

Generation of phospho-PPI network
The unified phosphoproteome data were superimposed onto the

PPI network to generate a ‘‘phospho-PPI’’ network. PPI data were

obtained via DIP (Database of Interacting Proteins) [33] and

grouped into four categories according to the experimental

method used for the PPI assay: all kinds of experimental methods

(‘‘ALL’’), yeast two-hybrid (‘‘Y2H’’), co-immunoprecipitation

(‘‘IMM’’), and tandem affinity purification (‘‘TAP’’). Among all

the protein nodes involved in every category of the phospho-PPI

network, the proportion of phosphoproteins was also nearly 60%

(Supplementary Fig. S1). For example, the phospho-PPI network

of the ‘‘ALL’’ category was composed of 4,945 proteins, including

2,934 phosphoproteins (59.3%) and 17,215 physical interactions.

Phosphoproteins have more PPI partners than do
nonphosphoproteins

To explore specific characteristics of the phospho-PPI network,

the number counts of interacting partners of phosphoproteins and

nonphosphoproteins were analyzed (note that throughout this

study, the word ‘‘nonphosphoprotein’’ means a protein with no

phosphosite identified to date). We found that, in general,

phosphoproteins had more interacting partners than nonpho-

sphoproteins. In each phospho-PPI network of the ‘‘ALL’’ and

‘‘Y2H’’ categories with enough protein nodes for the subsequent

statistical analysis, the cumulative percentage distributions of node

degrees (or the number count of interacting partners) of

phosphoproteins and nonphosphoproteins were markedly different

(Fig. 3A and D). For example, in the dataset of ‘‘ALL’’, 47.6% of

Figure 1. Overview of integrative analysis of yeast multi-omics
data. New phosphoproteins were identified by LC-MS/MS analysis and
unified with the publicly available phosphoproteome datasets of Holt et
al. [16] and UniProt [19] (Step 1). A protein–protein interaction (PPI)
map was obtained from DIP (Database of Interacting Proteins) [33]
(Step 2). Y2H, yeast two-hybrid; IMM, co-immunoprecipitation; TAP,
tandem affinity purification. The ‘‘phospho-PPI’’ map was generated by
superimposing the phosphoproteome data onto the PPI map (Step 3).
Negative controls for the phospho-PPI map were generated by ‘‘node
label shuffling (NLS)’’ and ‘‘random edge rewiring (RER)’’ (Step 4).
Comparative analyses of the real phospho-PPI and its negative controls
were performed with other yeast multi-omics data (Step 5).
doi:10.1371/journal.pcbi.1001064.g001

Figure 2. Number counts of phosphoproteins (A) and their
phosphosites (B) newly identified in this study and of those
obtained from the data of Holt et al. [16] and UniProt [19].
doi:10.1371/journal.pcbi.1001064.g002

Author Summary

To date, high-throughput proteome technologies have
revealed that hundreds to thousands of proteins in each of
many organisms are phosphorylated under the appropri-
ate environmental conditions. A critical role of phosphor-
ylation is control of protein signaling. However, only a
fraction of the identified phosphoproteins participate in
currently known protein signaling pathways, and the
biological relevance of the remainder is unclear. This has
raised the question of whether phosphorylation has other
major roles. In this study, we identified new phosphopro-
teins in budding yeast by mass spectrometry and unified
these new data with publicly available phosphoprotein
data. We then performed an integrative data-mining of
large-scale yeast phosphoproteins and protein–protein
interactions (complex formation) by an exhaustive analysis
that incorporated yeast protein information from several
other sources. The phosphoproteome data integration
surprisingly showed that nearly 60% of yeast genes
encode phosphoproteins, and the subsequent data-
mining analysis derived two models interpreting the
mutual intracellular effects of large-scale protein phos-
phorylation and binding interaction. Biological interpreta-
tions of both large-scale intracellular phosphorylation and
the topology of protein interaction networks are highly
relevant to modern biology. This study sheds light on how
in vivo protein pathways are supported by a combination
of protein modification and molecular dynamics.

Integrating Yeast Multi-Omics
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nonphosphoproteins had three or more interacting partners, but

this was true for 67.9% of phosphoproteins. Moreover, in both

datasets, about twice as many phosphoproteins as nonpho-

sphoproteins had 10 interacting partners (Fig. 3B and E). To

analyze the statistical significance of this difference in the context

of phosphorylation, we prepared randomly generated phospho-

PPI networks by ‘‘node label shuffling’’ (NLS), in which the node

positions of phosphoproteins and nonphosphoproteins were

randomly moved within the phospho-PPI networks (for details,

see Materials and Methods). This demonstrated that the node

degree of phosphoproteins was significantly higher than expected

from a random distribution (Fig. 3C and F).

Node degree in PPI networks has an exponential relationship

with protein expression level [34–36], perhaps because cellular

proteins with more copies have a greater possibility of interacting

with others by chance [36]. Therefore, if the phosphoproteome

data are biased by protein abundance and highly abundant

proteins tend to be identified as phosphoproteins, there is a strong

possibility that the relationship between phosphorylation and node

degree is spurious, with no direct causal connection. In fact,

proteome abundance data obtained through a single-cell proteo-

mic analysis combining high-throughput flow cytometry and a

library of GFP-tagged yeast strains [37] showed that the number of

phosphoproteins in the ‘‘ALL’’ phospho-PPI was skewed,

especially among highly abundant proteins (Fig. 4A and D).

However, we demonstrated that in the ‘‘ALL’’ phospho-PPI

network there were still significant differences in the node degree

levels of phosphoproteins and nonphosphoproteins of similar

abundance, and that the differences could be explained indepen-

dently of protein copy number (Fig. 4B, C, E and F). Similar

results were derived from the phospho-PPI network generated only

from the ‘‘Y2H’’ category (Supplementary Fig. S2). We further

compared the abilities to predict phosphoproteins by using node

degree and protein abundance levels above given thresholds. The

predictive power of node degree was markedly higher than that of

protein abundance, except in the case of proteins that were

extremely abundant (Supplementary Fig. S3). If this higher

predictive ability were attributable to a spurious relationship

associated with the actual intracellular proteome abundance, then

the node degree of a protein given by PPI assays would appear to

provide a better approximation of the intracellular protein copy

number than would single-cell proteomic analysis, which is

unlikely.

Protein disorder is also a typical feature of ‘‘hub’’ proteins in PPI

networks [38–40]. Parts of unstructured proteins lack fixed

structure, and such disordered regions may have the ability to

bind multiple proteins and to diversify PPI networks [38–40].

Additionally, at the proteome level, phosphorylation occurs at high

rates in the disordered regions of proteins [16,17,41–44].

Therefore, it is highly likely that protein disorder affects the node

Figure 3. Node degree distributions of phosphoproteins and nonphosphoproteins in the phospho-PPI data sets of ‘‘ALL’’ (A–C) and
‘‘Y2H’’ (D–F). (A,D) Cumulative probability distribution of node degrees. For each group of phosphoproteins and nonphosphoproteins, circles
represent proportions of proteins with more than the k interacting partners indicated on the horizontal axis [P$(k)]. (B,E) P to N (P/N) ratio, where P
and N are P$(k) of phosphoproteins and nonphosphoproteins, respectively. (C,F) O to E (O/E) ratio, where O is P$(k) of phosphoprotein and E is that
expected from negative controls generated by node label shuffling (N = 10,000). For each node degree level, line graph and bar represent mean and
two-sided 95% confidence intervals, respectively. Background colors and asterisks denote statistical significance over neutral O/E value of 1.0
(*P,0.05, **P,0.01, ***P,0.001).
doi:10.1371/journal.pcbi.1001064.g003

Integrating Yeast Multi-Omics
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degree difference between phosphoproteins and nonphosphopro-

teins. For every S. cerevisiae protein registered in UniProt, we

calculated the probability of harboring intrinsic disordered regions

(see Materials and Methods). In the ‘‘ALL’’ phospho-PPI network,

the ratio of phosphoproteins to nonphosphoproteins increased

smoothly with increasing disorder probability level (Fig. 4G).

However, in the same network, the node degree levels of

phosphoproteins and nonphosphoproteins of the same disorder

probability level were significantly different (Fig. 4H and I). Even

between phosphoproteins that had a low disorder probability of

,0.1 and nonphosphoproteins that had an extremely high

disorder probability of .0.9, the node degree level of the

phosphoproteins was significantly higher than that of the nonpho-

sphoproteins (P = 0.0043). Similar results were observed in the

‘‘Y2H’’ dataset (Supplementary Fig. S2). These results imply that

the higher node degree of phosphoproteins than of nonpho-

sphoproteins is at least partly independent of the PPI network

diversity produced by unstructured proteins.

Other factors that could influence the relationship between

protein phosphorylation and interaction are protein size and

protein groups with identical cellular function. Larger proteins

may have a greater chance of being phosphorylated and may

provide more binding domains for interactions with other proteins.

However, similar to the results for protein abundance and

disorder, statistical significance of the higher node degree of

phosphoproteins was observed independently of protein length

(Supplementary Fig. S4). (Phosphorylation probability was highly

correlated with protein length; Supplementary Fig. S4.) In the

event that both protein phosphorylation and interaction events

occurring in a fraction of proteins confer a particular, identical

cellular function, then the global difference in node degree levels of

phosphoproteins and nonphosphoproteins would appear to be

caused only by differences in function. However, we found that,

for most functional annotations of S. cerevisiae in GO Slim (a higher

level view of Gene Ontology), there was a higher node degree level

for phosphoproteins than for nonphosphoproteins (Supplementary

Fig. S5).

The average node degree of phosphoproteins is higher than that

of nonphosphoproteins [45], but it was unclear 1) whether this

characteristic was observable only in hub proteins or whether it

existed broadly at the proteome level; and 2) whether this was a

spurious correlation that had emerged because of the presence of

some third factor hidden in the complex and intertwining

proteomes. Our results show that, in many cases, this character-

istic is present not only in hub proteins but also in proteins that

have few interacting partners. They also imply that these protein

interactions or binding patterns are not the result of influence by a

third factor but are caused by phosphorylation-dependent cellular

activities.

Diversification of PPIs by phosphorylation
The additive effect of kinase–substrate and phosphatase–

substrate reactions is one possible model for interpreting this

phenomenon in the phospho-PPI network. If PPIs include many

transient signaling reactions between kinases, phosphatases, and

their substrates (most of which are phosphorylated under certain

conditions), then the signaling proteins may have interactions

additional to the cohesive protein binding interactions in the PPI

data. Indeed, some enzyme–protein substrate interactions are

surprisingly stable and can be captured in protein interaction

assays [46]. However, of the 795 yeast phosphorylation and

dephosphorylation reactions for which information has previously

been published [47], only 3.9%, 1.6%, 2.4%, and 0.8% over-

lapped with those in our ‘‘ALL,’’ ‘‘Y2H,’’ ‘‘IMM,’’ and ‘‘TAP’’

PPI datasets, respectively (Supplementary Fig. S6). [Note,

however, that these values were significantly higher than those

expected from negative controls of the corresponding PPI

networks generated by ‘‘random edge rewiring’’ (RER), and

Figure 4. Difference between node degree levels of phosphoproteins and nonphosphoproteins at each level of protein abundance
(A–F) and protein disorder (G–I). (A–C) YEPD, protein abundance dataset for cells grown in rich medium; (D–F) SD, protein abundance dataset
for cells grown in synthetic complete medium. Protein abundance provided in the original dataset [37] was log-transformed (base 10) as abundance
level a. The type of phospho-PPI network is ‘‘ALL’’ (for each analysis, protein nodes for which abundance or disorder levels and their corresponding
edges were not provided were eliminated from the phospho-PPI network). Each bin corresponds to the protein abundance level between a
(indicated on the horizontal axis) and a+0.5 (A–F) or the protein disorder probability between d (indicated on the horizontal axis) and d+0.2 (G–I). For
protein nodes corresponding to each bin, the P to N (P/N) ratio of protein number count (where P and N are number counts of phosphoproteins and
nonphosphoproteins) (A,D,G), average node degree levels [Log(k) (base 10)] of phosphoproteins (red line) and nonphosphoproteins (blue line)
(B,E,H), and statistical significance [2Log(P value) (base 10)] of differences between Log(k) of phosphoproteins and nonphosphoproteins (C,F,I) are
represented. Error bars denote s.e.m. Asterisks denote 2Log(P value).8.0 (i.e. P,1028).
doi:10.1371/journal.pcbi.1001064.g004

Integrating Yeast Multi-Omics
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similar, significant overlaps between physical PPI and signaling

network were obtained by another group [48]; for details of RER,

see Materials and Methods.] On the other hand, the node degree

levels of at least 600 proteins (.20% of phosphoproteomes in the

‘‘ALL’’ phospho-PPI network) might have been related to, and

affected by, phosphorylation, as evidenced by the cumulative

percentage of phosphoproteins, which was more than 20% higher

than that of nonphosphoproteins (Fig. 3A). In addition to this, many

unidentified phosphoproteins are certain to be present in the

nonphosphoprotein dataset. Therefore, it is difficult to interpret

such a large difference in the node degree of phosphoproteins and

nonphosphoproteins only in terms of the additive effect of signaling

reactions, which had such a small overlap with the PPI data.

Furthermore, among the GO Slim ontology groups within the

‘‘signal transduction’’ and ‘‘cell cycle’’ categories, which especially

include many signaling proteins, there were no great distinctions

between the node degree levels of phosphoproteins and nonpho-

sphoproteins (although the node degree levels for ‘‘cytokinesis’’ and

‘‘response to stress,’’ like those for most of the other ontology groups,

showed marked differences between phosphoproteins and nonpho-

sphoproteins) (Supplementary Fig. S5).

In the phospho-PPI network, phosphoproteins had a greater

tendency than nonphosphoproteins to interact with proteins

harboring phosphoprotein binding domains (PPBDs). Out of 10

known PPBDs—14-3-3, BRCT, C2, FHA, MH2, PBD, PTB,

SH2, WD-40, and WW [49]—six (BRCT, C2, FHA, SH2, WD-

40, and WW) were present in the member proteins of the ‘‘ALL’’

phospho-PPI network, and the average probabilities that phos-

phoproteins would interact with proteins that had all PPBDs or

each type of PPBD were higher than those for nonphosphopro-

teins (Fig. 5). (The gap between node degree levels of phospho-

proteins and nonphosphoproteins was normalized; see Materials

and Methods.) Considering all of these results and perspectives, a

reasonable and generalized model that can be used to interpret the

higher node degree of phosphoproteins is that reversible and

alternative phosphorylation reactions alter the physical character-

istics of proteins under various environmental conditions; the

interacting or binding partners of phosphoproteins are thereby

more diversified than those of nonphosphorylated proteins.

Consistent with this interpretation, phosphoproteins harboring at

least two phosphosites had more interacting partners than those

with a single phosphosite in the phospho-PPI network (Supple-

mentary Fig. S7), even though phosphoproteins follow a power-

law distribution with regard to phosphosite number counts and

only a small fraction of phosphoproteins have multiple phospho-

sites [50]. Protein phosphorylation reactions therefore seem to

make a large contribution to intracellular PPI diversity.

Both interacting proteins tend to be phosphorylated
We further analyzed the phosphorylation patterns of protein

pairs forming pair-wise interactions in the phospho-PPI network,

and we found that both interacting proteins in each pair tended to

be phosphorylated. For every category of phospho-PPI network,

three types of pair-wise interactions were counted, whereby

‘‘Both,’’ ‘‘Either,’’ or ‘‘Neither’’ of two interacting proteins were

phosphorylated. The ‘‘Both’’ and ‘‘Neither’’ types of protein

interactions were significantly more common in the real phospho-

PPI network than was expected from negative controls produced

by RER, whereas the ‘‘Either’’ types of protein interactions were

significantly less common than expected (Fig. 6; Supplementary

Fig. S8). Notably, this outcome was independent of whether the

node degrees of the phosphoproteins were higher or lower than

those of the nonphosphoproteins, because RER does not change

the node degree of each protein in a given network [51].

PPI data contain homodimer and heterodimer information that

can be captured by experimental assays such as two-hybrid assays

[52]. Therefore, to check the possibility that the tendency of

interacting proteins to have similar phosphorylation patterns was

caused by protein interactions between structurally and sequentially

homologous proteins with similar phosphosites, we conducted the

same analysis as above but using ‘‘filtered’’ phospho-PPI networks, in

which interactions between two homologous proteins were elimi-

nated by E-value cut-offs of 1e–10 in the BLASTP program, but no

marked change was observed (Fig. 6; Supplementary Fig. S8).

Co-phosphorylation of interacting proteins by single
kinase

Proteins involved in signal transduction pathways tend to be

phosphorylated, and this is reflected in the PPI data, although the

overlaps between such signaling reactions and PPIs are limited (see

above and Supplementary Fig. S6). Another possible interpretation

for the multitude of physical interactions between phosphoproteins

is that physically binding proteins that are members of the same

protein complex tend to be phosphorylated simultaneously by a

single enzyme. To search for the protein kinases potentially

responsible for the co-phosphorylation of proteins forming the

same complex, we analyzed a dataset of kinase–substrate relation-

ships with PPI data of the ‘‘ALL’’ category. In the following analysis,

we used 85 and 65 kinases, respectively, from the experimental

results of an in vitro kinase–substrate assay [53] and a literature-

derived collection of yeast signaling reactions [47], each having

multiple substrates (Supplementary Table S3). For each kinase, its

multiple substrates were superimposed on the PPI network and the

number of ‘‘interacting kinate modules’’ (IKMs, triangle motifs

composed of a kinase and its two physically interacting substrates)

(Fig. 7A) [53] was counted and compared with those estimated in

negative controls of the PPI network produced by NLS and RER.

This analysis revealed that three kinases from the in vitro assay and

12 from the literature-based collection had significantly higher IKM

formability than those expected from both NLS and RER (P,0.05)

(Fig. 7B and C; Supplementary Table S3). Similar results were

Figure 5. Probabilities that phosphoproteins and nonpho-
sphoproteins will interact with proteins that have phospho-
protein binding domains (PPBDs). The average normalized
interaction probabilities of phosphoproteins (red bars) and nonpho-
sphoproteins (blue bars) in the ‘‘ALL’’ phospho-PPI network with each
type of PPBD or with all PPBDs (indicated on the horizontal axis) are
shown.
doi:10.1371/journal.pcbi.1001064.g005

Integrating Yeast Multi-Omics
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obtained by using the ‘‘filtered’’ phospho-PPI network (Supple-

mentary Fig. S9; Supplementary Table S3).

Accordingly, we suggest that, when a protein complex and kinase

are in close proximity within the intracellular environment, there is

a high chance of simultaneous phosphorylation of member proteins

participating in the complex. This is consistent with the subcellular

co-localization of signaling networks recently revealed through the

systematic prediction of signaling networks by using phosphopro-

teome data with an integrated protein network information derived

from curated pathway databases, co-occurring terms in abstracts,

physical protein interaction assays, mRNA expression profiles, and

the genomic context [48], and by data analysis of time-course

phosphoproteome data [54]. IKMs may enhance the subcellular co-

localization of signaling reactions, and/or vice versa. The literature-

derived signaling collection is presumably more enriched with well-

investigated reactions and thus may more accurately reflect in vivo

signaling. This may explain why the collection harbored more

kinases with high IKM formabilities (12 out of 65) than the in vitro

kinase–substrate relationship data (three out of 85).

Bi-directional impacts of protein phosphorylation and
binding

It is plausible that, in living cells, the diversity of protein

interactomes (not only of protein signaling but also of protein

complex formation) is essentially influenced by the large number of

phosphorylation events; many reversible phosphorylations might

control condition-specific protein binding interactions related to

different subcellular processes and molecular machines. On the

other hand, protein phosphorylation patterns also seem to depend

largely on intracellular protein interaction diversity.

It is possible that many of the proteins defined as nonpho-

sphoproteins in this study can actually be phosphorylated under

appropriate cellular conditions. Even where this is true, however,

the set we defined here as phosphoproteins should be enriched

with proteins that are frequently phosphorylated under normal or

many different cellular conditions, because the frequently

phosphorylated proteins have a higher chance of being identified

as phosphoproteins than do the rarely phosphorylated proteins.

Accordingly, the features and models discussed in this study should

reflect the overall characteristics of phosphoproteins and nonpho-

sphoproteins among a number of different cellular conditions.

This is supported by the finding that proteins that had two or more

phosphosites physically interacted with more proteins than did

those with only a single phosphosite (Supplementary Fig. S7).

Although the quality of current yeast PPI data is also not perfect

and the data may include false positives, the observed features with

statistical significance should be consequences of the actual

behaviors of intracellular proteins, because the effects of such

false positives on the statistical tests are supposedly random.

The integrative data-mining of yeast multi-omics data has now

shed light on the macroscopic and large-scale relationships

between phosphoproteomes and protein interactomes. Future

comprehensive analyses of the in vivo link between protein

phosphorylation and physical interaction will yield more insights

into the complex and intertwined molecular systems of living cells.

Materials and Methods

Phosphopeptide samples
Saccharomyces cerevisiae strain IFO 0233 cells grown continuously

on glucose medium [55] were used. Pelleted cells were vacuum

dried and frozen until further analysis. A Bioruptor UCW-310

(Cosmo Bio, Tokyo Japan) was used to disrupt the pellets in 0.1 M

Tris-HCl (pH 8.0) containing 8 M urea, protein phosphatase

inhibitor cocktails 1 and 2 (Sigma), and protease inhibitors

(Sigma). The homogenate was centrifuged at 1,500g for 10 min

and the supernatant was reduced with dithiothreitol, alkylated

with iodoacetamide, and digested with Lys-C; this was followed by

dilution and trypsin digestion as described [56]. Digested samples

were desalted by using C-18 StageTips [57]. Phosphopeptide

enrichment by hydroxy acid–modified metal oxide chromatogra-

phy (HAMMOC) was performed as reported previously [11,58].

Briefly, digested lysates (100 mg each) were loaded onto a self-

packed titania-C8 StageTip in the presence of lactic acid. After the

samples had been washed with 80% acetonitrile containing 0.1%

TFA, phosphopeptides were eluted by a modified approach using

5% ammonium hydroxide, 5% piperidine, and 5% pyrrolidine in

series [59].

LC-MS/MS analysis
An LTQ-Orbitrap XL (Thermo Fisher Scientific, Bremen,

Germany) coupled with a Dionex Ultimate 3000 (Germering,

Germany) and an HTC-PAL autosampler (CTC Analytics AG,

Zwingen, Switzerland) was used for nanoLC-MS/MS analyses.

An analytical column needle with a ‘‘stone-arch’’ frit [60] was

prepared with ReproSil C18 materials (3 mm, Dr. Maisch,

Ammerbuch, Germany). The injection volume was 5 mL and the

flow rate was 500 nL/min. The mobile phases consisted of (A)

Figure 6. Number counts of interacting protein pairs of each
phosphorylation pattern shown in the phospho-PPI network.
Respective rows of panels correspond to the three phosphorylation
patterns of two interacting proteins: ‘‘Both’’ (A,B) ‘‘Either’’ (C,D) and
‘‘Neither’’ (E,F) respective columns correspond to PPI categories of
‘‘ALL’’ (A,C,E) and ‘‘Y2H’’ (B,D,F). In each panel, data are shown for two
types of phospho-PPI networks: ‘‘whole’’ (i.e. unfiltered) and ‘‘filtered’’
(see text). Colored bars (purple, blue, and pink) represent number
counts of protein interactions in real data sets; gray bars show mean
values of those estimated by negative controls generated by random
edge rewiring (N = 10,000). Error bars represent s.d. Blue/red asterisks
denote significance of values higher/lower than those of negative
controls (***P,0.001).
doi:10.1371/journal.pcbi.1001064.g006
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0.5% acetic acid and (B) 0.5% acetic acid and 80% acetonitrile. A

three-step linear gradient of 5% to 10% B in 5 min, 10% to 40% B

in 60 min, 40% to 100% B in 5 min, and 100% B for 10 min was

employed throughout this study. The MS scan range was m/z 300

to 1500, and the top 10 precursor ions were selected in MS scans

by Orbitrap with R = 60,000 for subsequent MS/MS scans by ion

trap in the automated gain control (AGC) mode; AGC values of

5.00e+05 and 1.00e+04 were set for full MS and MS/MS,

respectively. The normalized collision energy was set at 35.0. A

lock mass function was used for the LTQ-Orbitrap to obtain

constant mass accuracy during gradient analysis.

Phosphosite identification
Both Mass Navigator v1.2 (Mitsui Knowledge Industry, Tokyo,

Japan) and Mascot Distiller v2.2.1.0 (Matrix Science, London,

UK) were used to create peak lists based on the recorded

fragmentation spectra. Peptides and proteins were identified by

automated database searching using Mascot Server v2.2 (Matrix

Science) against UniProt/SwissProt v56.0 with a precursor mass

tolerance of 3 ppm, a fragment ion mass tolerance of 0.8 Da, and

strict trypsin specificity, allowing for up to two missed cleavages.

Carbamidomethylation of cysteine was set as a fixed modification,

and oxidation of methionines and phosphorylation of serine,

threonine, and tyrosine were allowed as variable modifications.

Phosphopeptide identification and phosphorylated site determina-

tion were performed in accordance with a procedure reported

previously [11]. The false discovery rate was estimated to be

1.07% using a randomized database. All annotated MS/MS

spectra were stored in PepBase (http://pepbase.iab.keio.ac.jp).

Public phosphoproteome datasets
Saccharomyces cerevisiae phosphoproteome data were obtained

from Dataset S1 of Holt et al. [16]. Another collection of formerly

identified phosphoproteins and their phosphosites was obtained

from UniProt (release 15.14; http://www.uniprot.org/) [19]. All

UniProtKB/Swiss-Prot protein entries identified to have at least

one phosphosite in high-throughput phosphoproteomics studies

were downloaded via the Protein Knowledgebase (UniProtKB) in

XML format by querying the term scope: ‘‘PHOSPHORYLATION
[LARGE SCALE ANALYSIS] AT’’. Some phosphoproteins regis-

tered in UniProt had multiple synonyms of UniProt accession.

Identifier standardization and data integration
For integrative analyses and comparisons of yeast multi-omics

data, all identities of proteins and genes obtained from different

data sources were standardized to UniProt accessions. If objects

(e.g. gene names, ORF names, and/or locus names) in a data

source did not have UniProt accessions, the objects were

standardized to their corresponding UniProt accessions according

to the cross-reference list prepared from UniProtKB/Swiss-Prot

protein entries obtained from UniProt (release 15.14). In cases

when an object corresponded to multiple synonyms of UniProt

accessions, all accessions were used to identify its corresponding

objects in other data sources.

Phosphoproteome data unification
The phosphoproteome data newly identified in this study and

the former phosphoproteome datasets obtained from Holt et al.

and UniProt were unified according to their UniProt accessions.

Positions of phosphosites and their amino acid residues in the

unified phosphoproteome data were double-checked by using the

proteome sequences obtained from UniProt (release 15.14).

Gene annotations
From SGD (Saccharomyces Genome Database; http://yeastgenome.

org) [32], annotations of 5,815 known and predicted genes were

Figure 7. Kinases inferred to yield co-phosphorylation of proteins in the same protein complex. (A) Conceptual diagram of an
interacting kinate module (IKM) motif. (B,C) Kinases revealed to have significantly higher IKM formability than negative controls by data integration
of the PPI network with in vitro kinase–substrate relationships (B) and with a literature-based collection of signaling pathways (C). For each kinase,
arrows denote number counts of IKMs formed by that kinase and the ‘‘whole’’ (i.e. unfiltered) PPI network, with P values estimated from negative
controls of the PPI network generated by RER and NLS (N = 10,000). Expected probability density distributions of number counts of IKMs observed in
negative controls generated by node label shuffling and random edge rewiring are shown by gray and white bars, respectively.
doi:10.1371/journal.pcbi.1001064.g007
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obtained. ORF names of genes were checked by using the unified

phosphoproteome data to determine whether the encoded protein

was identified as a phosphoprotein.

PPI network
The S. cerevisiae PPI network was obtained as XML files

(Scere20081014) from DIP (Database of Interacting Proteins;

http://dip.doe-mbi.ucla.edu) [33]. We eliminated each interaction

entry including three or more ‘‘interactors’’ (e.g., in which multiple

prey proteins were detected for one bait protein in one

experimental assay) and used only those including two ‘‘inter-

actors.’’ Every node in the PPI network was labeled by its

corresponding UniProt ID provided in the same XML file. For the

PPI assay, PPI data were further grouped into four categories: all

kinds of experimental methods (‘‘ALL’’), yeast two-hybrid

(‘‘Y2H’’), co-immunoprecipitation (‘‘IMM’’), and tandem affinity

purification (‘‘TAP’’). A ‘‘filtered’’ PPI network was also prepared

for each category by eliminating interactions between two similar

proteins by using the BLASTP program and an E-value cut-off of

1e–10.

Phospho-PPI
Unified phosphoproteome data were mapped onto every

category of PPI data prepared from DIP according to their

UniProt accessions, and a phospho-PPI network was generated.

Throughout this study, proteins that did not correspond to

phosphoproteome data were termed ‘‘nonphosphoproteins.’’

Negative control generation
To prepare negative controls for PPI and phospho-PPI

networks, two different processes (as diagrammed in Fig. 1) were

appropriately adopted on a case-by-case basis. ‘‘Node label

shuffling’’ (NLS) swaps the labels of two randomly selected nodes

in a given network; it repeats this operation a sufficient number of

times until all pair-wise interactions in the queried network have

disappeared or until the number of iterations reaches 1,000 times

the number of interactions. ‘‘Random edge rewiring’’ (RER)

randomly selects two edges in a given network and randomly

rewires them. During this process, each rewiring operation is

retried if a pair of nodes redundantly wired by two edges occurs in

the network; the iteration termination condition is the same as that

of NLS.

Proteome abundance data
Proteome abundance data for S. cerevisiae that were previously

acquired through a single-cell proteomics analysis combining high-

throughput flow cytometry and a library of GFP-tagged strains

[37] were used to analyze the characteristics of protein expression

in the phospho-PPI network. These data were composed of

proteome abundance data measured for cells grown in rich

(YEPD) and synthetic complete (SD) medium. For each cell

growth condition, protein names were standardized to UniProt

accessions, and protein abundance levels were log-transformed

(base 10) and superimposed on each of the phospho-PPI networks

of ‘‘ALL’’ and ‘‘Y2H.’’ In this case, protein nodes for which the

abundance levels were not provided in the abundance data were

deleted from the phospho-PPI network.

Prediction of structured and unstructured proteins
The protein disorder level of every S. cerevisiae protein registered

in UniProt (release 15.14) was predicted by the POODLE-W

program, which uses the support vector machine–based learning

of amino acid sequences of structurally confirmed disordered

proteins [61]. For the analysis, we used the ‘‘disorder probability’’

(i.e. the probability that a given protein is unstructured) output by

this program.

Gene Ontology
Saccharomyces cerevisiae gene annotations belonging to ‘‘molecular

function,’’ ‘‘biological process,’’ or ‘‘cellular component’’ of GO

Slim, a higher level view of S. cerevisiae Gene Ontology (GO), were

downloaded via the SGD ftp site.

PPBD
Information on S. cerevisiae proteins, each of which has at least

one of 10 known phosphoprotein binding domains (PPBDs),

namely 14-3-3, BRCT, C2, FHA, MH2, PBD, PTB, SH2, WD-

40, and WW [49], was obtained according to the protein domain

annotations of UniProt (release 15.14), which were provided by

other protein databases.

Normalized probability of interaction with PPBDs
To evaluate the tendencies of phosphoproteins and nonpho-

sphoproteins to interact with proteins that had PPBDs, the

normalized probabilities of such interactions were defined. For

each protein, the number of interacting protein partners that had

PPBDs was divided by the number of all interacting partners.

Collection of signaling reactions
To find possible IKMs, kinases previously reported to

phosphorylate multiple substrates were obtained from data on in

vitro substrates recognized by most yeast protein kinases that were

measured with the use of proteome chip technology [Supplemen-

tary Data 2 of Ptacek et al. [53]], as well as from a literature-

derived collection of documented yeast signaling reactions [Table

S3 of Fiedler et al. [47]]. All gene names of substrates in the in vitro

kinase–substrate relationship data and ORF names of substrates in

the literature-derived collection were standardized into UniProt

accessions and linked to proteins in the ‘‘whole’’ and ‘‘filtered’’ PPI

networks of the ‘‘ALL’’ category.

Statistics
The statistical significance of differences in a single real value

from a group of repeatedly generated random values was

estimated by calculating the proportion of random values equal

to the real value or more (or less, in certain instances). The

Wilcoxon–Mann-Whitney rank sum was used to assess statistical

significance between groups.

Supporting Information

Figure S1 Contents of the phospho-PPI network generated for

each experimental method used in the PPI assay. Numbers in

parentheses indicate those derived by the ‘‘filtered’’ network.

Found at: doi:10.1371/journal.pcbi.1001064.s001 (1.73 MB TIF)

Figure S2 Differences between node degree levels of phospho-

proteins and nonphosphoproteins of the ‘‘Y2H’’ phospho-PPI

network at each level of protein abundance or protein disorder.

See legend to Fig. 4 for details.

Found at: doi:10.1371/journal.pcbi.1001064.s002 (0.67 MB TIF)

Figure S3 Comparison of abilities to predict phosphoproteins by

node degree level and protein abundance level. (A) ‘‘ALL’’ PPI

data and proteome abundance data measured for cells grown in

YEPD medium. (B) ‘‘ALL’’ PPI and proteome abundance for cells

grown in SD medium. (C) ‘‘Y2H’’ PPI and proteome abundance

for cells grown in YEPD medium. (D) ‘‘Y2H’’ PPI and proteome
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abundance for cells grown in SD medium. For each predictor, the

true-positive rate or ‘‘sensitivity’’ (defined here as the fraction of

phosphoproteins correctly predicted to be phosphoproteins) and

the false-positive rate or ‘‘1 – specificity’’ (defined here as the

fraction of nonphosphoproteins incorrectly predicted to be

phosphoproteins) are shown at a series of score thresholds.

Found at: doi:10.1371/journal.pcbi.1001064.s003 (5.75 MB TIF)

Figure S4 Differences between node degree levels of phospho-

proteins and nonphosphoproteins at each level of protein size. See

legend to Fig. 4 for details. Analyses were performed for the

phospho-PPI networks of ‘‘ALL’’ (A–C) and ‘‘Y2H’’ (E–F). Each

bin corresponds to the protein length between AA and AA+100

(amino acids). See legend to Fig. 4 for details.

Found at: doi:10.1371/journal.pcbi.1001064.s004 (0.44 MB TIF)

Figure S5 Comparison of node degree counts of phosphopro-

teins and nonphosphoproteins in terms of yeast functional

annotations. The type of phospho-PPI network is ‘‘ALL.’’ For

proteins corresponding to each Gene Ontology annotation of

‘‘biological process’’ (A), ‘‘molecular function’’ (B) and ‘‘cellular

component’’ (C) in the S. cerevisiae GO Slim set, the average node

degree of phosphoproteins divided by that of nonphosphoproteins

is represented as the P to N (P/N) ratio.

Found at: doi:10.1371/journal.pcbi.1001064.s005 (2.10 MB TIF)

Figure S6 Number counts of intersections between pair-wise

protein relationships in the literature-derived signaling collection

and in the PPI. For each category of PPI data, the number count

of signaling reactions matched to protein interactions is repre-

sented by an arrow, along with P values estimated from negative

controls generated by 10,000 repeats by RER. Gray bars represent

the probability density distribution of the number count of the

intersection observed using the negative controls generated by

RER.

Found at: doi:10.1371/journal.pcbi.1001064.s006 (0.24 MB TIF)

Figure S7 Cumulative probability distributions of node degrees

of nonphosphoproteins, phosphoproteins with a single phospho-

site, and phosphoproteins with two or more phosphosites in the

phospho-PPI data of the ‘‘ALL’’ category. For each dataset, bars

show proportions of proteins with more than the k interacting

partners indicated on the horizontal axis [P$(k)].

Found at: doi:10.1371/journal.pcbi.1001064.s007 (0.90 MB TIF)

Figure S8 Number counts of interacting protein pairs of each

phosphorylation pattern shown in the phospho-PPI networks of

the ‘‘IMM’’ and ‘‘TAP’’ categories. See legend to Fig. 6 for details.

Found at: doi:10.1371/journal.pcbi.1001064.s008 (0.60 MB TIF)

Figure S9 Number counts of IKMs formed in the ‘‘filtered’’ PPI

network by each of the kinases shown in Fig. 7. For each kinase,

arrows indicate number counts of IKMs formed by that kinase and

the ‘‘filtered’’ PPI network, with P values estimated by comparison

with negative controls. See legend to Fig. 7 for details.

Found at: doi:10.1371/journal.pcbi.1001064.s009 (0.90 MB TIF)

Table S1 Phosphoproteome data used in this study.

Found at: doi:10.1371/journal.pcbi.1001064.s010 (1.85 MB XLS)

Table S2 List of known and predicted S. cerevisiae genes and

phosphorylation annotation.

Found at: doi:10.1371/journal.pcbi.1001064.s011 (0.47 MB

XLS)

Table S3 Phosphoproteome data used in this study.

Found at: doi:10.1371/journal.pcbi.1001064.s012 (0.09 MB

XLS)
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